Frames | No Frames
Groovy Pardlel Systems

The GPars Project - Reference Documentation

Authors: The whole GPars gang
Version: 0.12

Copies of this document may be made for your own use and for distribution to others, provided that you
do not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

Table of Contents

1. Introduction
1.1. Credits

2. Getting Started

2.1 Downloading and Installing
2.2 A Hello World Example

2.3 Code conventions

2.4 Getting Set-up in an IDE

2.5 Applicability of concepts
2.6 What's new

2.7 Java APl - Using GPars from Java
3. Data Parallelism
3.1 Parallel Collections
3.1.1 GParsPool
3.1.2 GParsExecutorsPool
3.1.3 Memoize

3.2 Map-Reduce

3.3 Parallel Arrays
3.4 Asynchronous Invocation

3.5 Composable Asynchronous Functions
3.6 Parallel Speculations
3.6. Fork-Join
4. Groovy CSP
5. Actors
5.1 Actors Principles
5.2 Stateless Actors
5.3 Tipsand Tricks
5.4 Active Objects
5.5 Classic Examples using Actors

6. Agent

7. Dataflow Concurrency
7.1 Tasks

7.2 Selects

7.3 Operators
7.4 Dataflow implementation
7.5 Classic examples

8. Stm

9. Tips
9.1. Performance

10. Conclusion

1. Introduction

The world of mainstream computing is changing rapidly these days. If you open the hood and look under
the covers of your computer, you'll most likely see a dual-core processor there. Or a quad-core, if you're
lucky enough. We all run our software on multi-processors. The code we write today and tomorrow will
probably never run on a single processor system. Parallel hardware has become common-place. Not so
with the software though, at least not yet. People still create single-threaded code, although it will never
be able to leverage the full power of future hardware. Some experiment with low-level concurrency
primitives, like threads, locks or synchronized blocks, however, it has become obvious that the common
shared-memory multithreading causes more troubles than it solves. Low-level concurrency handling is
usually hard to get right. And it's not much fun either. With such aradical change in hardware, software
inevitably has to change dramatically too. Higher-level concurrency concepts like map/reduce, fork/join,
actors or dataflow will provide natural abstractions for different types of problem domains while
leveraging the multi-core hardware underneath.

Meet GPars - an open-source concurrency library for Java and Groovy that aims to give you multiple
high-level abstractions for writing concurrent code in Groovy - map/reduce, fork/join, asynchronous
closures, actors, agents, dataflow concurrency and other concepts, which aim to make your Groovy code
concurrent with little effort. With GPars your Groovy or Java code can easily utilize all the available
processors on the target system. Y ou can run multiple calculations at the same time, request network
resourcesin parallel, safely solve hierarchical divide-and-conquer problems, perform functional style
map/reduce collection processing or build your applications around the actor model.

The project is open sourced under the Apache 2 License . If you're working on acommercial,
open-source, educational or any other type of software project in Groovy, download the binaries or
integrate them from the maven repository and get going. The way to witting highly concurrent Groovy
code is wide open. Enjoy!

1.1. Credits

This project could not have reached the point where we stand currently, without al the great help and
contribution of many individuals, who have devoted their time, energy and expertise to make GPars a
solid product. Firgt, it is the people in the core team, who should be mentioned:

Vé&clav Pech
Dierk Koenig
Alex Tkachman
Russel Winder
Paul King
* Jon Kerridge
Over time, many people have contributed their ideas, provided useful feedback or helped GParsin one
way or another. There are too many people in this group to name them all, but still, let's list at least a few:

Hamlet d'Arcy
Hans Dockter
Guillaume Laforge
Robert Fischer
Johannes Link
Graeme Rocher
Alex Miller
Jeff Gortatowsky

* Jii Kropaek
Great thanks to everyone!

http://gpars.codehaus.org
http://gpars.codehaus.org/License

2. Getting Started

Let's make several assumptions before we really start.

1. You know and love Groovy. Otherwise you'd hardly invest your valuable time into studying a
Groovy concurrency library.

2. If you don't want to use Groovy, you are prepared to pay the inevitable verbosity tax on using
GPars from Java

3. You target multi-core hardware with your code

4. You use or want to use Groovy or Javato write concurrent code.

5. You have at least some understanding that in concurrent code some things can happen at any time
in any order and often more of them at the same time.

That's about it. Let'sroll the ball forward.

Brief overview

GParsaimsto bring several useful concurrency abstractions to Java and Groovy developers. It's
becoming obvious that dealing with concurrency on the thread/synchronized/lock level, as provided by
the VM, isway too low level to be safe and comfortable. Many high-level concepts, like actors or
dataflow concurrency have been around for quite some time, since parallel computers had beeninusein
computer centers long before multi-core chips hit the hardware mainstream. Now, however, it's the time
to adopt and test these abstractions for the mainstream software industry.

The concepts available in GPars can be categorized into three main groups:

1. Code-level helpers - constructs that can be applied to small parts of the code-base such as
individual algorithms or data structures without any major changesin the overall project
architecture

® Pardlel Collections
® Asynchronous Processing
® Fork/Join (Divide/Conquer)

1. Architecture-level concepts - constructs that need to be taken into account when designing the
project structure

® Actors
® Communicating Sequential Processes
® Dataflow Concurrency

1. Shared Mutable State Protection - although about 95 of current use of shared mutable state can be
avoided using proper abstractions, good abstractions are still necessary for the remaining 5% use
cases, when shared mutabl e state can't be avoided

* Agents

® Software Transactional Memory (not implemented in GPars yet) would also belong to this
group

2.1 Downloading and Installing

There are several ways to add GPars to your project. Either download and add all the jar files manually,
specify adependency in Maven, lvy or Gradle build files or use Grape. If you're building a Grailsor a
Griffon application, you can leverage the appropriate plugins to fetch the jar files for you.

Dependency resolution

GPars requires two compulsory dependencies - the jsr166y and the extral66y jar files, which are the
artifacts of the JSR-166 initiative . These must be on the classpath.

<dependency>
<gr oupl d>or g. codehaus. j sr166-m rror </ gr oupl d>
<artifactld>jsrl66y</artifactld>
<version>1.7.0</version>

</ dependency>

<dependency>
<gr oupl d>or g. codehaus. j sr166-m rror </ gr oupl d>
<artifactld>extral66y</artifactld>
<versi on>1. 7. 0</versi on>

</ dependency>

GPars defines both of the dependencies in its own descriptor, so both dependencies should be taken care
of automatically, if you use Gradle, Maven, Ivy or other type of automatic dependency resolution tool.
Please visit the Integration page of the project for details.

2.2 A HelloWorld Example

Once you got setup, try the following Groovy script to test that your setup is functional. For Java, see
below.

i mport static groovyx.gpars.actor. Actors. actor
/**
* A denp showi ng two cooperating actors. The decryptor decrypts received nessages and r¢
* The consol e actor sends a nessage to decrypt, prints out the reply and term nates bott
* The main thread waits on both actors to finish using the join() method to prevent pret
* since both actors use the default actor group, which uses a daenon thread pool
* @uthor Dierk Koenig, Vaclav Pech
*/
def decryptor = actor {
| oop {
react {nessage ->
if (message instanceof String) reply nmessage.reverse()
el se stop()

}

def console = actor {
decryptor.send 'lellarap si yvoorG
react {
println 'Decrypted nessage: ' + it
decryptor.send fal se

}

[decryptor, console]*.join()
Y ou should get a message "Decrypted message: Groovy is parallel” printed out on the console when you
run the code.

GPars- aJavalibrary

Although GPars has been primarily designed for the Groovy programming language, the
solid technical foundation plus good performance characteristics make GPars a good Java
library aswell. Since most of GParsiswritten in Java, there is no extra performance penalty
Java applications would pay when using GPars.
For details please refer to the Java APl section.

To quick-test your integration through Java AP, run the following Java actor code:

i mport groovyx. gpars. Messagi ngRunnabl e;
i mport groovyx. gpars. actor. Dynani cDi spat chAct or;
public class Statel essActorDenp {
public static void main(String[] args) throws InterruptedException {
final MyStatel essActor actor = new MyStat el essActor();
actor.start();
actor.send("Hello");

http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166y.jar
http://gee.cs.oswego.edu/dl/jsr166/dist/extra166y.jar
http://g.oswego.edu/dl/concurrency-interest/
http://gpars.codehaus.org/Integration

act or. sendAndWai t (10) ;
actor. sendAndConti nue(10. 0, new Messagi ngRunnabl e<String>() {
@verride protected void doRun(final String s) {
Systemout.println("Received a reply " + s);
}

1)
}

cl ass MySt at el essActor extends Dynam cDi spat chActor {
public void onMessage(final String nsg) {
Systemout. println("Received " + nsQ);
repl yl f Exi sts(" Thank you");

public void onMessage(final |nteger nsg) {
System out. println("Received a nunber " + nsQ);
replyl f Exi sts(" Thank you");

public void onMessage(final Object nsg) {
System out. println("Received an object " + nsQ);
replyl f Exi sts(" Thank you");

}

2.3 Code conventions

We follow certain conventions in the code samples. Understanding these may help you read and
comprehend GPars code samples better.

® TheleftShift operator << has been overloaded on actors, agents and dataflow expressions (both
variables and streams) to mean send a message or assign avalue.

myAct or << 'nessage’
nmyAgent << {account -> account.add('5 USD)}
nyDat af | owvari abl e << 120332

® On actors and agents the default call() method has been al so overloaded to mean send . So sending
amessage to an actor or agent may look like aregular method call.

myAct or "nmessage"
nyAgent {house -> house.repair()}

® TherightShift operator >> in GPars has the when bound meaning. So
nyDat af | owari abl e >> {val ue -> doSonet hi ngWt h(val ue)}

will schedule the closure to run only after myDataflowVariable is bound to avalue, with the value asa
parameter.
In samples we tend to statically import frequently used factory methods:

GParsPool .withPool ()
GParsPool .withExistingPool ()
GParsExecutorsPool .withPool ()
GParsExecutorsPool .withExistingPool ()
Actors.actor()

Actors.reactor()
Actors.fairReactor()
Actors.messageHandler()
Actors.fairMessageHandler()
Agent.agent()
Agent.fairAgent()
Dataflow.task()
Dataflow.operator()

It is more a matter of style preferences and personal taste, but we think static imports make the code more
compact and readable.

2.4 Getting Set-up in an IDE

Adding the GPars jar files to your project or defining the appropriate dependencies in pom.xml should be
enough to get you started with GParsin your IDE.

GParsDSL recognition

IntelliJ IDEA in both the free Community Edition and the commercial Ultimate Edition will recognize
the GPars domain specific languages, complete methods like eachParallel() , reduce() or callAsync() and
validate them. GPars uses the GroovyDSL mechanism, which teaches IntelliJIDEA the DSLs as soon as
the GPars jar file is added to the project.

2.5 Applicability of concepts

Here you could find basic guide-lines hel ping you decide on which GPars abstraction to apply to your
code at hands.

1. You'relooking at acollection, which needsto be iterated or processed using one of the many
beautiful Groovy collections method, like each() , collect() , find() and such. Proposing that
processing each element of the collection is independent of the other items, using GPars par allel
collections can be recommended.

2. If you have along-lasting calculation , which may safely run in the background, use the
asynchronous invocation support in GPars. Y ou can aso benefit, if your long-calculating
closures need to be passed around and yet you'd like them not to block the main application thread.

3. You need to parallelize an algorithm at hand. Y ou can identify sub-tasks and you're happy to
explicitly express the options for parallelization. Y ou create internally sequential tasks, each of
which can run concurrently with the others, providing they all have away to exchange data at some
well-defined moments through communication channels with safe semantics. Use GPars dataflow
tasks, variables and streams.

4. You can't avoid shared mutable state. Multiple threads will be accessing shared data and (some of
them) modifying the data. Traditional locking and synchronized approach feels too risky or
unfamiliar. Go for agents, which will wrap your data and serialize all accesstoit.

5. You're building a system with high concurrency demands. Tweaking a data structure here or task
there won't cut it. Y ou need to build the architecture from the ground up with concurrency in mind.
M essage-passing might be the way to go.

1. Groovy CSP will give you highly deterministic and composable model for concurrent
processes.
2. If you're trying to solve a complex data-processing problem, consider GPars dataflow
operator to build a dataflow network.
3. Actorswill shineif you need to build a genera -purpose, highly concurrent and scalable
architecture.
Now you may have a better idea of what concepts to use on your current project. Go and check out more
details on them in the User Guide.

2.6 What's new

Again, the new release, thistime GPars 0.12, introduces a lot of gradual enhancements and improvements
on top of the previous release.
Check out the JIRA release notes

Project changes

http://www.jetbrains.net/confluence/display/GRVY/Scripting+IDE+for+DSL+awareness
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=12030&version=16994

See the Breaking Changes listing for the list of breaking changes.
Asynchronous functions

® The asyncFun() method now creates composable asynchronous functions
* The @AsyncFun annotation can be used to create composable asynchronous functions stored in
fieldsin amore declarative way

Par allel collections

® Collections can now repeatedly be made transparently concurrent or sequential using
makeConcurrent() and makeSequential () methods
® Renamed makeTransparent() to makeConcurrent()

Fork / Join

* A few new demosillustrating Fork/Join applicability to recursive functions have been added

® |everaging the new and efficient implementation of the jsr-166y (aka Java 7) Fork/Join library

® The runChildDirectly() method allowing to mix asynchronous and synchronous child task
execution

Actors

Active Objects wrapping actors with an OO facade

Enhanced DynamicDispatchActor's API for dynamic message handler registration
Added BlockingActor to allow for non-continuation style actors

Removed the deprecated actor classes

Dataflow
Agent
Stm
® [nitial support for Stm through Multiverse was added
Other

Switched to the most recent Java 7 Fork/Join library to ensure compatibility with future JDKs
Raised the Groovy level used for compilation to 1.7

Created a pdf version of the user guide

An update to the stand-alone maven-based Java APl demo application was added to show GPars
integration and use from Java

¢ Added numerous code examples and demos

® Enhanced project documentation

Renaming hints

* The makeTransparent() method that forces concurrent semantics to iteration methods (each, collect,
find, etc.) has been renamed to makeConcurrent()

® Capitalization has changed in the names of dataflow classes DataFlow -> Dataflow e.g.
DataFlowVariable is now called DataflowVariable

® The DataFlowPoisson class has been renamed to PoisonPill

2.7 Java API - Using GParsfrom Java

http://gpars.codehaus.org/Breaking+Changes
http://gpars.codehaus.org/Demos

Using GParsis very addictive, | guarantee. Once you get hooked you won't be able to code without it.
May the world force you to write code in Java, you will still be able to benefit from most of GPars
features.

Java API specifics
Some parts of GPars areirrelevant in Javaand it is better to use the underlying Java libraries directly:

® Parallel Collection - use jsr-166y library's Parallel Array directly

® Fork/Join - use jsr-166y library's Fork/Join support directly

® Asynchronous functions - use Java executor services directly
The other parts of GPars can be used from Java just like from Groovy, although most will missthe
Groovy DSL capabilities.

GParsClosuresin Java API

To overcome the lack of closures as alanguage element in Java and to avoid forcing users to use Groovy
closures directly through the Java API, afew handy wrapper classes have been provided to help you
define callbacks, actor body or dataflow tasks.

® groovyx.gpars.MessagingRunnable - used for single-argument callbacks or actor body

® groovyx.gpars.ReactorM essagingRunnable - used for ReactiveActor body

® groovyx.gpars.DataflowM essagingRunnable - used for dataflow operators body
These classes can be used in al places GPars APl expects a Groovy closure.

Actors
The DynamicDispatchActor aswell as the ReactiveActor classes can be used just like in Groovy:

i mport groovyx. gpars. Messagi ngRunnabl e;
i mport groovyx. gpars. actor. Dynami cDi spat chAct or
public class Statel essActorDenp {
public static void main(String[] args) throws |nterruptedException {
final MyStatel essActor actor = new MyStat el essActor();
actor.start();
actor.send("Hell o");
act or. sendAndWai t (10) ;
act or. sendAndCont i nue(10. 0, new Messagi ngRunnabl e<String>() {
@verride protected void doRun(final String s) {
Systemout.println("Received a reply " + s);
}

1)
}

class MyStatel essActor extends Dynam cDi spat chActor {
public void onMessage(final String msg) {
System out. println("Received " + nsQ);
replyl f Exi sts(" Thank you");

public void onMessage(final |nteger neg) {
System out . printl n("Received a nunmber " + nsgQ);
repl yl f Exi st s(" Thank you");

}

public void onMessage(final Object nmsg) {
Systemout. println("Received an object " + nsgQ);
repl yl f Exi st s(" Thank you");

}
Although there are not many differences between Groovy and Java GPars use, notice, the callbacks

instantiating the MessagingRunnable class in place for agroovy closure.

i mport groovy. |l ang. C osure;

i mport groovyx. gpars. React or Messagi ngRunnabl e;
i mport groovyx.gpars. actor. Actor;

i mport groovyx.gpars. actor. ReactiveActor;

public class ReactorDeno {
public static void main(final String[] args) throws InterruptedException {
final d osure handl er = new React or Messagi ngRunnabl e<l nt eger, Integer>() {
@verride protected Integer doRun(final Integer integer) {
return integer * 2;
}
1

final Actor actor = new ReactiveActor(handler);
actor.start();

Systemout.printin("Result: " + actor.sendAndWait(1));
Systemout.printin("Result: " + actor.sendAndWit(2));
Systemout.println("Result: " + actor.sendAndWait(3));

}

Convenience factory methods
Obvioudly, al the essential factory methods to build actors quickly are available where you'd expect
them.

i mport groovy. |l ang. C osure;

i mport groovyx. gpars. React or Messagi ngRunnabl e;

i mport groovyx.gpars. actor. Actor;

i mport groovyx.gpars.actor. Actors;

public class ReactorDeno {

public static void nmain(final String[] args) throws InterruptedException {
final d osure handler = new React or Messagi ngRunnabl e<I nt eger, Integer>() {
@verride protected Integer doRun(final Integer integer) {
return integer * 2;

}
)
final Actor actor = Actors.reactor(handler);
Systemout.println("Result: " + actor.sendAndWait(1));
Systemout.println("Result: " + actor.sendAndWit(2));
Systemout.printin("Result: " + actor.sendAndWit(3));
}
}
Agents

i mport groovyx. gpars. Messagi ngRunnabl e;
i mport groovyx. gpars. agent. Agent;
public class AgentDenp {
public static void main(final String[] args) throws InterruptedException {
final Agent counter = new Agent<Integer>(0);
counter.send(10);
Systemout.println("Current value: " + counter.getVal());
count er. send(new Messagi ngRunnabl e<I nt eger >() {
@verride protected void doRun(final |Integer integer) {
count er. updat evVal ue(i nteger + 1);
}
1)

Systemout. println("Current val ue:

+ counter.getVal ());

}

Dataflow Concurrency

Both DataflowVariables and Datafl owQueues can be used from Java without any hiccups. Just avoid the
handy overloaded operators and go straight to the methods, like bind , whenBound , getVal and other. Y ou
may also continue using dataflow tasks passing to them instances of Runnable or Callable just like
groovy Closure.

i mport groovyx. gpars. Messagi ngRunnabl e;
i mport groovyx. gpars. dat afl ow. Dat af | owvari abl e;
i mport groovyx. gpars. group. Def aul t PG oup
import java.util.concurrent. Call able;
public class Datafl owTaskDeno {
public static void main(final String[] args) throws InterruptedException {

final DefaultPGoup group = new Defaul t PG oup(10);
final Dataflowariable a = new Datafl owari abl e();
group. task(new Runnabl e() {
public void run() {
a. bi nd(10);

1)
final Dataflowariable result = group.task(new Callable() {
public Cbject call() throws Exception {
return (Integer)a.getVal () + 10;

1)
resul t. whenBound(new Messagi ngRunnabl e<l nt eger >() {
@verride protected void doRun(final Integer integer) {
Systemout.println("argunents = " + integer);
}
1)

Systemout.println("result =" + result.getVal());

}

Dataflow operators
The sample below should illustrate the main differences between Groovy and Java API for dataflow
operators.

1. Use the convenience factory methods accepting list of channelsto create operators or selectors

2. Use DataflowMessagingRunnable to specify the operator body

3. Call getOwningProcessor() to get hold of the operator from within the body in order to e.g. bind
output values

i mport groovyx. gpars. Dat af | omvessagi ngRunnabl e;
i mport groovyx. gpars. dat af | ow. Dat af | ow;
i mport groovyx. gpars. dat af | ow. Dat af | owQueue;
i mport groovyx. gpars. dat af | ow. oper at or. Dat af | owPr ocessor;
import java.util.Arrays;
i mport java.util.List;
public class Datafl owOperat or Denmo {
public static void main(final String[] args) throws InterruptedException {
final Datafl owQueue streandl new Dat af | owQueue() ;
final Datafl owQueue streant new Dat af | owQueue() ;
final Datafl owQueue streans new Dat af | owQueue() ;
final Datafl owQueue streamt new Dat af | owQueue() ;
final Datafl owProcessor opl Dat af | ow. sel ector (Arrays. asLi st (streaml), Arrays. as
@verride protected void doRun(final Ooject[] objects) {
get Omni ngProcessor (). bi ndQut put (2* (I nt eger) obj ects[0]);

1)
final List secondOperatorlnput = Arrays. asList(strean?, streanB);
final Datafl owProcessor op2 = Datafl ow. operator(secondOperatorlnput, Arrays.aslLis
@verride protected void doRun(final Ooject[] objects) {
get Owni ngProcessor (). bi ndQut put ((I nteger) objects[0] + (Integer) objects|
}
1)

streamdl. bi nd(1);
streamnl. bi nd(2);
st reaml. bi nd(3);
st reanB. bi nd(100);
st reanB. bi nd(100);
st reanB. bi nd(100);

Systemout.println("Result: " + streamd.getVal ());
Systemout.println("Result: " + streamd.getVal ());
Systemout.printin("Result: " + streamd.getVal ());
opl.stop();
op2.stop();

}

Perfor mance

In general, GPars overhead is identical irrespective of whether you use it from Groovy or Java and tends
to be very low. GPars actors, for example, can compete head-to-head with other VM actor options, like
Scala actors.

Since Groovy code in general runs slower than Java code, mainly due to dynamic method invocation, you
might consider writing your code in Javato improve performance. Typically numeric operations or
frequent fine-grained method calls within atask or actor body may benefit from arewrite into Java.

Prerequisites

All the GParsintegration rules apply to Java projects just like they do to Groovy projects. You only need
to include the groovy distribution jar filein your project and all is clear to march ahead. Y ou may also
want to check out the sample Java Maven project to get tips on how to integrate GParsinto a
maven-based pure Java application - Sample Java Maven Project

3. Data Parallelism

Focusing on data instead of processes helps agreat deal to create robust concurrent programs. You as a
programmer define your data together with functions that should be applied to it and then let the
underlying machinery to process the data. Typically a set of concurrent tasks will be created and then they
will be submitted to athread pool for processing.

In GPar s the GParsPool and GPar sExecutorsPool classes give you access to low-level data parallelism
techniques. While the GParsPool classrelies on the jsr-166y Fork/Join framework and so offers greater
functionality and better performance, the GPar sExecutor sPool uses good old Java executors and so is
easier to setup in amanaged or restricted environment.

There are three fundamental domains covered by the GPars low-level data parallelism:

1. Processing collections concurrently
2. Running functions (closures) asynchronously
3. Performing Fork/Join (Divide/Conquer) agorithms

3.1 Parallel Collections

Dealing with data frequently involves manipulating collections. Lists, arrays, sets, maps, iterators, strings
and lot of other data types can be viewed as collections of items. The common pattern to process such
collectionsis to take elements sequentially, one-by-one, and make an action for each of the itemsin row.
Take, for example, the min() function, which is supposed to return the smallest element of a collection.
When you call the min() method on a collection of numbers, the caller thread will create an accumulator
or so-far-the-smallest-value initialized to the minimum value of the given type, let say to zero. And then
the thread will iterate through the elements of the collection and compare them with the value in the
accumulator . Once all elements have been processed, the minimum value is stored in the accumulator .
This algorithm, however ssimple, istotally wrong on multi-core hardware. Running the min() function on
adual-core chip can leverage at most 50% of the computing power of the chip. On a quad-core it would
be only 25%. Correct, this algorithm effectively wastes 75% of the computing power of the chip.
Tree-like structures proved to be more appropriate for parallel processing. The min() function in our
example doesn't need to iterate through all the elements in row and compare their values with the
accumulator . What it can do instead is relying on the multi-core nature of your hardware. A
parallel_min() function could, for example, compare pairs (or tuples of certain size) of neighboring values
in the collection and promote the smallest value from the tuple into a next round of comparison.
Searching for minimum in different tuples can safely happen in parallel and so tuplesin the same round
can be processed by different cores at the same time without races or contention among threads.

Meet Parallel Arrays

Thejsr-166y library brings a very convenient abstraction called Parallel Arrays . GPars leverages the
Parallel Arraysimplementation in several ways. The GPar sPool and GPar sExecutor sPool classes
provide parallel variants of the common Groovy iteration methods like each() , collect() , findAll() and

http://gpars.codehaus.org/Demos
http://groovy.dzone.com/articles/parallelize-your-arrays-with-j

such.

def selfPortraits = images.findAll Parallel{it.contains ne}.collectParallel {it.resize()}

It also allows for a more functional style map/reduce collection processing.

def smallestSelfPortrait = inmages.parallel.filter{it.contains nme}.map{it.resize()}.nmn{it

3.1.1 GParsPool

Use of GParsPool - the JSR-166y based concurrent collection processor

Usage of GPar sPool

The GParsPool class enables a Parallel Array-based (from JSR-166y) concurrency DSL for collections
and objects.
Examples of use:

[/ summari ze nunbers concurrently
GPar sPool . wi t hPool {
final Atom clnteger result = new Atom cl nteger(0)
[1, 2, 3, 4, 5].eachParallel {result.addAndGet(it)}
assert Equal s 15, result

/[Imultiply nunbers asynchronously

GPar sPool . wi t hPool {
final List result =1[1, 2, 3, 4, 5].collectParallel {it * 2}
assert ([2, 4, 6, 8, 10].equal s(result))

The passed-in closure takes an instance of a ForkJoinPool as a parameter, which can be then used freely
inside the closure.

/'l check whether all elenments within a collection nmeet certain criteria
GPar sPool . wi t hPool (5) {ForkJoi nPool pool ->
assert [1, 2, 3, 4, 5].everyParallel {it > 0}
assert ![1, 2, 3, 4, 5].everyParallel {it > 1}
}

The GParsPool.withPool () method takes optional parameters for number of threads in the created pool
and an unhandled exception handler.

wi t hPool (10) {...}
wi t hPool (20, exceptionHandler) {...}

The GParsPool .withExistingPool () takes an already existing ForkJoinPool instanceto reuse. The DSL is
valid only within the associated block of code and only for the thread that has called the withPool () or
withExistingPool () methods. The withPool () method returns only after all the worker threads have
finished their tasks and the pool has been destroyed, returning back the return value of the associated
block of code. The withExistingPool () method doesn't wait for the pool threads to finish.

Alternatively, the GParsPool class can be statically imported import static groovyx.gpars.GParsPool. * ™,
which will alow omitting the GParsPool class name.

wi t hPool {
assert [1, 2, 3, 4, 5].everyParallel {it > 0}
assert ![1, 2, 3, 4, 5].everyParallel {it > 1}
}
The following methods are currently supported on all objectsin Groovy:

eachParallel()
eachWithIndexParallel()
collectParalel()
findAllParallel()
findAnyParallel

findParallel()
everyParallel()
anyParallel()
grepParallel()
groupByParallel()
foldParallel()
minParallel()
maxParallel()
sumParallel()
splitParallel()
countParallel()
foldParallel()

M eta-class enhancer
As an aternative you can use the ParallelEnhancer class to enhance meta-classes of any classes or
individual instances with the parallel methods.

i mport groovyx. gpars. Parall el Enhancer
def list =[1, 2, 3, 4, 5, 6, 7, 8, 9]
Par al | el Enhancer . enhancel nstance(li st)
println list.collectParallel {it * 2}

def animals = ['dog', '"ant', 'cat', 'whale']

Par al | el Enhancer. enhancel nst ance ani nal s

println (aninals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')

println (animals.everyParallel {it.contains('a)} ? "All animals contain a' : 'Sone animnt

When using the Parallel Enhancer class, you're not restricted to a withPool () block with the use of the
GParsPool DSLs. The enhanced classed or instances remain enhanced till they get garbage collected.

Exception handling
If an exception is thrown while processing any of the passed-in closures, the first exception gets
re-thrown from the xxxParallel methods and the algorithm stops as soon as possible.

The exception handling mechanism of GParsPool builds on the one built into the Fork/Join
framework. Since Fork/Join algorithms are by nature hierarchical, once any part of the
algorithm fails, there's usually little benefit from continuing the computation, since some
branches of the algorithm will never return aresult.

Bear in mind that the GParsPool implementation doesn't give any guarantees about its
behavior after afirst unhandled exception occurs, beyond stopping the algorithm and
re-throwing the first detected exception to the caller. This behavior, after al, is consistent
with what the traditional sequential iteration methods do.

Transparently parallel collections

On top of adding new xxxParallel() methods, GPar s can also let you change the semantics of the original
iteration methods. For example, you may be passing a collection into alibrary method, which will process
your collection in a sequential way, let say using the collect() method. By changing the semantics of the
collect() method on your collection you can effectively parallelize the library sequential code.

GPar sPool . wi t hPool {
/1 The sel ectlnportant Nanes() will process the nane collections concurrently
assert ["ALICE , 'JASON] == selectlnportantNanes(['Joe', "Alice', 'Dave', 'Jason'].r
;**
* A function inplemented using standard sequential collect() and findAl I () methods.
*/
def sel ectl nportant Nanes(nanes) {
nanes. col lect {it.toUpperCase()}.findAlI{it.size() > 4}
}

The makeSequential () method will reset the collection back to the original sequential semantics.

i mport static groovyx.gpars. GPar sPool . wi t hPool

def list =[1, 2, 3, 4, 5 6, 7, 8, 9]

println 'Sequential: '

list.each { print it +'," }

println()

wi t hPool {
println ' Sequential :
list.each { print it +"'," }
println()
I'ist.makeConcurrent()
println 'Concurrent:
list.each { print it +"'," }
println()
I'ist.makeSequential ()
println 'Sequential :
list.each { print it +"'," }
println()

println 'Sequential:

list.each { print it +'," }

println()

The asConcurrent() convenience method will allow you to specify code blocks, in which the collection

maintains concurrent semantics.

i mport static groovyx.gpars. GPar sPool . wi t hPool
def list =[1, 2, 3, 4, 5 6, 7, 8, 9]
println 'Sequential: '
list.each { print it +"'," }
println()
wi t hPool {
println 'Sequential:
list.each { print it +"'," }
println()
list.asConcurrent {
println 'Concurrent:
list.each { print it +"',' }
println()

println 'Sequential:
list.each { print it +"'," }
println()
println 'Sequential: '
list.each { print it +'," }
println()
Transparent parallelizm, including the makeConcurrent() , makeSequential () and asConcurrent()

methods, is also available in combination with ParallelEnhancer .

/**
* A function inplemented using standard sequential collect() and findA I () methods.
*/
def sel ectl nportant Nanes(nanes) {
nanes. col lect {it.toUpperCase()}.findAlI{it.size() > 4}

}

def names = ['Joe', '"Alice', 'Dave', 'Jason']

Par al | el Enhancer . enhancel nst ance(nanes)

/1 The sel ectlnportant Nanmes() will process the nane collections concurrently
assert ["ALICE', 'JASON] == sel ectlnportant Nanes(nanes. makeConcurrent())

i mport groovyx. gpars. Paral | el Enhancer

def list =[1, 2, 3, 4, 5, 6, 7, 8, 9]

println 'Sequential: '

list.each { print it +',' }

println()

Par al | el Enhancer. enhancel nstance(li st)

println 'Sequential: '

list.each { print it +"',' }

println()

list.asConcurrent {
println 'Concurrent:
list.each { print it +"'," }

println()

I'ist.mkeSequential ()
println 'Sequential:
list.each { print it +"',' }
println()

Avoid side-effectsin functions

We have to warn you. Since the closures that are provided to the parallel methods like eachParallel() or
collectParallel() may berunin parallel, you have to make sure that each of the closuresiswrittenin a
thread-safe manner. The closures must hold no internal state, share data nor have side-effects beyond the
boundaries the single element that they've been invoked on. Violations of these rules will open the door
for race conditions and deadlocks, the most severe enemies of a modern multi-core programmer.

Don't dothis:

def thunbnails =[]
i mages. eachParal l el {thunbnails << it.thunbnail} //Concurrently accessing a not-thread-:

At least, you've been warned.

3.1.2 GPar sExecutor sPool

Use of GParsExecutorsPool - the Java Executors' based concurrent collection processor

Usage of GPar sExecutor sPool

The GParsPool class enables a Java Executors-based concurrency DSL for collections and objects.

The GParsExecutorsPool class can be used as a pure-JDK -based collection parallel processor. Unlike the
GParsPool class, GParsExecutorsPool doesn't require jsr-166y jar file, but leverages the standard JDK
executor services to parallelize closures processing a collections or an object iteratively. It needsto be
states, however, that GParsPool performs typically much better than GPar sExecutorsPool does.
Examples of use:

//multiply nunbers asynchronously
GPar sExecut or sPool . wi t hPool {
Col l ection<Future> result =11, 2, 3, 4, 5].collectParallel{it * 10}
assert Equal s(new HashSet ([10, 20, 30, 40, 50]), new HashSet((Collection)result*.get(

/[Imultiply nunmbers asynchronously using an asynchronous cl osure
GPar sExecut or sPool . wi t hPool {
def closure={it * 10}
def asyncd osure=cl osure. async()
Col l ection<Future> result =11, 2, 3, 4, 5].collect(asyncd osure)
assert Equal s(new HashSet ([10, 20, 30, 40, 50]), new HashSet((Collection)result*. get(

}

The passed-in closure takes an instance of a ExecutorService as a parameter, which can be then used
freely inside the closure.

[1find an el ement neeting specified criteria
GPar sExecut or sPool . wi t hPool (5) {ExecutorService service ->
servi ce.subm t ({performongCal cul ati on()} as Runnabl e)
}

The GPar sExecutor sPool .withPool () method takes optional parameters for number of threads in the
created pool and athread factory.

wi t hPool (10) {...}
wi t hPool (20, threadFactory) {...}

The GPar sExecutor sPool .withExistingPool () takes an aready existing executor service instance to reuse.
The DSL isvalid only within the associated block of code and only for the thread that has called the

withPool() or withExistingPool () method. The withPool() method returns only after all the worker threads
have finished their tasks and the executor service has been destroyed, returning back the return value of
the associated block of code. The withExistingPool () method doesn't wait for the executor service threads
to finish.

Alternatively, the GParsExecutorsPool class can be statically imported import static
groovyx.gpars.GParsExecutorsPool. * ™ , which will allow omitting the GPar sExecutorsPool class name.

wi t hPool {
def result =[1, 2, 3, 4, 5].findParallel {Nunber nunber -> nunber > 2}
assert result in [3, 4, 5]

}

The following methods on all objects, which support iterationsin Groovy, are currently supported:

eachParallel()
eachWithIndexParallel()
collectParallel()
findAllParallel()
findParalel()
alParallel()
anyParallel()
grepParallel()
groupByParallel()

M eta-class enhancer
As an aternative you can use the GPar sExecutor sPool Enhancer class to enhance meta-classes for any
classes or individual instances with asynchronous methods.

i mport groovyx. gpars. GPar sExecut or sPool Enhancer
def list =[1, 2, 3, 4, 5, 6, 7, 8, 9]
GPar sExecut or sPool Enhancer . enhancel nst ance(l i st)
println list.collectParallel {it * 2}

def aninmals = ['dog', '"ant', 'cat', 'whale']

GPar sExecut or sPool Enhancer . enhancel nst ance ani mal s

println (aninals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')

println (aninmals.allParallel {it.contains('a')} ? "All animals contain a' : 'Sone aninal

When using the GPar sExecutor sPool Enhancer class, you're not restricted to a withPool () block with the
use of the GParsExecutorsPool DSLs. The enhanced classed or instances remain enhanced till they get
garbage collected.

Exception handling
If exceptions are thrown while processing any of the passed-in closures, an instance of AsyncException
wrapping all the original exceptions gets re-thrown from the xxxParallel methods.

Avoid side-effectsin functions

Once again we need to warn you about using closures with side-effects effecting objects beyond the scope
of the single currently processed element or closures which keep state. Don't do that! It is dangerous to
pass them to any of the xxxParallel() methods.

3.1.3 Memoize

The memoi ze function enables caching of function's return values. Repeated calls to the memoized
function with the same argument values will, instead of invoking the calculation encoded in the original
function, retrieve the result value from an internal transparent cache. Provided the calculation is
considerably slower than retrieving a cached value from the cache, this allows users to trade-off memory
for performance. Checkout out the example, where we attempt to scan multiple websites for particular
content:

The memoize functionality of GPars has been contributed to Groovy in version 1.8 and if you run on

Groovy 1.8 or later, it isrecommended to use the Groovy functionality. Memoize in GPars is almost
identical, except that it searches the memoize caches concurrently using the surrounding thread pool and
S0 may give performance benefits in some scenarios.

The GPars memoize functionality has been renamed to avoid future conflicts with the

memoize functionality in Groovy. GPars now calls the methods with a preceding letter g,
such as gmemoi ze().

Examples of use

GPar sPool . wi t hPool {

def urls = ["http://ww.dzone.com, 'http://ww.theserverside.com, "http://ww.infoc

Cl osure downl oad = {url ->
println "Downl oadi ng $url"
url.toURL().text.toUpperCase()

}

Cl osure cachi ngbownl oad = downl oad. gnenoi ze()

println 'Goovy sites today: ' + urls.findAllParallel {url -> cachingDownl oad(url). cc
println "Grails sites today: ' + urls.findAlParallel {url -> cachi ngDownl oad(url). cc
println "Giffon sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(url).
println '"Gadle sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(url). cc
println 'Concurrency sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(ur
println 'GPars sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(url). cor

}
Notice closures are enhanced inside the GParsPool .withPool () blocks with a memoize() function, which

returns a new closure wrapping the original closure with a cache. In the example we're calling the
cachingDownload function in several placesin the code, however, each unique url gets downloaded only
once - thefirst time it is needed. The values are then cached and available for subsequent calls. And aso
to all threads, no matter which thread originally came first with a download request for the particular url
and had to handle the actual cal cul ation/download.

S0, to wrap up, memoize shields afunction by a cache of past return values. However, memoize can do
even more. In some algorithms adding alittle memory may have dramatic impact on the computational
complexity of the calculation. Let'slook at a classical example of Fibonacci numbers.

Fibonacci example

A purely functional, recursive implementation, following closely the definition of Fibonacci numbersis
exponentially complex:

Cosure fib={n->n>1?2call(n- 1) +call(n - 2) : n}

Try calling the fib function with numbers around 30 and you'll see how slow it is.

Now with alittle twist and added memoize cache the algorithm magically turnsinto alinearly complex
one:

Closure fib

fib={n->n>172fib(n- 1) + fib(n - 2) : n}.gnemize()

The extra memory we added cut off all but one recursive branches of the calculation. And all subsequent
callsto the same fib function will also benefit from the cached values.

Also, see below, how the memoizeAtMost variant can reduce memory consumption in our example, yet
preserve the linear complexity of the algorithm.

Available variants

memoize
The basic variant, which keeps values in the internal cache for the whole lifetime of the memoized
function. Provides the best performance characteristics of al the variants.

memoizeAtM ost

Allows the user to set a hard limit on number of items cached. Once the limit has been reached, all
subsequently added values will eliminate the oldest value from the cache using the LRU (Last Recently
Used) strategy.

So for our Fibonacci number example, we could safely reduce the cache size to two items:

Closure fib
fib={n->n>172fib(n- 1) + fib(n - 2) : n}.nmenoi zeAt Most (2)
Setting an upper limit on the cache size may have two purposes:

1. Keep the memory footprint of the cache within defined boundaries
2. Preserve desired performance characteristics of the function. Too large caches may take longer to
retrieve the cached value than it would have taken to calculate the result directly.

memoizeAtL east

Allows unlimited growth of the internal cache until the JVM's garbage collector decides to step in and
evict SoftReferences, used by our implementation, from the memory. The single parameter value to the
memoi zeAtLeast() method specifies the minimum number of cached items that should be protected from
gc eviction. The cache will never shrink below the specified number of entries. The cache ensuresit only
protects the most recently used items from eviction using the LRU (Last Recently Used) strategy.

memoizeBetween

Combines memoizeAtL east and memoizeAtMost and so allowing the cache to grow and shrink in the
range between the two parameter values depending on available memory and the gc activity, yet the cache
size will never exceed the upper size limit to preserve desired performance characteristics of the cache.

3.2 Map-Reduce

The Parallel Collection Map/Reduce DSL gives GPars a more functional flavor. In general, the
Map/Reduce DSL may be used for the same purpose as the xxxParallel () family methods and has very
similar semantics. On the other hand, Map/Reduce can perform considerably faster, if you need to chain
multiple methods to process a single collection in multiple steps:

println ' Nunber of occurrences of the word GROOVY today: ' + urls.parallel
.map {it.toURL().text.toUpperCase()}
filter {it.contains(' GROOVY')}

.map{it.split()}
.map{it.findA | {word -> word.contains ' GROOVY' }.size()}

.sum()
The xxxParallel() methods have to follow the contract of their non-parallel peers. So a collectParallel()

method must return alegal collection of items, which you can again treat as a Groovy collection.
Internally the parallel collect method builds an efficient parallel structure, called parallel array, performs
the required operation concurrently and before returning destroys the Parallel Array building the
collection of resultsto return to you. A potential call to let say findAllParallel() on the resulting collection
would repesat the whole process of construction and destruction of a Parallel Array instance under the
covers.

With Map/Reduce you turn your collection into a Parallel Array and back only once. The Map/Reduce
family of methods do not return Groovy collections, but are free to pass along the internal Parallel Arrays
directly. Invoking the parallel property on a collection will build a Parallel Array for the collection and
return athin wrapper around the Parallel Array instance. Then you can chain all required methods like:

map()
reduce()

filter()
size()
sum()
min()
max()
sort()

* groupBy()
* combine()
Returning back to a plain Groovy collection instance is always just a matter of retrieving the collection

property.

def nyNunmbers = (1..1000).parallel.filter{it %2 == 0}.map{Math.sqrt it}.collection

Avoid side-effectsin functions

Once again we need to warn you. To avoid nasty surprises, please, keep your closures, which you pass to
the Map/Reduce functions, stateless and clean from side-effects.

Availability
Thisfeature is only available when using in the Fork/Join-based GParsPool , not in GPar sExecutor sPool

Classical Example
A classical example, inspired by http://github.com/thevery, counting occurencies of wordsin a string:

i mport static groovyx.gpars. GPar sPool . wi t hPool

def words = "This is just a plain text to count words in"
print count (words)

def count(arg) {

wi t hPool {
return ayg.paralla
~map{[it, 1]}

.groupBy{it[0]}.getParallel()
.map {it.value=it.value.size();it}
.sort{-it.value}.collection
}
}

The same example, now implemented the more general combine operation:

def words = "This is just a plain text to count words in"
print count(words)
def count(arg) {

wi t hPool {
return arg. parallel
~map{[it, 1]}

.conbi ne(0) {sum value -> sum + val ue}. getParall el ()
.sort{-it.value}.collection

}
}

Combine

The combine operation expects on itsinput alist of tuples (two-element lists) considered to be key-value
pairs (such as [keyl, valuel, key2, value2, keyl, value3, key3, valued ...]) with potentially repeating
keys. When invoked, combine merges the values for identical keys using the provided accumulator
function and produces a map mapping the original (unique) keysto their accumulated values. E.g. [a, b, c,
d, a, e, c, f] will be combined into a: b+e, ¢ : d+f, while the '+' operation on the values needs to be
provided by the user as the accumulation closure. The accumulation function argument needs to specify a
function to use for combining (accumulating) the values belonging to the same key. An initial
accumulator value needs to be provided as well. Since the combine method processes itemsin parallel,
theinitial accumulator value will be reused multiple times. Thus the provided value must allow for reuse.
It should be either a cloneable or immutable value or a closur e returning afresh initial accumulator each
time requested. Good combinations of accumulator functions and reusable initial values include:

accunul ator = {List acc, value -> acc << value} initialValue = []
accunmul ator = {List acc, value -> acc << value} initialValue = {->[]}
accunul ator = {int sum int value -> acc + value} initialValue =0
accunmul ator = {int sum int value -> sum+ value} initialValue = {-> 0}

accumul ator = {ShoppingCart cart, Itemvalue -> cart.addltemvalue)} initialValue = {-> 1t

Thereturntypeisamap. E.g. ['he, 1, 'she, 2, 'he, 2, 'me, 1, 'she, 5, 'he', 1 with theinitial value provided
a0 will becombinedinto 'he': 4, 'she': 7,'he, : 2,'me': 1

3.3 Parallel Arrays

As an aternative, the efficient tree-based data structures defines in JSR-166y can be used directly. The

parallel Array property on any collection or object will return ajsr166y.forkjoin.Parallel Array instance
holding the elements of the original collection, which then can be manipulated through the jsr166y API.
Please refer to the jsr166y documentation for the API details.

gr oovyx. gpars. GPar sPool . wi t hPool {
assert 15 == [1, 2, 3, 4, 5].parallel Array.reduce({a, b -> a + b} as Reducer, 0)
assert 55 == [1, 2, 3, 4, 5].parallelArray.w thMapping({it ** 2} as Mapper).reduce({:
assert 20 ==[1, 2, 3, 4, 5].parallelArray.withFilter({it %2 == 0} as Predicate)
.wi t hMappi ng({it ** 2} as Mapper)
.reduce({a, b -> a + b} as Reducer, 0)
assert 'aa:bb:cc:dd:ee' == 'abcde'.parallelArray
W thMapping({it * 2} as Mapper)
.reduce({a, b -> "%a: $b"} as Reducer, "")

3.4 Asynchronous | nvocation

Running long-lasting tasks in the background belongs to the activities, the need for which arises quite
frequently. Y our main thread of execution wantsto initialize afew calculations, downloads, searches or
such, however, the results may not be needed immediately. GPar s gives the devel opers the tools to
schedule the asynchronous activities for processing in the background and collect the results once they're
needed.

Usage of GParsPool and GPar sExecutor sPool asynchronous
processing facilities

Both GParsPool and GParsExecutorsPool provide almost identical services in this domain, although they
leverage different underlying machinery, based on which of the two classes the user chooses.

Closures enhancements
The following methods are added to closures inside the GPar s(Executor s)Pool .withPool () blocks:

® async() - Creates an asynchronous variant of the supplied closure, which when invoked returns a
future for the potential return value
¢ calAsync() - Callsaclosurein a separate thread supplying the given arguments, returning a future
for the potential return value,
Examples:

GPar sPool . wi t hPool () {
Cl osure longLastingCal cul ation = {cal cul ate()}
Closure fastCal cul ati on = | ongLasti ngCal cul ati on.async() //create a new closure, whi
Future result=fast Cal cul ati on() //returns al nost inmedi at el
//do stuff while calculation perforns ...
println result.get()

}

GPar sPool . wi t hPool () {
/**
* The cal l Async() nethod is an asynchronous variant of the default call () nmethod to
* 1t will return a Future for the result val ue.
*/
assert 6 == {it * 2}.call(3)
assert 6 == {it * 2}.call Async(3).get()

Timeouts
The call TimeoutAsync() methods, taking either along value or a Duration instance, allow the user to have
the calculation cancelled after a given time interval.

{->
while(true) {
Thread. sl eep 1000 //Simulate a bit of interesting calculation
if (Thread.currentThread().islnterrupted()) break; //W've been cancelled

}
}.cal |l Ti meout Async(2000)
In order to allow cancellation, the asynchronously running code must keep checking the interrupted flag
of its own thread and cease the calculation once the flag is set to true.

Executor Service enhancements

The ExecutorService and jsr166y.forkjoin.ForkJoinPool class is enhanced with the << (leftShift) operator
to submit tasks to the pool and return a Future for the result.

Example:

GPar sExecut or sPool . wi t hPool {Executor Servi ce executorService ->
executorService << {println '"Inside parallel task'}
}

Running functions (closures) in paralle

The GParsPool and GParsExecutorsPool classes also provide handy methods executeAsync() and
executeAsyncAndWait() to easily run multiple closures asynchronously.

Example:

GPar sPool . wi t hPool {
assert Equal s([10, 20], GParsPool . executeAsyncAndWait ({cal culateA()}, {calculateB()}))
assert Equal s([10, 20], GParsPool . executeAsync({calculateA()}, {calculateB()})*.get())

}

3.5 Composable Asynchronous Functions

Functions are to be composed. In fact, composing side-effect-free functions is very easy. Much easier and
reliable than composing objects, for example. Given the same input, functions always return the same
result, they never change their behavior unexpectedly nor they break when multiple threads call them at
the sametime.

Functionsin Groovy

We can treat Groovy closures as functions. They take arguments, do their calculation and return avalue.
Provided you don't let your closures touch anything outside their scope, your closures are well-behaved
pure functions. Functions that you can combine for a better good.

def sum = (0..100000).inject(0, {a, b ->a + b})

For example, by combining afunction adding two numbers with the inject function, which iterates
through the whole collection, you can quickly summarize al items. Then, replacing the adding function
with a comparison function will immediately give you a combined function calculating maximum.

def max = nyNunbers.inject(0, {a, b -> a>b?a:b})
Y ou see, functional programming is popular for areason.

Arewe concurrent yet?

Thisall worksjust fine until you realize you're not utilizing the full power of your expensive hardware.
The functions are plain sequential. No parallelism in here. All but one processor core do nothing, they're
idle, totally wasted.

Those paying attention would suggest to use the Parallel Collection techniques described
earlier and they would certainly be correct. For our scenario described here, where we
process a collection, using those parallel methods would be the best choice. However, we're
now looking for ageneric way to create and combine asynchronous functions, which
would help us not only for collection processing but mostly in other more generic cases, like
the one right below.

To make things more obvious, here's an example of combining four functions, which are supposed to
check whether a particular web page matches the contents of alocal file. We need to download the page,
load the file, calculate hashes of both and finally compare the resulting numbers.

Cl osure download = {String url ->
url.toURL().text
}

Closure loadFile = {String fil eName ->
. /lload the file here
}

Cl osure hash = {s -> s. hashCode()}.asyncFun()
Cl osure conpare = {int first, int second ->
first == second

def result = conpare(hash(downl oad(' http://ww. gpars.org')), hash(loadFile('/cool Stuff/g
println "The result of conparison: " + result

We need to download the page, load up the file, calculate hashes of both and finally compare the resulting
numbers. Each of the functionsis responsible for one particular job. One downloads the content, second
loads the file, third cal cul ates the hashes and finally the fourth one will do the comparison. Combining the
functionsis as simple as nesting their calls.

Making it all asynchronous

The downside of our code is that we don't leverage the independence of the download() and the loadFil&()
functions. Neither we allow the two hashes to be run concurrently. They could well run in parallel, but
our way to combine functions restricts any parallelism.

Obviously not al of the functions can run concurrently. Some functions depend on results of others. They
cannot start before the other function finishes. We need to block them till their parameters are available.
The hash() functions needs a string to work on. The compare() function needs two numbers to compare.
So we can only parallelize some functions, while blocking parallelism of others. Seems like a challenging
task.

Thingsarebright in the functional world

Luckily, the dependencies between functions are already expressed implicitly in the code. There's no need
for us to duplicate the dependency information. If one functions takes parameters and the parameters need
first to be calculated by another function, we implicitly have a dependency here. The hash() function
depends on the loadFile() as well as on the download() functionsin our example. The inject function in
our earlier example depends on the results of the addition functions invoked gradually on all the elements
of the collection.

However difficult it may seem at first, our task isin fact very simple. We only need to teach
our functionsto return promises of their future results. And we need to teach the other
functions to accept those promises as parameters so that they wait for the real values before
they start their work. And if we convince the functions to release the threads they hold while
waiting for the values, we get directly to where the magic can happen.
In the good tradition of GPars we've made it very straightforward for you to convince any function to
believe in other functions' promises. Call the asyncFun() function on a closure and you're asynchronous.

wi t hPool {
def maxPronise = nunbers.inject(0, {a, b -> a>b?a:b}.asyncFun())
println "Look Ma, | can talk to the user while the math is being done for ne!"

println maxProm se. get ()

}
The inject function doesn't really care what objects are being returned from the addition function, maybe

itisjust alittle surprised that each call to the addition function returns so fast, but doesn't moan much,
keeps iterating and finally returns the overall result to you.

Now, thisisthe time you should stand behind what you say and do what you want othersto do. Don't
frown at the result and just accepts that you got back just a promise. A promise to get the result delivered
as soon as the calculation is done. The extra heat coming out of your laptop is an indication the
calculation exploits natural parallelism in your functions and makes its best effort to deliver the result to
you quickly.

The promiseisagood old DataflowVariable , so you may query its status, register
notification hooks or make it an input to a Dataflow algorithm.

wi t hPool {
def sunProm se = (0..100000).inject(0, {a, b ->a + b}.asyncFun())
println "Are we done yet? " + sunProni se. bound
sunProm se. whenBound {sum -> println sun

The get() method has also avariant with atimeout parameter, if you want to avoid the risk of
waiting indefinitely.

Can things go wrong?
Sure. But you'll get an exception thrown from the result promise get() method.

try {
sunProm se. get ()

} catch (MyCal cul ati onException e) {
println "Quess, things are not ideal today."
}

Thisisall fine, but what functions can bereally combined?

There are no limits. Take any sequential functions you need to combine and you should be able to
combine their asynchronous variants as well.

Back to our initial example comparing content of afile with aweb page, we simply make all the functions
asynchronous by calling the asyncFun() method on them and we are ready to set off.

C osure download = {String url ->

url.toURL(). text
}.asyncFun()
Closure loadFile = {String fil eNane ->

. //load the file here

}.asyncFun()
Cl osure hash = {s -> s. hashCode()}.asyncFun()
Cl osure conpare = {int first, int second ->

first == second
}. asyncFun()
def result = conpare(hash(downl oad(' http://ww. gpars.org')), hash(loadFil e('/cool Stuf
printin "Allowed to do sonething el se now
println "The result of conparison: " + result.get()

Calling asynchronous functions from within asynchronous functions
Another very valuable characteristics of asynchronous functionsis that their result promises can also be
composed.

i mport static groovyx.gpars. GPar sPool . wi t hPool
wi t hPool {

Closure plus = {Integer a, Integer b ->
sl eep 3000
println " Addi ng nunbers’
a+b

}.asyncFun()

Closure multiply = {Integer a, Integer b ->
sl eep 2000
a*b

}.asyncFun()
Cl osure measureTinme = {->
sl eep 3000
4
}. asyncFun()
Closure distance = {Integer initialD stance, Integer velocity, Integer time ->
plus(initial Distance, multiply(velocity, tine))
}. asyncFun()
Cl osure chattybDi stance = {Integer initial Distance, Integer velocity, Integer tine -
println "Al paraneters are now ready - starting'
println "About to call another asynchronous function'
def innerResultProm se = plus(initial Distance, multiply(velocity, tine))
println "Returning the promise for the inner calculation as ny own result’
return innerResultProm se
}. asyncFun()
println "Distance = " + distance(100, 20, neasureTine()).get() + ' m
println "ChattyDi stance = " + chattyDi stance(100, 20, neasureTinme()).get() + ' ni
}
If an asynchronous function (e.f. the distance function in the example) in its body calls another
asynchronous function (e.g. plus) and returns the the promise of the invoked function, the inner function's
(plus) result promise will compose with the outer function's (distance) result promise. Theinner
function (plus) will now bind its result to the outer function's (distance) promise, once the inner
function (plus) finishes its calculation. This ability of promises to compose allows functions to cease their
calculation without blocking a thread not only when waiting for parameters, but also whenever they call
another asynchronous function anywhere in their body.

M ethods as asynchronous functions
Methods can be referred to as closures using the .& operator. These closures can then be transformed
using asyncFun into composable asynchronous functions just like ordinary closures.

cl ass Downl oadHel per {
String download(String url) {
url.toURL().text

int scanFor(String word, String text) {
text.findAl | (word). size()
}

String | ower(s) {
s.toLower Case()
}

//now we'll nmake the nethods asynchronous
wi t hPool {
final Downl oadHel per d = new Downl oadHel per ()
Cl osure downl oad = d. &downl oad. asyncFun()
Cl osure scanFor = d. &canFor. asyncFun()
Cl osure |ower = d. & ower.asyncFun()
/ I asynchr onous processing
def result = scanFor('groovy', |ower(download('http://ww.infoq.com)))
println "Allowed to do sonething el se now
println result.get()

}

Using annotation to create asynchronous functions

Instead of calling the asyncFun() function, the @AsyncFun annotation can be used to annotate
Closure-typed fields. The fields have to be initialized in-place and the containing class needs to be
instantiated withing a withPool block.

i mport static groovyx.gpars. GPar sPool . wi t hPool
i mport groovyx. gpars. AsyncFun
cl ass Downl oadi ngSearch {
@\syncFun C osure download = {String url ->
url.toURL().text

@\syncFun C osure scanfFor = {String word, String text ->
text.findAl | (word).size()

@\syncFun Cosure lower = {s -> s.toLower Case()}

voi d scan() {
def result = scanFor (' groovy', |ower(download('http://ww.infoq.com))) //synchr
println "Alowed to do sonething el se now
println result.get()

}

}
wi t hPool {

new Downl oadi ngSearch(). scan()
}

Alternative pools
The AsyncFun annotation by default uses an instance of GParsPool from the wrapping withPool block.
Y ou may, however, specify the type of pool explicitly:

@\syncFun(GPar sexecut orsPool Util) def sunt6 = {a, b ->a + b}

Blocking functions through annotations
The AsyncFun also alows the user to specify, whether the resulting function should have blocking (true)
or non-blocking (false - default) semantics.

@\syncFun(bl ocking = true)
def sum={a, b->a + b}

On our side thisis avery interesting domain to explore, so any comments, questions or suggestions on
combining asynchronous functions or hints about its limits are welcome.

3.6 Parallel Speculations

With processor cores having become plentiful, some algorithms might benefit from brutal-force parallel
duplication. Instead of deciding up-front about how to solve a problem, what algorithm to use or which
location to connect to, you run all potential solutionsin parallel.

Parallel speculations

Imagine you need to perform atask like e.g. calculate an expensive function or read datafrom afile,
database or internet. Luckily, you know of several good ways (e.g. functions or urls) to achieve your goal.
However, they are not all equal. Although they return back the same (as far as your needs are concerned)
result, they may all take different amount of time to complete and some of them may even fail (e.g.
network issues). What's worse, no-oneis going to tell you which path gives you the solution first nor
which paths lead to no solution at all. Shall | run quick sort or merge sort on my list? Which url will work
best? Isthis service available at its primary location or should | use the backup one?

GPars speculations give you the option to try all the available alternatives in parallel and so get the result
from the fastest functional path, silently ignoring the slow or broken ones.

Thisiswhat the speculate() methods on GParsPool and GParsExecutor sPool () can do.

def numbers = ..

def quickSort = ...

def nergeSort = ...

def sortedNumbers = specul at e(qui ckSort, nergeSort)

Here we're performing both quick sort and merge sort concur rently, while getting the result of the faster
one. Given the parallel resources available these days on mainstream hardware, running the two functions
in parallel will not have dramatic impact on speed of calculation of either one, and so we get the result in
about the same time as if we ran solely the faster of the two calculations. And we get the result sooner
than when running the slower one. Y et we didn't have to know up-front, which of the two sorting
algorithms would perform better on our data. Thus we specul ated.

Similarly, downloading a document from multiple sources of different speed and reliability would look
likethis:

i mport static groovyx.gpars. GParsPool . specul ate

i mport static groovyx.gpars. GPar sPool . wi t hPool
def alternativel = {

"http://ww. dzone. conf | i nks/i ndex. htm '.toURL().text
}

def alternative2 = {
"http://ww. dzone.conm ' .t oURL().text

def alternative3d = {
"http://wwv. dzzzzzone.com ' .toURL().text //wong url

def alternatived4 = {
"http://dzone.conl'.toURL().text

}
wi t hPool (4) {

println speculate([alternativel, alternative2, alternative3, alternatived]).contains(
}

Make sure the surrounding thread pool has enough threads to process all alternativesin
parallel. The size of the pool should match the number of closures supplied.

Alter natives using dataflow variables and streams
In cases, when stopping unsuccessful alternatives is not needed, dataflow variables or streams may be
used to obtain the result value from the winning specul ation.

Please refer to the Dataflow Concurrency section of the User Guide for details on Dataflow
variables and streams.

i mport groovyx. gpars. dat af | ow. Dat af | owQueue
i mport static groovyx.gpars.datafl ow Datafl ow. t ask
def alternativel = {
"http://ww. dzone. conf | i nks/index. htm'.toURL().text
}

def alternative2 = {
"http://ww. dzone. con’'.toURL().text

def alternative3d = {
"http://ww. dzzzzzone.coml ' .toURL().text //wll fail due to wong url

def alternatived4 = {
"http://dzone.conl'.toURL().text
}

/1 Pick either one of the follow ng, both will work:

final def result = new Datafl owQueue()

/1 final def result = new Datafl owari abl e()

[alternativel, alternative2, alternative3, alternative4].each {code ->
task {

try {
result << code()

} catch (ignore) { } //W deliberately ignore unsuccessful urls
}
}

println result.val.contains('groovy')

3.6. Fork-Join

Fork/Join or Divide and Conquer is a very powerful abstraction to solve hierarchical problems.

The abstraction

When talking about hierarchical problems, think about quick sort, merge sort, file system or general tree
navigation and such.

® Fork / Join agorithms essentially split a problem at hands into several smaller sub-problems and
recursively apply the same algorithm to each of the sub-problems.

® Once the sub-problem is small enough, it is solved directly.
® The solutions of all sub-problems are combined to solve their parent problem, which in turn helps
solve its own parent problem.

Check out the fancy interactive Fork/Join visualization demo , which will show you how

threads cooperate to solve a common divide-and-conquer algorithm.
The mighty JSR-166y library solves Fork / Join orchestration pretty nicely for us, but leaves a couple of
rough edges, which can hurt you, if you don't pay attention enough. Y ou still deal with threads, pools or
synchronization barriers.

The GPar s abstraction convenience layer
GPars can hide the complexities of dealing with threads, pools and recursive tasks from you, yet let you
leverage the powerful Fork/Join implementation in jsr166y.

i mport static groovyx.gpars. GParsPool . runForkJoin
i mport static groovyx.gpars. GPar sPool . wi t hPool
wi t hPool () {
println """Nunber of files: ${
runFor kJoi n(new File("./src")) {file ->
long count = 0
file.eachFile {
if (it.isDirectory()) {
println "Forking a child task for $it"
forkOFfChild(it) /[/fork a child task
} else {
count ++
}
}

return count + (childrenResults.sum0))
//use results of children tasks to cal cul ate and store own result

o
}

The runForkJoin() factory method will use the supplied recursive code together with the provided values
and build a hierarchical Fork/Join calculation. The number of values passed to the runForkJoin() method
must match the number of expected parameters of the closure as well as the number of arguments passed
into the forkOffChild() or runChildDirectly() methods.

def quicksort (nunbers) {

wi t hPool {
runFor kJoi n(0, nunbers) {index, list ->
def groups = list.groupBy {it <=> list[list.size().intdiv(2)]}
if ((list.size() <2) || (groups.size() == 1)) {

return [index: index, list: list.clone()]

}

(-1..1).each {forkOfChild(it, groups[it] ?: [])}

return [index: index, list: childrenResults.sort {it.index}.sum{it.list}]
}.list

}

Alter native approach

Alternatively, the underlying mechanism of nested Fork/Join worker tasks can be used directly.
Custom-tailored workers can eliminate the performance overhead associated with parameter spreading
imposed when using the generic workers. Also, custom workers can be implemented in Java and so
further increase the performance of the algorithm.

public final class FileCounter extends AbstractForkJoi nwrker<Long> {
private final File file;
def FileCounter(final File file) {
this.file = file

}
@verride
protected Long conmput eTask() {

http://blog.krecan.net/2011/03/27/visualizing-forkjoin/

| ong count = O;
file.eachFile {
if (it.isDirectory()) {
println "Forking a thread for $it"
forkO fChild(new Fil eCounter(it)) //fork a child task
} else {
count ++
}
}

return count + ((childrenResults)?.sum() ?: 0) //use results of children tasks t

}

wi t hPool (1) {pool -> //feel free to experinment with the nunber of fork/join threads int
println "Nunber of files: ${runForkJoin(new FileCounter(new File("..")))}"
}

The AbstractForkJoinWorker subclasses may be written both in Java or Groovy, giving you the option to
easily optimize for execution speed, if row performance of the worker becomes a bottleneck.

Fork / Join saves your resour ces

Fork/Join operations can be safely run with small number of threads thanks to internally using the
TaskBarrier class to synchronize the threads. While athread is blocked inside an algorithm waiting for its
sub-problems to be calculated, the thread is silently returned to the pool to take on any of the available
sub-problems from the task queue and process them. Although the algorithm creates as many tasks as
there are sub-directories and tasks wait for the sub-directory tasks to complete, as few as one thread is
enough to keep the computation going and eventually calculate avalid result.

Mergesort example

i mport static groovyx.gpars. GPar sPool . runForkJoin
i mport static groovyx.gpars. GPar sPool . wi t hPoo
/**
* Splits a list of nunmbers in half
*/
def split(List<Integer> list) {
int listSize = list.size()
int mddlelndex = listSize / 2
def listl = list[O0..<m ddl el ndex]
def list2 = list[mddlelndex..listSize - 1]
return [listl, list2]

/**
* Merges two sorted lists into one
*/
Li st<l nteger> nmerge(List<Integer> a, List<lnteger> b) {
int i =0,) =0
final int newSize = a.size() + b.size()
Li st<Integer> result = new Arrayli st <l nteger>(newSi ze)
while ((i < a.size()) && (j < b.size())) {
if (a[i] <= Db[j]) result << ai++]
el se result << b[j++]

}

if (i <a.size()) result.addAll (a[i..-1])
el se result.addAl I (b[j..-1])

return result

}
final def nunbers =11, 5, 2, 4, 3, 8 6, 7, 3, 4, 5 2, 2,9, 8, 7, 6, 7, 8, 1, 4, 1, 7,
withPool (3) { //feel free to experinent with the nunber of fork/join threads in the poo
println """Sorted nunbers: ${
runfFor kJoi n(nunbers) {nuns ->
println "Thread ${Thread. current Thread().nane[-1]}: Sorting $nuns"
switch (nums.size()) {

case 0..1:

return nuns //store own result
case 2:

if (nuns[0] <= nuns[1]) return nuns //store own result

el se return nuns[-1..0] //store own result
defaul t:

def splitList = split(nuns)

[splitList[O], splitList[1l]].each {forkOfChild it} //fork a childt
return merge(* childrenResults) /luse results of children tasks

}
Mergesort example using a custom-tailored worker class

public final class SortWrker extends AbstractForkJoi nWor ker <Li st <l nt eger >> {
private final List nunbers
def SortWorker(final List<lnteger> nunbers) {
t hi s. nunbers = nunbers. asl nmut abl e()

}
/-k*
* Splits a list of nunbers in half
*/
def split(List<integer> list) {
int listSize = list.size()
int mddlelndex = listSize / 2
def listl = list[0..<m ddl el ndex]
def list2 = list[mddlelndex..listSize - 1]
return [listl, list2]
}
/**
* Merges two sorted lists into one
*/
Li st<Integer> nerge(List<Integer> a, List<lnteger> b) {
int i =0, j =0
final int newSize = a.size() + b.size()
Li st<integer> result = new Arrayli st<l nteger>(newsSi ze)
while ((i < a.size()) & (j < b.size())) {
if (a[i] <= Db[j]) result << a[i++]
el se result << Db[j++]
}
if (i <a.size()) result.addAll (a[i..-1])
el se result.addAl I (b[j..-1])
return result
}
/**
* Sorts a small list or delegates to two children, if the list contains nore than t\
*/
@verride

protected List<Integer> computeTask() {
println "Thread ${Thread. current Thread().name[-1]}: Sorting $nunbers"”
swi tch (nunbers.size()) {

case 0..1:

return nunbers //store own result
case 2:

i f (numbers[0] <= nunmbers[1]) return nunbers //store own result

el se return nunbers[-1..0] //store own result
defaul t:

def splitList = split(nunbers)
[new SortWrker(splitList[0]), new SortWrker(splitList[1])].each{forkOf
return merge(* childrenResults) /luse results of children tasks to ¢

} }

final def nunbers =[1, 5, 2, 4, 3, 8 6, 7, 3, 4, 5, 2, 2, 9, 8 7, 6, 7, 8, 1, 4, 1, 7,

wi thPool (1) { //feel free to experinent with the nunber of fork/join threads in the poo
println "Sorted nunbers: ${runForkJoi n(new SortWrker (nunbers))}"

}

Running child tasks directly

The forkOffChild() method has a sibling - the runChildDirectly() method, which will run the child task
directly and immediately within the current thread instead of scheduling the child task for asynchronous
processing on the thread pool. Typically you'll call _forkOffChild() on all sub-tasks but the last, which
you invoke directly without the scheduling overhead.

Closure fib = {nunber ->
if (nunber <= 2) {

return 1
}
forkO f Chi | d(nunber - 1) /1 This task will run as¢
final def result = runChildbDirectly(nunber - 2) /1 This task is run dire

return (Integer) getChildrenResults().sum() + result

}
wi t hPool {

assert 55 == runForkJoi n(10, fib)
}

Availability
Thisfeature is only available when using in the Fork/Join-based GParsPool , not in GPar sExecutor sPool

4. Groovy CSP

The CSP (Communicating Sequential Processes) abstraction builds on independent composable
processes, which exchange messages in a synchronous manner. GPars leverages the JCSP library
developed at the University of Kent, UK.

Jon Kerridge, the author of the CSP implementation in GPars, provides exhaustive examples on of
GroovyCSP use at his website:

The GroovyCSP implementation leverages JCSP, a Java-based CSP library, which islicensed
under GPL. Unlike the liberal Apache 2 license, which GPars uses, GPL is more restrictive
on use in commercial software. Please make sure your application conforms to the GPL rules
before enabling use of JCSP in your code.
If the GPL license istoo restrictive for your use, you might consider checking out the Dataflow
Concurrency chapter of this User Guide to learn about tasks, selectors and operators, which may help
you resolve concurrency issues in ways similar to the CSP approach. In fact the dataflow and CSP
concepts stand very close to each other.

By default, without actively adding an explicit dependency on JCSP in your build file or
downloading and including the JCSP jar file in your project, the standard
commercial-software-friendly Apache 2 License terms apply to your project. GPars directly
only depends on software licensed under licenses compatible with the Apache 2 License.

5. Actors

The actor support in GPars was originally inspired by the Actors library in Scala, but has since gone well
beyond what Scala offers as standard.

Actors allow for a message passing-based concurrency model: programs are collections of independent
active objects that exchange messages and have no mutable shared state. Actors can help developers
avoid issues such as deadlock, live-lock and starvation, which are common problems for shared memory
based approaches. Actors are away of leveraging the multi-core nature of today's hardware without all
the problems traditionally associated with shared-memory multi-threading, which is why programming
languages such as Erlang and Scala have taken up this model.

A nice article summarizing the key concepts behind actors was written recently by Ruben Vermeersch.
Actors always guarantee that at most one thread processes the actor's body at any one time and also,
under the covers, that the memory gets synchronized each time athread gets assigned to an actor so the
actor's state can be safely modified by code in the body without any other extra (synchronization or
locking) effort . Ideally actor's code should never beinvoked directly from outside so all the code of the
actor class can only be executed by the thread handling the last received message and so all the actor's
code isimplicitly thread-safe . If any of the actor's methods is allowed to be called by other objects
directly, the thread-safety guarantee for the actor's code and state are no longer valid .

http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://www.soc.napier.ac.uk/~cs10/#_Toc271192596
http://ruben.savanne.be/articles/concurrency-in-erlang-scala

Types of actors

In general, you can find two types of actorsin the wild - ones that hold implicit state and those, who
don't. GPars gives you both options. Stateless actors, represented in GPar s by the DynamicDispatchActor
and the ReactiveActor classes, keep no track of what messages have arrived previously. Y ou may thing of
these as flat message handlers, which process messages as they come. Any state-based behavior hasto be
implemented by the user.

The stateful actors, represented in GPars by the DefaultActor class (and previously aso by the
AbstractPooledActor class), allow the user to handle implicit state directly. After receiving a message the
actor moves into a new state with different ways to handle future messages. To give you an example, a
freshly started actor may only accept some types of messages, e.g. encrypted messages for decryption,
only after it has received the encryption keys. The stateful actors allow to encode such dependencies
directly in the structure of the message-handling code. Implicit state management, however, comes at a
dlight performance cost, mainly due to the lack of continuations support on JVM.

Actor threading model

Since actors are detached from the system threads, a great number of actors can share arelatively small
thread pool. This can go as far as having many concurrent actors that share a single pooled thread. This
architecture allows to avoid some of the threading limitations of the JVM. In general, while the VM can
only give you alimited number of threads (typically around a couple of thousands), the number of actors
isonly limited by the available memory. If an actor has no work to do, it doesn't consume threads.

Actor code is processed in chunks separated by quiet periods of waiting for new events (messages). This
can be naturally modeled through continuations . As VM doesn't support continuations directly, they
have to be simulated in the actors frameworks, which has slight impact on organization of the actors
code. However, the benefits in most cases outweigh the difficulties.

i mport groovyx.gpars.actor. Actor
i mport groovyx. gpars. actor. Def aul t Act or
cl ass GanmeMast er extends Defaul t Actor {
int secretNum
void afterStart() {
secret Num = new Randon(). next | nt (10)

}
void act() {
| oop {
react { int num->
if (num > secretNun
reply 'too | arge'
else if (num < secretNum
reply 'too small"’
el se {
reply 'you win'
term nate()

}

cl ass Pl ayer extends Defaul t Actor {
String name
Actor server

int nyNum
void act() {
| oop {

myNum = new Randon(). next | nt (10)
server.send nyNum
react {
switch (it) {
case 'too large': println "$nane: $nmyNum was too |large"; break
case 'too small': println "$nanme: $nyNum was too snmall"; break
case 'you win': println "$name: | won $nyNunt; terminate(); break

}
}
def master = new GaneMaster().start()
def player = new Pl ayer(nane: 'Player', server: master).start()
//this forces main thread to live until both actors stop
[master, player]*.join()

example by Jordi Camposi Miralles, Departament de Matemtica Aplicada i An lisi, MAIA Facultat de
Matem tiques, Universitat de Barcelona

Usage of Actors

Gpars provides consistent Actor APIsand DSLs. Actorsin principal perform three specific operations -
send messages, receive messages and create new actors. Although not specifically enforced by GPars
messages should be immutable or at least follow the hands-off policy when the sender never touches the
messages after the message has been sent off.

Sending messages

M essages can be sent to actors using the send() method.

def passiveActor = Actors. actor{

| oop {
react { nsg -> println "Received: $nsg"; }

}
}
passi veAct or. send ' Message 1'
passi veActor << ' Message 2' /1using the << operator
passi veActor ' Message 3' /[lusing the inplicit call() nethod

Alternatively, the << operator or the implicit call() method can be used. A family of sendAndWait()
methods is available to block the caller until areply from the actor is available. The reply is returned from
the sendAndWait() method as areturn value. The sendAndWait() methods may also return after a timeout
expires or in case of termination of the called actor.

def replyingActor = Actors. actor{
| oop {
react { nmsg ->
println "Received: $nsg";
reply "I1've got $nsg"

} }
def replyl repl yi ngAct or. sendAndWai t (' Message 4')
def reply2 = replyingActor.sendAndWait (' Message 5', 10, Ti meUnit. SECONDS)
use (TinmeCategory) {
def reply3 = replyingActor.sendAndWai t (' Message 6', 10.seconds)

The sendAndContinue() method allows the caller to continue its processing while the supplied closure is
waiting for areply from the actor.

friend. sendAndContinue 'I need noney!', {nmoney -> pocket npney}
println 'l can continue while ny friend is collecting noney for ne'

All send() , sendAndWait() or sendAndContinue() methods will throw an exception if invoked on a
non-active actor.

Recelving messages

Non-blocking message retrieval

Calling the react() method, optionally with atimeout parameter, from within the actor's code will
consume the next message from the actor's inbox, potentially waiting, if there is no message to be
processed immediately.

println "Waiting for a gift'
react {gift ->
if (nyWfe.likes gift) reply 'Thank youl

}

Under the covers the supplied closure is not invoked directly, but scheduled for processing by any thread
in the thread pool once a message is available. After scheduling the current thread will then be detached
from the actor and freed to process any other actor, which has received a message already.

To allow detaching actors from the threads the react() method demands the code to be written in a special
Continuation-style.

Actors.actor {

| oop {
println "Waiting for a gift'
react {gift ->
if (nyWfe.likes gift) reply ' Thank you!
el se {
reply ' Try again, please'
react {anotherGft ->
if (nyChildren.like gift) reply ' Thank you!

println ' Never reached

}

println 'Never reached'

}

println 'Never reached

}
The react() method has a special semantics to alow actors to be detached from threads when no messages

are available in their mailbox. Essentially, react() schedules the supplied code (closure) to be executed
upon next message arrival and returns. The closure supplied to the react() methods is the code where the
computation should continue . Thus continuation style.

Since actor has to preserve the guarantee of at most one thread active within the actor's body, the next
message cannot be handled before the current message processing finishes. Typically, there shouldn't be a
need to put code after callsto react() . Some actor implementations even enforce this, however, GPars
does not for performance reasons. The loop() method allows iteration within the actor body. Unlike
typical looping constructs, like for or while loops, loop() cooperates with nested react() blocks and will
ensure looping across subsequent message retrievals.

Sending replies

The reply/replylfExists methods are not only defined on the actors themselves, but for
AbstractPooledActor (not available in DefaultActor , DynamicDispatchActor nor ReactiveActor classes)
also on the processed messages themselves upon their reception, which is particularly handy when
handling multiple messagesin asingle call. In such cases reply() invoked on the actor sends areply to
authors of al the currently processed message (the last one), whereas reply() called on messages sends a
reply to the author of the particular message only.

See demo here

The sender property
Messages upon retrieval offer the sender property to identify the originator of the message. The property
isavailable inside the Actor's closure:

react {tweet ->
if (isSpam(tweet)) ignoreTweetsFrom sender
sender.send 'Never wite ne again!’

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=blob_plain;f=src/test/groovy/groovyx/gpars/samples/actors/stateful/DemoMultiMessage.groovy;hb=HEAD

Forwarding
When sending a message, a different actor can be specified as the sender so that potential repliesto the
message will be forwarded to the specified actor and not to the actual originator.

def decryptor = Actors.actor {
react {nmessage ->
reply message.reverse()

/1 sender . send nessage. reverse() /1 An alternative way to send replies
}
def console = Actors.actor { //This actor will print out decrypted nessages, since the t
react {
println 'Decrypted nmessage: ' + it
}
}

decryptor.send 'lellarap si yvoorG, console //Specify an actor to send replies to
consol e.join()

Creating Actors

Actors share a pool of threads, which are dynamically assigned to actors when the actors need to react to
messages sent to them. The threads are returned to back the pool once a message has been processed and
the actor isidle waiting for some more messages to arrive.

For example, thisis how you create an actor that prints out all messages that it receives.

def console = Actors. actor {

| oop {
react {
println it
}
} }
Notice the loop() method call, which ensures that the actor doesn't stop after having processed the first
message.

Here's an example with a decryptor service, which can decrypt submitted messages and send the
decrypted messages back to the originators.

final def decryptor = Actors.actor {

| oop {
react {String nessage ->
if ('stopService' == nessage) {
println ' Stopping decryptor'
stop()
el se reply nessage.reverse()
}
}

}

Actors. actor {
decryptor.send 'lellarap si yvoorG
react {
println 'Decrypted nessage: ' + it
decryptor.send 'stopService'

}
}.join() _ _ _
Here's an example of an actor that waits for up to 30 secondsto receive areply to its message.

def friend = Actors.actor {

react {
//this doesn't reply -> caller won't receive any answer in tine
println it
[/reply "Hello' //uncoment this to answer conversation
react {

println it

}
}
def nme = Actors.actor {
friend.send('H ")
[/wait for answer 1sec
react (1000) {nsg ->
if (nmsg == Actor. TIMEQUT) {
friend.send('l see, busy as usual. Never mind.')
stop()
} else {
[/ continue conversation
println "Thank you for $nsg"

}

ne. j oi n()

Undeliver ed messages

Sometimes messages cannot be delivered to the target actor. When special action needs to be taken for
undelivered messages, at actor termination all unprocessed messages from its queue have their
onDeliveryError() method called. The onDeliveryError() method or closure defined on the message can,
for example, send a notification back to the original sender of the message.

final DefaultActor me
me = Actors.actor {
def nessage = 1
nmessage. net aCl ass. onDel i veryError = {->
/1 send nmessage back to the caller
me << "Could not deliver $del egate"

def actor = Actors.actor {
react {
//wait 2sec in order next call in denp can be enitted
Thr ead. sl eep(2000)
/lstop actor after first message

stop()
}

actor << nessage
actor << nessage

react {
//print whatever cones back
println it
}
ne. j oi n()

Alternatively the onDeliveryError() method can be specified on the sender itself. The method can be
added both dynamically

final DefaultActor me
me = Actors.actor {
def messagel =1
def nessage2 = 2
def actor = Actors.actor {
react {
//wait 2sec in order next call in denp can be enitted
Thr ead. sl eep(2000)
/lstop actor after first nessage

stop()

me. net ad ass. onDel i veryError = {nsg ->
//call back on actor inaccessibility
println "Could not deliver nessage $nsg"

}

actor << nessagel

actor << nmessage2
actor.join()

}

ne. j oi n()
and statically in actor definition:

cl ass MyActor extends DefaultActor {
public void onDeliveryError(mnmsg) {
println "Could not deliver nessage $nsg"
}

}

Joining actors

Actors provide ajoin() method to allow callers to wait for the actor to terminate. A variant accepting a
timeout is also available. The Groovy spread-dot operator comes in handy when joining multiple actors at
atime.

def master = new GaneMaster().start()
def pl ayer new Pl ayer (nane: 'Player', server: master).start()
[master, player]*.join()

Conditional and counting loops

The loop() method allows for either a condition or a number of iterations to be specified, optionally
accompanied with a closure to invoke once the loop finishes - After Loop Termination Code Handler .
The following actor will loop three times to receive 3 messages and then prints out the maximum of the
received messages.

final Actor actor = Actors.actor {
def candidates = []
def printResult = {-> println "The best offer is ${candi dates. max()}"}
| oop(3, printResult) {
react {
candidates << it

}
}
actor 10
actor 30
actor 20
actor.join()

The following actor will receive messages until a value greater then 30 arrives.

final Actor actor = Actors.actor {
def candidates = []
final Cosure printResult = {-> println "Reached best offer - ${candi dates. max()}"}
| oop({-> candi dates. max() < 30}, printResult) {
react ({
candi dates << it
}

}

}

actor 10
actor 20
actor 25
actor 31
actor 20
actor.join()

The After Loop Termination Code Handler can use actor's react{} but not loop() .

DefaultActor can be set to behave in afair on non-fair (default) manner. Depending on the

strategy chosen, the actor either makes the thread available to other actors sharing the same
parallel group (fair), or keeps the thread fot itself until the message queue gets empty
(non-fair). Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the fair Actor () factory method or the actor's makeFair() method.

Custom schedulers

Actors leverage the standard JDK concurrency library by default. To provide a custom thread scheduler
use the appropriate constructor parameter when creating a parallel group (PGroup class). The supplied
scheduler will orchestrate threads in the group's thread pool.

Please also see the numerous Actor Demos .

5.1 ActorsPrinciples

Actors share a pool of threads, which are dynamically assigned to actors when the actors need to react to
messages sent to them. The threads are returned back to the pool once a message has been processed and
the actor isidle waiting for some more messages to arrive. Actors become detached from the underlying
threads and so arelatively small thread pool can serve potentially unlimited number of actors. Virtually
unlimited scalability in number of actorsis the main advantage of event-based actors, which are detached
from the underlying physical threads.

Here are some examples of how to use actors. Thisis how you create an actor that prints out all messages
that it receives.

i nport static groovyx.gpars.actor.Actors. *
def console = actor {

l oop {
react ({

println it
}
}

Notice the loop() method call, which ensures that the actor doesn't stop after having processed the first
message.

As an aternative you can extend the DefaultActor class and override the act() method. Once you
instantiate the actor, you need to start it so that it attaches itself to the thread pool and can start accepting
messages. The actor () factory method will take care of starting the actor.

cl ass CustomActor extends Defaul t Actor {

@verride
protected void act() {

| oop {
react {
println it
}

}

def consol e=new Cust omAct or ()
consol e.start ()

Messages can be sent to the actor using multiple methods

consol e. send(' Message')

consol e ' Message'

consol e. sendAndWai t ' Message' [1\ t
consol e. sendAndCont i nue ' Message', {reply -> println "I received reply: $reply"} [/Forw

Creating an asynchronous service

i nport static groovyx.gpars.actor.Actors.*
final def decryptor = actor {

| oop {

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=tree;f=src/test/groovy/groovyx/gpars/samples;h=f9a751689a034a1d3de13c4874f4f4e839cb1026;hb=HEAD

react {String nessage->
reply nmessage.reverse()

}
}
def console = actor {
decryptor.send 'lellarap si yvoorG
react {
println 'Decrypted nmessage: ' + it
}

consol e.join()

Asyou can see, you create new actors with the actor() method passing in the actor's body as a closure
parameter. Inside the actor's body you can use loop() to iterate, react() to receive messages and reply() to
send a message to the actor, which has sent the currently processed message. The sender of the current
message is also available through the actor's sender property. When the decryptor actor doesn't find a
message in its message queue at the time when react() is called, the react() method gives up the thread
and returns it back to the thread pool for other actorsto pick it up. Only after a new message arrivesto the
actor's message queue, the closure of the react() method gets scheduled for processing with the pool.
Event-based actors internally simulate continuations - actor's work is split into sequentially run chunks,
which get invoked once a message is available in the inbox. Each chunk for a single actor can be
performed by a different thread from the thread pool.

Groovy flexible syntax with closures allows our library to offer multiple ways to define actors. For
instance, here's an example of an actor that waits for up to 30 secondsto receive areply to its message.
Actors allow time DSL defined by org.codehaus.groovy.runtime. TimeCategory class to be used for
timeout specification to the react() method, provided the user wraps the call within a TimeCategory use
block.

def friend = Actors.actor {

react {
//this doesn't reply -> caller won't receive any answer in tine
println it
[/reply "Hello' //uncoment this to answer conversation
react {
println it
}
}

def me = Actors.actor {
friend.send('H ")
/lwait for answer 1sec
react (1000) {nsg ->
if (nmsg == Actor. TIMEQUT) {
friend.send('l see, busy as usual. Never nmind.')

stop()

} else {
[/ continue conversation
println "Thank you for $nsg"

}

nme.j oi n()
When atimeout expires when waiting for a message, the Actor. TIMEOUT message arrives instead. Also
the onTimeout() handler isinvoked, if present on the actor:

def friend = Actors.actor {

react {
//this doesn't reply -> caller won't receive any answer in tine
println it
[/reply "Hello' //uncoment this to answer conversation
react {
println it
}
}

}

def me = Actors.actor ({
friend.send('H ")

del egat e. net aCl ass. onTi neout = {->
friend.send('l see, busy as usual. Never mnd.")

stop()
}

//wait for answer 1sec
react (1000) {nsg ->
if (msg !'= Actor. TI MEQUT) {
[/ continue conversation
println "Thank you for $nsg"

}

ne. j oin()

Notice the possibility to use Groovy meta-programming to define actor's lifecycle notification methods
(e.g. onTimeout()) dynamically. Obviously, the lifecycle methods can be defined the usual way when you
decide to define anew class for your actor.

cl ass MyActor extends Defaul tActor {
public void onTineout () {

}

protected void act() {

}
}

Actor s guarantee thread-safety for non-thread-safe code

Actors guarantee that always at most one thread processes the actor's body at a time and also under the
covers the memory gets synchronized each time a thread gets assigned to an actor so the actor's state can
be safely modified by code in the body without any other extra (synchronization or locking) effort .

cl ass MyCount er Act or extends Defaul t Actor {
private Integer counter =0
protected void act() {
| oop {
react {
count er ++
}

}
}

Ideally actor's code should never beinvoked directly from outside so all the code of the actor class can
only be executed by the thread handling the last received message and so all the actor's code is implicitly
thread-safe . If any of the actor's methods is allowed to be called by other objects directly, the
thread-safety guarantee for the actor's code and state are no longer valid .

Simple calculator

A little bit more realistic example of an event-driven actor that receives two numeric messages, sSums
them up and sends the result to the console actor.

i mport groovyx. gpars. group. Def aul t PG oup
/I not necessary, just showing that a single-threaded pool can still handle multiple actor
def group = new Defaul t PG oup(1);
final def console = group.actor {
| oop {
react {
println 'Result: ' + it
}

}

final def cal culator = group.actor ({
react {a ->
react {b ->
consol e. send(a + b)
}

}

cal cul ator.send 2
cal cul ator.send 3
cal cul ator.join()
group. shut down()

Notice that event-driven actors require special care regarding the react() method. Since event_driven
actors need to split the code into independent chunks assignable to different threads sequentially and
continuations are not natively supported on JVM, the chunks are created artificially. The react() method
creates the next message handler. As soon as the current message handler finishes, the next message

handler (continuation) gets scheduled.

Concurrent Merge Sort Example

For comparison I'm also including a more involved example performing a concurrent merge sort of alist
of integers using actors. Y ou can see that thanks to flexibility of Groovy we came pretty close to the Scala

model, athough | still miss Scala pattern matching for message handling.

i mport groovyx. gpars. group. Def aul t PG oup
i mport static groovyx.gpars.actor. Actors. actor
Cl osure createMessageHandl er (def parent Actor) {
return {
react {List<lnteger> nessage ->
assert nessage != nul
switch (nmessage. size()) {
case 0..1:
par ent Act or. send(nessage)
br eak
case 2:

i f (message[0] <= nmessage[1l]) parentActor.send(nessage)

el se parent Act or. send(nessage[-1..0])
br eak

def aul t:
def splitList = split(nmessage)

def childl = actor(createMessageHandl er (del egate))
def child2 = actor(createMessageHandl er (del egate))

childl. send(splitList[0])
chil d2.send(splitList[1])
react {nessagel ->
react {message2 ->
parent Act or. send nerge(nmessagel
}

}
}
def consol e = new Defaul t PG oup(1).actor {
react {
println "Sorted array:t${it}"
Systemexit 0O
}

def sorter = actor(createMessageHandl er (consol e))
sorter.send([1, 5 2, 4, 3, 8 6, 7, 3, 9, 5, 3])
consol e.join()

def split(List<Integer> list) {

int listSize = list.size()

int nmddlelndex = listSize / 2

def listl = list[O0..<m ddl el ndex]

def list2 = list[mddlelndex..listSize - 1]

return [listl, list2]

Li st<I nteger> nerge(List<Integer> a, List<lInteger> b) {
int i =0, j =0
final int newSize = a.size() + b.size()
Li st<Integer> result = new Arrayli st <l nteger>(newSi ze)
while ((i < a.size()) & (j < b.size())) {
if (a[i] <= Db[j]) result << ai++]

nessage?2)

el se result << b[j++]

}

if (i <a.size()) result.addAll(a[i..-1])
el se result.addAl I (b[j..-1])

return result

}
Since actors reuse threads from a pool, the script will work with virtually any size of athread pool, no

matter how many actors are created along the way.

Actor lifecycle methods

Each Actor can define lifecycle observing methods, which will be called whenever a certain lifecycle
event occurs.

* afterStart() - called right after the actor has been started.
* afterStop(List undeliveredMessages) - called right after the actor is stopped, passing in all the
unprocessed messages from the queue.
* oninterrupt(InterruptedException €) - called when the actor's thread gets interrupted. Thread
interruption will result in the stopping the actor in any case.
* onTimeout() - called when no messages are sent to the actor within the timeout specified for the
currently blocking react method.
® onException(Throwable €) - called when an exception occurs in the actor's event handler. Actor
will stop after return from this method.
Y ou can either define the methods statically in your Actor class or add them dynamically to the actor's
metaclass:

cl ass MyActor extends DefaultActor {
public void afterStart() {

public void onTimeout () {

}
protected void act() {

}
}

def nyActor = actor {
del egat e. net aCl ass. onException = {
| og. error (' Exception occurred', it)
}

To help performance, you may consider using the silentStart() method instead of start() when
starting a DynamicDispatchActor or a ReactiveActor . Calling silentStart() will by-pass some
of the start-up machinery and as aresult will aso avoid calling the after Sart() method. Due
to its stateful nature, DefaultActor cannot be started silently.

Pool management

Actors can be organized into groups and as a default there's always an application-wide pooled actor
group available. And just like the Actors abstract factory can be used to create actors in the default group,
custom groups can be used as abstract factories to create new actors instances belonging to these groups.

def nyGoup = new Def aul t PG oup()
def actorl = nyG oup. actor {

}
def actor2 = nyGoup. actor {

The actors belonging to the same group share the under lying thread pool of that group. The pool by

default contains n + 1 threads, where n stands for the number of CPUs detected by the VM. The pool
size can be set explicitly either by setting the gpars.poolsize system property or individually for each
actor group by specifying the appropriate constructor parameter.

def nyGoup = new Default PG oup(10) //the pool will contain 10 threads

The thread pool can be manipulated through the appropriate DefaultPGroup class, which delegates to the
Pool interface of the thread pool. For example, the resize() method allows you to change the pool size any
time and the resetDefaultSze() setsit back to the default value. The shutdown() method can be called
when you need to safely finish all tasks, destroy the pool and stop all the threads in order to exit VM in
an organized manner.

...(n+1 threads in the default pool after startup)

Actors. defaul t ActorPGroup.resize 1 //use one-thread pool
...(1 thread in the pool)

Act or s. def aul t Act or PG oup. reset Def aul t Si ze()

...(n+1 threads in the pool)

Act or s. def aul t Act or PGr oup. shut down()

As an alternative to the DefaultPGroup , which creates a pool of daemon threads, the NonDaemonPGroup
class can be used when non-daemon threads are required.

def daenonG oup = new Def aul t PGroup()
def actorl = daenonG oup.actor {

def nonDaenonGroup = new NonDaenonPG oup()

def actor2 = nonDaenmonG oup. actor {

}
class MyActor {
def MyActor() {
this.parall el Goup = nonDaenonG oup

}
void act() {...}
}
Actors belonging to the same group share the underlying thread pool. With pooled actor groups you can

split your actorsto leverage multiple thread pools of different sizes and so assign resources to different
components of your system and tune their performance.

def coreActors = new NonDaenonPG oup(5) //5 non-daenon threads pool
def hel per Actors = new Defaul t PG oup(1l) //1 daenon thread pool
def priceCal culator = coreActors. actor {

def paynent Processor = coreActors.actor {

def email Notifier = hel perActors. actor {

def cl eanupActor = hel perActors. actor {

/lincrease size of the core actor group

coreActors.resize 6

/! shutdown the group's pool once you no | onger need the group to rel ease resources
hel per Act or s. shut down()

Do not forget to shutdown custom pooled actor groups, once you no longer need them and their actors, to
preserve system resources.

Common trap: App terminates while actors do not recelve messages

Most likely you're using daemon threads and pools, which is the default setting, and your main thread
finishes. Calling actor.join() on any, some or all of your actors would block the main thread until the actor
terminates and thus keep all your actors running. Alternatively use instances of NonDaemonPGroup and
assign some of your actors to these groups.

def nonDaenonG oup = new NonDaenonPG oup()
def nyActor = nonDaenmonG oup.actor {...}

aternatively

def nonDaenonGroup = new NonDaenonPG oup()
cl ass MyActor extends Defaul t Actor {
def MyActor() {
this.parall el Goup = nonDaenonG oup

ioid act() {...}

def myActor = new MyActor ()

Blocking Actors

Instead of event-driven continuation-styled actors, you may in some scenarios prefer using blocking
actors. Blocking actors hold a single pooled thread for their whole life-time including the time when
waiting for messages. They avoid some of the thread management overhead, since they never fight for
threads after start, and also they let you write straight code without the necessity of continuation style,
since they only do blocking message reads via the receive method. Obviously the number of blocking
actors running concurrently is limited by the number of threads available in the shared pool. On the other
hand, blocking actors typically provide better performance compared to continuation-style actors,
especially when the actor's message queue rarely gets empty.

def decryptor = bl ocki ngActor {
while (true) {
recei ve {nessage ->
i f (message instanceof String) reply nmessage. reverse()
el se stop()

}

def consol e = bl ocki ngActor {
decryptor.send 'lellarap si yvoorG
println 'Decrypted nessage: ' + receive()
decryptor.send false

[decryptor, console]*.join()
Blocking actors increase the number of options to tune performance of your applications. They may in
particular be good candidates for high-traffic positionsin your actor network.

5.2 Stateless Actors

Dynamic Dispatch Actor

The DynamicDispatchActor classis an actor allowing for an aternative structure of the message handling
code. In general DynamicDispatchActor repeatedly scans for messages and dispatches arrived messages
to one of the onMessage(message) methods defined on the actor. The DynamicDispatchActor leverages
the Groovy dynamic method dispatch mechanism under the covers. Since, unlike DefaultActor
descendants, a DynamicDispatchActor not ReactiveActor (discussed below) do not need to implicitly
remember actor's state between subsequent message receptions, they provide much better performance
characteristics, generally comparable to other actor frameworks, like e.g. Scala Actors.

i nport groovyx.gpars. actor. Actors
i mport groovyx.gpars. actor. Dynani cDi spat chAct or
final class MyActor extends Dynami cDi spat chActor ({
voi d onMessage(String nessage) {
println 'Received string'

voi d onMessage(| nt eger nessage) {
println 'Received integer'
reply ' Thanks!'

voi d onMessage(Obj ect nessage) {
println 'Received object’
sender. send ' Thanks!'

voi d onMessage(Li st nessage) {
println "Received |ist’

stop()

}
final def myActor = new MyActor().start()
Actors. actor {

myActor 1

nmyActor "'

myActor 1.0

myAct or (new Arraylist())

myAct or . j oi n()
}.join()
In some scenarios, typically when no implicit conversation-history-dependent state needs to be preserved
for the actor, the dynamic dispatch code structure may be more intuitive than the traditional one using
nested loop and react statements.
The DynamicDispatchActor class also provides a handy facility to add message handlers dynamically at
actor construction time or any time later using the when handlers, optionally wrapped inside a become

method:

final Actor nyActor = new Dynani cDi spatchActor (). becone {
when {String nmsg -> println "A String'; reply 'Thanks'}
when {Double nmsg -> println 'A Double'; reply 'Thanks'}
when {nsg -> println "A sonething ..."; reply 'Wiat was that?' ;stop()}
}
nmyActor.start ()
Actors. actor {
myActor ' Hell o'
nmyAct or 1.0d
myActor 10 as Bi gDeci nal
myAct or . j oi n()
}.join()
Obviously the two approaches can be combined:

final class MyDDA extends Dynam cDi spatchActor {
voi d onMessage(String nessage) {
println 'Received string'

voi d onMessage(| nt eger nessage) {
println 'Received integer'

voi d onMessage(Obj ect nessage) {
println ' Recei ved object’
}

voi d onMessage(Li st nessage) {
println 'Received |ist’

stop()

}
final def myActor = new MyDDA() . becone {
when {Bi gDeci mal num-> println 'Received Bi gDeci nal '}
when {Float num-> println 'Got a float'}
}.start()
Actors.actor {
myActor 'Hell o
myAct or 1. Of
myAct or 10 as Bi gDeci nal
myAct or.send([])
myAct or. j oi n()
}.join()
The dynamic message handlers registered via when take precedence over the static onMessage handlers.

DynamicDispatchActor can be set to behave in afair on non-fair (default) manner.
Depending on the strategy chosen, the actor either makes the thread available to other actors
sharing the same parallel group (fair), or keepsthe thread fot itself until the message queue
gets empty (non-fair). Generally, non-fair actors perform 2 - 3 times better than fair ones.
Use either the fairMessageHandler () factory method or the actor's makeFair() method.

def fairActor = Actors.fairMssageHandl er {...}

Reactive Actor

The ReactiveActor class, constructed typically by calling Actors.reactor() or DefaultPGroup.reactor() ,
allow for more event-driven like approach. When areactive actor receives a message, the supplied block
of code, which makes up the reactive actor's body, is run with the message as a parameter. The result
returned from the code is sent in reply.

final def group = new Defaul t PG oup()
final def doubler = group.reactor {

2 % it
}

group. actor {
println 'Double of 10
}

group. actor {
println 'Double of 20
}

group. actor {
println 'Double of 30 ="' + doubl er. sendAndWai t (30)

+ doubl er. sendAndWai t (10)

+ doubl er. sendAndWi t (20)

}

for(i in (1..10)) {
println "Double of $i

}

doubl er. st op()
doubl er.join()

Here's an example of an actor, which submits a batch of numbers to a ReactiveActor for processing and
then prints the results gradually as they arrive.

${ doubl er. sendAndVai t (i)}"

i mport groovyx.gpars.actor. Actor

i nport groovyx.gpars.actor. Actors

final def doubler = Actors.reactor {
2 * it

}

Actor actor = Actors.actor {
(1..10).each {doubler << it}
int i =0
| oop {
i +=1
if (i > 10) stop()
el se {
react {nmessage ->
println "Double of $i = $nessage”
}

}

actor.join()

doubl er. st op()

doubl er . join()

Essentially reactive actors provide a convenience shortcut for an actor that would wait for messagesin a

loop, process them and send back the result. Thisis schematically how the reactive actor looksinside:

public class ReactiveActor extends Default Actor {
Cl osure body
void act() {
 oop {
react {nmessage ->
reply body(nessage)

ReactiveActor can be set to behave in afair on non-fair (default) manner. Depending on the

strategy chosen, the actor either makes the thread available to other actors sharing the same
parallel group (fair), or keeps the thread fot itself until the message queue gets empty
(non-fair). Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the fairReactor () factory method or the actor's makeFair() method.

def fairActor = Actors.fairReactor {...}

5.3Tipsand Tricks

Structuring actor's code

When extending the DefaultActor class, you can call any actor's methods from within the act() method
and use the react() or loop() methods in them.

cl ass MyDenpAct or extends Defaul t Actor {
protected void act() {
handl eA()

private void handl eA() {
react {a ->
handl eB(a)
}
}

private void handl eB(int a) {
react {b ->
printlna + b
reply a + b

}
}
final def denpActor = new MyDenpAct or ()
denmpActor.start()
Actors.actor {

denpActor 10

denoActor 20

react {

println "Result: $it"

}
}-join()
Bear in mind that the methods handleA() and handleB() in al our examples will only schedule the
supplied message handlers to run as continuations of the current calculation in reaction to the next

message arriving.
Alternatively, when using the actor () factory method, you can add event-handling code through the meta
class as closures.

Actor denpActor = Actors.actor {
del egate. netaCl ass {
handl eA = {->
react {a ->
handl eB(a)
}
}

handl eB = {a ->
react {b ->
println a+ b
reply a + b

}

}
handl eA()

}

Actors. actor {
denpActor 10
denpActor 20
react {

println "Result: S$it"
}
}.join()
Closures, which have the actor set astheir delegate can aso be used to structure event-handling code.

Cl osure handleB = {a ->
react {b ->

printlna + b
reply a + b
}
}
Cl osure handl eA = {->
react {a ->
handl eB(a)

}

Actor denpActor = Actors.actor {
handl eA. del egate = del egate
handl eB. del egat e del egat e
handl eA()

Actors. actor {
denoActor 10
denoAct or 20
react {
println "Result: $it"

}
}.join()
Event-driven loops

When coding event-driven actors you have to have in mind that calls to react() and loop() methods have
dlightly different semantics. This becomes a bit of a challenge once you try to implement any types of
loops in your actors. On the other hand, if you leverage the fact that react() only schedules a continuation
and returns, you may call methods recursively without fear to fill up the stack. Look at the examples
below, which respectively use the three described techniques for structuring actor's code.

A subclass of DefaultActor

cl ass MyLoopAct or extends Defaul t Actor {
protected void act() {
out er Loop()
}

private void outerLoop() {
react {a ->
println 'Quter: ' + a
if (a!=0) innerLoop()
el se println 'Done
}
}
private void innerLoop() {
react {b ->
println "Inner ' + b
if (b == 0) outerLoop()
el se i nnerLoop()

}

final def actor = new MyLoopActor().start()
actor 10

actor 20

actor O

actor O

actor.join()

Enhancing the actor's metaClass

Actor actor = Actors.actor {
del egat e. net aCl ass {
outerlLoop = {->

react {a ->
println 'Quter: ' + a
if (al'=0) innerLoop()
el se println 'Done

}

i nnerLoop = {->
react {b ->
println "Inner ' + b
i f (b==0) outerLoop()
el se i nnerLoop()

}
out er Loop()

actor 10
actor 20
actor O
actor O
actor.join()

Using Groovy closures

Cl osure innerLoop
Cl osure outerLoop = {->
react {a ->
println 'Quter: + a
if (al'=0) innerLoop()
el se println 'Done

}

i nnerLoop = {->
react {b ->
println '"Inner ' + b
i f (b==0) outerLoop()
el se i nnerLoop()

}

}

Actor actor = Actors.actor {
out er Loop. del egate = del egate
i nner Loop. del egate = del egate

out er Loop()
}
actor 10
actor 20
actor O
actor O
actor.join()

Plus don't forget about the possibility to use the actor's loop() method to create aloop that runs until the
actor terminates.

cl ass MyLoopi ngAct or extends Defaul t Actor {
protected void act() {

| oop {
out er Loop()
}
}

private void outerLoop() {
react {a ->
println "Quter: ' + a
if (a!'=0) innerLoop()
el se println 'Done for now, but will |oop again'
}
}
private void innerLoop() {
react {b ->
println "Inner ' + b
if (b ==10) outerLoop()
el se innerLoop()

}
}

final def actor = new MyLoopi ngActor().start()
actor 10

actor 20

actor O

actor O

actor 10

actor.stop()

actor.join()

5.4 Active Objects

Active objects provide an OO facade on top of actors, allowing you to avoid dealing directly with the
actor machinery, having to match messages, wait for results and send replies.

Actorswith afriendly facade

i mport groovyx.gpars.activeobject. ActiveQbj ect
i mport groovyx.gpars. activeobject. Acti veMet hod
@\ctivelbj ect
cl ass Decryptor {

@Act i veMet hod

def decrypt(String encryptedText) {

return encryptedText.reverse()
}

@A\ct i veMet hod

def decrypt (I nteger encryptedNunber) {
return -1*encrypt edNunber + 142
}
}

final Decryptor decryptor = new Decryptor()

def partl = decryptor.decrypt(’ noitcA ni yvoorG)
def part2 = decryptor.decrypt(140)
def part3 = decryptor.decrypt('noittide dn')

print partl.get()
print part2.get()
println part3.get()

Y ou mark active objects with the @ActiveObject annotation. Thiswill ensure a hidden actor instance is
created for each instance of your class. Now you can mark methods with the @ActiveMethod annotation
indicating that you want the method to be invoked asynchronously by the target object's internal actor. An
optional boolean blocking parameter to the @ActiveMethod annotation specifies, whether the caller
should block until aresult isavailable or whether instead the caller should only receive a promise for a
future result in aform of a DataflowVariable and so the caller is not blocked waiting.

By default, all active methods are set to be non-blocking . However, methods, which declare

their return type explicitly, must be configured as blocking, otherwise the compiler will

report an error. Only def , void and DataflowVariable are allowed return types for

non-blocking methods.
Under the covers, GPars will translate your method call to a message being sent to the internal actor .
The actor will eventually handle that message by invoking the desired method on behalf of the caller and
once finished areply will be sent back to the caller. Non-blocking methods return promises for results,
aka DataflowVariables .

But blocking meanswe're not really asynchronous, are we?

Indeed, if you mark your active methods as blocking , the caller will be blocked waiting for the result, just
like when doing normal plain method invocation. All we've achieved is being thread-safe inside the
Active object from concurrent access. Something the synchronized keyword could give you aswell. So it
is the non-blocking methods that should drive your decision towards using active objects. Blocking
methods will then provide the usual synchronous semantics yet give the consistency guarantees across
concurrent method invocations. The blocking methods are then still very useful when used in combination
with non-blocking ones.

i mport groovyx.gpars. activeobject. Acti veMet hod
i mport groovyx.gpars.activeobject. ActiveQbj ect
i mport groovyx. gpars. dat afl ow. Dat af | owvari abl e
@\ctivelbj ect
cl ass Decryptor {

@Act i veMet hod(bl ocki ng=t r ue)

String decrypt(String encryptedText) {

encrypt edText. reverse()

}

@Act i veMet hod(bl ocki ng=t r ue)

I nt eger decrypt (I nteger encryptedNunber) {
-1*encrypt edNunber + 142

}

final Decryptor decryptor = new Decryptor()
print decryptor.decrypt(' noitcA ni yvoorG)
print decryptor.decrypt(140)

println decryptor.decrypt(' noittide dn')

Non-blocking semantics

Now calling the non-blocking active method will return as soon as the actor has been sent a message. The
caler isnow allowed to do whatever he likes, while the actor istaking care of the calculation. The state of
the calculation can be polled using the bound property on the promise. Calling the get() method on the
returned promise will block the caller until avalue is available. The call to get() will eventually return a
value or throw an exception, depending on the outcome of the actual calculation.

The get() method has also a variant with atimeout parameter, if you want to avoid the risk of
waiting indefinitely.

Annotation rules
There are afew rulesto follow when annotating your objects:

The ActiveMethod annotations are only accepted in classes annotated as ActiveObject

Only instance (non-static) methods can be annotated as ActiveMethod

Y ou can override active methods with non-active ones and vice versa

Subclasses of active objects can declare additional active methods, provided they are themselves
annotated as ActiveObject

Combining concurrent use of active and non-active methods may result in race conditions. Ideally
design your active objects as completely encapsulated classes with all non-private methods marked
as active

Eal Sl .

o

Inheritance
The @ActiveObject annotation can appear on any classin an inheritance hierarchy. The actor field will
only be created in top-most annotated class in the hierarchy, the subclasses will reuse the field.

i mport groovyx.gpars.activeobject. ActiveQbj ect
i mport groovyx.gpars. acti veobject. Acti veMet hod
i mport groovyx. gpars. dat afl ow. Dat af | owari abl e
@\cti velbj ect
class A {

@A\ct i veMet hod

def fooA(value) {

}

class B extends A {

}
@\ctivelbj ect
class C extends B {
@A\ct i veMet hod
def fooC(val uel, value2) {

}
}
In our example the actor field will be generated into class A . Class C has to be annotated with

@ActiveObject since it holds the @ActiveMethod annotation on method fooC() , while class B does not
need the annotation, since none of its methods is active.

Groups
Just like actors can be grouped around thread pools, active objects can be configured to use threads from
particular parallel groups.

@\ctivelbj ect("groupl")
cl ass MyActivebject {

}
The value parameter to the @ActiveObject annotation specifies a name of parallel group to bind the

internal actor to. Only threads from the specified group will be used to run internal actors of instances of
the class. The groups, however, need to be created and registered prior to creation of any of the active
object instances belonging to that group. If not specified explicitly, an active object will use the default
actor group - Actors.defaultActor PGroup .

final Default PG oup group = new Defaul t PG oup(10)
Acti veObj ect Regi stry.instance.regi ster("groupl”, group)

Alternative namesfor theinternal actor

Y ou will probably only rarely run into name collisions with the default name for the active object's
internal actor field. May you need to change the default name inter nal ActiveObjectActor , use the
actorName parameter to the @ActiveObject annotation.

@\ctiveCbject(actorName = "alternativeAct or Nane")
cl ass MyActive(hject {

}

Alternative names for internal actors aswell astheir desired groups cannot be overriden in
subclasses. Make sure you only specify these values in the top-most active objectsin your
inheritance hierarchy. Obviously, the top most active object is still allowed to subclass other
classes, just none of the predecessors must be an active object.

5.5 Classic Examplesusing Actors

A few exampleson Actorsuse

Examples

The Sieve of Eratosthenes
Sleeping Barber

Dining Philosophers
Word Sort

Load Balancer

The Sieve of Eratosthenes

Problem description

i mport groovyx.gpars. actor. Dynam cDi spat chAct or

/**

* Denpnstrates concurrent inplenentation of the Sieve of Eratosthenes using actors

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

In principle, the algorithmconsists of concurrently run chained filters,

The chain is built (grows) on the fly, whenever a new prinme is found.
/
i nt requestedPrineNunber Boundary = 1000
final def firstFilter = new FilterActor(2).start()
/**
* Generating candi date nunbers and sending themto the actor chain
*/
(2..request edPri meNunber Boundary) . each {
firstFilter it
}

firstFilter.sendAndWait ' Poison'
/**
* Filter out nunbers that can be divided by a single prine nunber
*/
final class FilterActor extends Dynam cDi spat chActor {
private final int nmyPrine
private def follower
def FilterActor(final nmyPrime) { this.nmyPrine = nyPrine; }

/**

* Ok kX

each of which detects whether the current number can be divided by a single prine num
(generate nunms 1, 2, 3, 4, 5, ...) -> (filter by mod 2) -> (filter by nod 3) -> (filte

* Try to divide the received nunber with the prine. If the nunber cannot be divided,
* |f there's no-one to send it to, I'mthe last in the chain, the nunber is a prine

* a new actor responsible for filtering by this newy found prine nunber.
*/
def onMessage(int value) {
if (value % nmyPrine != 0)
if (follower) foll ower val ue
el se {
println "Found $val ue"
follower = new FilterActor(value).start()

}
}
}
/**
* Stop the actor on poisson reception
*/

def onMessage(def poisson) {
if (follower) {
def sender = sender
fol | ower. sendAndCont i nue(poi sson, {this.stop(); sender?.send(' Done')})
} else { //I amthe last in the chain

stop()
reply ' Done'

Sleeping Barber

Problem description

i mport groovyx. gpars. group. Def aul t PG oup
i mport groovyx. gpars. actor. Def aul t Act or
i mport groovyx. gpars. group. Def aul t PG oup
i mport groovyx.gpars.actor. Actor
final def group = new Defaul t PG oup()
final def barber = group.actor {
final def random = new Random()
| oop {
react {nmessage ->
switch (message) {
case Enter:
nmessage. cust oner. send new Start ()
println "Barber: Processing custoner ${nessage.custoner.nanme}"
doTheWbr k(random
nmessage. cust oner. send new Done()

/| Pas

http://en.wikipedia.org/wiki/Sleeping_barber_problem

reply new Next ()
br eak
case Wi t:

println "Barber: No custoners.

br eak

}
private def doTheWrk(Random randon

Thr ead. sl eep(random next | nt(10) * 1000)

final Actor waitingRoom
wai ti ngRoom = group. actor {
final int capacity =5

final List<Custoner> waitingCustonmers = []

bool ean barber Asl eep = true
l oop {
react {nessage ->
switch (nmessage) {
case Enter:
i f (waitingCustoners.si
reply new Full ()

} else {

ze()

Goi ng to have a sl eep"

capacity) {

wai ti ngCust oners << nessage. cust oner

i f (barberAsl eep) {

assert waitingCustoners.size() ==

bar ber Asl eep = fal se

wai ti ngRoom send new Next ()

el se reply new Wait

}

br eak
case Next:

if (waitingCustomers.size()>0) {

0

def customer = waitingCustoners.renove(0)
bar ber.send new Ent er (custoner: custoner)

} else {
bar ber. send new Wi

t()

bar ber Asl eep = true

}

cl ass Customer extends Default Actor {
String name
Act or | ocal Bar bers
void act() {
| ocal Barbers << new Enter (custoner:
| oop {
react {nmessage ->
swi tch (message) {
case Full
println "Custoner:
stop()
br eak
case Wait:
println "Custoner:
br eak
case Start:
println "Custoner:
br eak
case Done
println "Custoner:

stop();
br eak

t hi s)

$nane:

$nane:

$nane:

$name:

The waiting roomis full.

will wait."

am now bei ng served."

have been served."

am | eavi ng.

}
}
class Enter { Custoner custoner }
class Full {}
class Wit {}
class Next {}
class Start {}

cl ass Done {}
def custonmers = []

custoners << new Custoner (nane:' Joe', |ocal Barbers:waitingRoon).start()
custonmers << new Customer (name:' Dave', | ocal Barbers: waitingRoom.start()
custoners << new Custoner(nane:' Alice', |ocal Barbers:waitingRoon).start()
sl eep 15000

custoners << new Customer (name: 'Janes', |ocal Barbers: waitingRoom.start()
sl eep 5000

customers*.join()
bar ber . st op()
wai t i ngRoom st op()

Dining Philosophers

Problem description

i mport groovyx. gpars. actor. Def aul t Act or
i mport groovyx.gpars.actor.Actors
Act ors. defaul t Act or PGroup.resi ze 5
final class Philosopher extends Defaul tActor {
private Random random = new Randon()
String nane
def forks =[]
void act() {
assert 2 == forks.size()
| oop {
t hi nk()
forks*.send new Take()
def nessages = []
react {a ->
nmessages << [a, sender]
react {b ->
nmessages << [b, sender]
if ([a, b].any {Rejected.isCase it}) {
println "$name: tQops, can't get nmy forks! Gving up."
final def accepted = nmessages.find {Accepted.isCase it[0]}
if (accepted!=null) accepted[l1].send new Finished()
} else {
eat ()
reply new Fi ni shed()

}

}

voi d think() {
println "$nanme: tl'mthinking"
Thr ead. sl eep random next | nt (5000)
println "$nane: tl'm done thinking"

}

void eat() {
println "$nane: tl'm EATI NG'
Thr ead. sl eep random next | nt (2000)
println "$nane: tl'm done EATI NG'

}

final class Fork extends DefaultActor {
String nane
bool ean avail able = true
void act() {

| oop {

http://en.wikipedia.org/wiki/Dining_philosophers_problem

react {nmessage ->
swi tch (message) {
case Take:
if (available) {
avai l able = fal se
reply new Accepted()
} else reply new Rej ected()
br eak
case Fi ni shed
assert lavail able
avail able = true
br eak
default: throw new Il egal St at eExcepti on("Cannot process the nessage:

}
}
final class Take {}
final class Accepted {
final class Rejected {
final class Finished {
def forks = |
new For k(nane:
new For k(namne:
new For k(nane:
new For k(nane:
new For k(nane:

e

T
o
=
=~
w
—

]

def phil osophers = |
new Phi | osopher (nane: ' Joe', forks:[forks[0], forks[1]]),
new Phi | osopher (nane: ' Dave', forks:[forks[1l], forks[2]]),
new Phi | osopher (nane: ' Alice', forks:[forks[2], forks[3]]),
new Phi |l osopher (nane: ' Janmes', forks:[forks[3], forks[4]]),
new Phi | osopher (nane: ' Phil', forks:[forks[4], forks[0]]),

forks*.start()

phi | osophers*.start()

sl eep 10000

forks*.stop()

phi | osophers*. st op()

Word sort

Given afolder name, the script will sort wordsin all filesin the folder. The SortMaster actor creates a
given number of WordSortActors, splits among them the files to sort words in and collects the results.

Inspired by Scala Concurrency blog post by Michael Galpin

/I Messages
private final class FileToSort { String fil eNane }
private final class SortResult { String fileNanme; List<String> words }
/1 Wor ker actor
final class WrdSortActor extends DefaultActor {

private List<String> sortedWrds(String fil eNane) ({

parseFil e(fileNane).sort {it.toLowerCase()}
}

private List<String> parseFile(String fileNane) {
Li st<String> words = []
new Fil e(fileNane).splitEachLine(' ') {words.addAl I (it)}
return words

void act() {
| oop {
react {nmessage ->
swi tch (nmessage) {
case FileToSort:
println "Sorting file=${nessage.fileNanme} on thread ${Thread. curr
reply new SortResult (fileNane: message.fil eName, words: sortedWr

http://fupeg.blogspot.com/2009/06/scala-concurrency.html

}
}
/1 Mast er actor
final class SortMaster extends Defaul t Actor {
String docRoot = "'/'
int numActors =1
Li st<Li st<String>> sorted = []
private Count DownLatch startuplLatch = new Count DownLat ch(1)
private Count DownLat ch doneLat ch
private void beginSorting() {
int cnt = sendTasksToWsr kers()
donelLat ch = new Count DownLat ch(cnt)
}
private List createWrkers() {
return (1..numActors).collect {new WrdSortActor().start()}
}

private int sendTasksToWrkers() {
Li st <Actor> workers = createWrkers()
int cnt =0
new Fi |l e(docRoot) . eachFile {
wor kers[cnt % numActors] << new FileToSort(fileNane: it)
cnt += 1

}

return cnt

}

public void waitUntil Done() {
startupLatch. awai t ()
doneLat ch. awai t ()

}

void act() {
begi nSorti ng()
startupLat ch. count Down()

| oop {
react {
switch (it) {
case SortResult:
sorted << it.words
donelLat ch. count Down()
println "Received results for file=${it.fileName}"
}
}
}

}

//start the actors to sort words
def master = new SortMaster(docRoot: 'c:/tnp/Logs/', numActors: 5).start()
mast er. wai t Unti | Done()
println 'Done'
File file = new File("c:/tnp/Logs/sorted_words.txt")
file.withPrintWiter { printer ->
mast er. sorted. each { printer.println it }
}

L oad Balancer

Demonstrates work balancing among adaptable set of workers. The load balancer receives tasks and
gueues them in atemporary task queue. When aworker finishes his assignment, it asks the load balancer
for anew task.

If the load balancer doesn't have any tasks available in the task queue, the worker is stopped. If the
number of tasks in the task queue exceeds certain limit, a new worker is created to increase size of the
worker pool.

i mport groovyx. gpars. actor. Actor
i mport groovyx. gpars. act or. Def aul t Act or

/**

* Denpnstrates work bal anci ng anong adapt abl e set of workers.

The | oad bal ancer receives tasks and queues themin a tenporary task queue.
Wien a worker finishes his assignnent, it asks the |oad bal ancer for a new task.
If the | oad bal ancer doesn't have any tasks available in the task queue, the worker i:¢
If the nunber of tasks in the task queue exceeds certain limt, a new worker is create
to increase size of the worker pool.
/
final class LoadBal ancer extends Defaul t Actor {
int workers =0
Li st taskQueue = []
private static final QUEUE_SIZE TRI GGER = 10
void act() {
 oop {
react { nessage ->
switch (nmessage) {
case NeedMor eVor k:
if (taskQueue.size() ==
println "No nore tasks in the task queue. Termi nating the wor
reply DenoWorker. EXIT

* Ok kX

workers -=1
} else reply taskQueue.renmove(0)
br eak

case WorkToDo:
t askQueue << message
if ((workers == 0) || (taskQueue.size() >= QUEUE SIZE TRI GGER)) {
println 'Need nore workers. Starting one.'
workers += 1
new DemoWobr ker (this).start()
}

println "Active workers=${workers}tTasks in queue=${taskQueue.size()}"

}
}
final class DenoWrker extends Defaul t Actor {
final static Object EXIT = new Obj ect ()
private static final Random random = new Random()
Act or bal ancer
def DemoWor ker (bal ancer) {
t hi s. bal ancer = bal ancer

}
void act() {

| oop {
t hi s. bal ancer << new NeedMor eWor k()
react {

switch (it) {
case Wor kToDo:
processMessage(it)
br eak
case EXIT: term nate()

}
}
private void processMessage(nessage) {
synchroni zed (random {
Thr ead. sl eep random next | nt (5000)
}

}

}
final class WrkToDo {}
final class NeedMoreWsrrk {}
final Actor balancer = new LoadBal ancer().start()
/] produce tasks
for (i in 1..20) {
Thr ead. sl eep 100
bal ancer << new Wor kToDo()

[/ produce tasks in a parallel thread
Thread. start {
for (i in 1..10) {

Thr ead. sl eep 1000
bal ancer << new Wir kToDo()

}
}
Thread. sl eep 35000 //let the queues get enpty
bal ancer << new Wor kToDo()
bal ancer << new Wr kToDo()
Thr ead. sl eep 10000
bal ancer. st op()
bal ancer.j oi n()

6. Agent

The Agent class, which is a thread-safe non-blocking shared mutable state wrapper implementation
inspired by Agentsin Clojure.

A lot of the concurrency problems disappear when you eliminate the need for Shared
Mutable State with your architecture. Indeed, concepts like actors, CSP or dataflow
concurrency avoid or isolate mutable state completely. In some cases, however, sharing
mutable data is either inevitable or makes the design more natural and understandable. Think,
for example, of a shopping cart in atypical e-commerce application, when multiple AJAX
requests may hit the cart with read or write requests concurrently.

| ntroduction

In the Clojure programing language you can find a concept of Agents, the purpose of which isto protect
mutable data that need to be shared across threads. Agents hide the data and protect it from direct access.
Clients can only send commands (functions) to the agent. The commands will be serialized and processed
against the data one-by-one in turn. With the commands being executed serially the commands do not
need to care about concurrency and can assume the datais all theirs when run. Although implemented
differently, GPars Agents, called Agent , fundamentally behave like actors. They accept messages and
process them asynchronously. The messages, however, must be commands (functions or Groovy closures)
and will be executed inside the agent. After reception the received function is run against the internal state
of the Agent and the return value of the function is considered to be the new internal state of the Agent.
Essentially, agents safe-guard mutable values by allowing only a single agent-managed thread to make
modifications to them. The mutable values are not dir ectly accessible from outside, but instead requests
have to be sent to the agent and the agent guarantees to process the requests sequentially on behalf of the
callers. Agents guarantee sequential execution of all requests and so consistency of the values.
Schematically:

agent = new Agent (0) //created a new Agent wrapping an integer with initial value O
agent.send {increnent()} //asynchronous send operation, sending the increnent() functior

/lafter some delay to process the nessage the internal Agent's state has been updated
assert agent.val==1

To wrap integers, we can certainly use AtomicX XX types on the Java platform, but when the stateisa
more complex object we need more support.

Concepts

GPars provides an Agent class, which is a special-purpose thread-safe non-blocking implementation
inspired by Agentsin Clojure.

An Agent wraps areference to mutable state, held inside a single field, and accepts code (closures/
commands) as messages, which can be sent to the Agent just like to any other actor using the '<<'
operator, the send() methods or the implicit call() method. At some point after reception of aclosure/
command, the closure is invoked against the internal mutable field and can make changesto it. The

closure is guaranteed to be run without intervention from other threads and so may freely alter the internal
state of the Agent held in the internal <i>data</i> field.

The whole update processis of the fire-and-forget type, since once the message (closure) is sent to the
Agent, the caller thread can go off to do other things and come back later to check the current value with
Agent.val or Agent.valAsync(closure).

Basicrules

® \When executed, the submitted commands obtain the agent's state ar a parameter.

® The submitted commands /closures can call any methods on the agent's state.

® Replacing the state object with anew oneis also possible and is done using the updateValue()
method.

®* Thereturn value of the submitted closure doesn't have a special meaning and isignored.
If the message sent to an Agent isnot a closure, it is considered to be a new value for the internal
referencefield.

® The val property of an Agent will wait until all preceding commands in the agent's queue are
consumed and then safely return the value of the Agent.

® TheinstantVal property will return an immediate snapshot of the internal agent's state.

® The valAsync() method will do the same without blocking the caller.

* All Agent instances share a default daemon thread pool. Setting the threadPool property of an
Agent instance will allow it to use a different thread pool.

® Exceptions thrown by the commands can be collected using the errors property.

Examples

Shared list of members
The Agent wraps alist of members, who have been added to the jug. To add a new member a message
(command to add a member) has to be sent to the jugMembers Agent.

i nport groovyx. gpars. agent. Agent
i mport java.util.concurrent. ExecutorService
i mport java.util.concurrent. Executors
/**

* Create a new Agent wrapping a list of strings

*/
def jugMenbers = new Agent<List<String>>(['M']) //add M
jugMenbers.send {it.add 'Janes'} //add Janes
final Thread t1 = Thread.start {

jugMenbers.send {it.add 'Joe'} //add Joe

}
final Thread t2 = Thread.start {
jugMenbers << {it.add 'Dave'} //add Dave
jugMenbers {it.add 'Alice'} //add Alice (using the inplicit call() nethod)

}

[t1, t2]*.join()

println jugMenbers. val

j ugMenbers. val Async {println "Current nenbers: $it"}
j ugMenbers. awai t ()

Shared conference counting number of registrations
The Conference class allows registration and un-registration, however these methods can only be called
from the commands sent to the conference Agent.

i mport groovyx. gpars. agent. Agent
/**
* Conference stores nunber of registrations and allows parties to register and unregi st¢
* |t inherits fromthe Agent class and adds the register() and unregister() private nett
* which callers may use it the conmands they submt to the Conference.
*/
cl ass Conference extends Agent<Long> {
def Conference() { super(0) }
private def register(long num { data += num}

private def unregister(long nun) { data -= num}

final Agent conference = new Conference() //new Conference created

/**

* Three external parties will try to register/unregister concurrently
*/
final Thread t1 = Thread.start {
conference << {register(10L)} //send a command to register 10 attendees

}
final Thread t2 = Thread.start {
conference << {register(5L)} //send a command to register 5 attendees

}
final Thread t3 = Thread.start {
conference << {unregister(3L)} //send a command to unregi ster 3 attendee

}
[t1, t2, t3]*.join()
assert 12L == conference.va

Factory methods

Agent instances can also be created using the Agent.agent() factory method.

def jugMenbers = Agent.agent ["Me'] //add Me

Listenersand validators

Agents allow the user to add listeners and validators. While listeners will get notified each time the
internal state changes, validators get a chance to rgject a coming change by throwing an exception.

final Agent counter = new Agent()

count er. addLi st ener {ol dval ue, newval ue -> println "Changing val ue from $ol dval ue to $ne\
count er. addLi stener {agent, ol dVal ue, newalue -> println "Agent $agent changi ng val ue fr
count er. addVal i dat or {ol dval ue, newalue -> if (ol dval ue > newval ue) throw new ||| egal Ar¢
count er. addVal i dat or {agent, ol dval ue, newalue -> if (ol dValue == newal ue) throw new I|
counter 10

counter 11

counter {updateVal ue 12}

counter 10 //WIIl be rejected

counter {updatevValue it - 1} //WIIl be rejected

counter {updateValue it} /[/WIIl be rejected

counter {updatevalue 11} //WIIl be rejected

counter 12 //WIIl be rejected

counter 20

counter.await ()

Both listeners and validators are essentially closures taking two or three arguments. Exceptions thrown
from the validators will be logged inside the agent and can be tested using the haskrrors() method or
retrieved through the errors property.

assert counter. hasErrors()
assert counter.errors.size() ==

Validator gotchas

With Groovy being not very strict on data types and immutability, agent users should be aware of
potential bumps on the road. If the submitted code modifies the state directly, validators will not be able
to un-do the change in case of avalidation rule violation. There are two possible solutions available:

1. Make sure you never change the supplied object representing current agent state

2. Use custom copy strategy on the agent to allow the agent to create copies of the internal state
In both cases you need to call updateValue() to set and validate the new state properly.
The problem as well as both of the solutions are shown below:

// Create an agent storing nanes, rejecting 'Joe
final dosure rejectJoeValidator = {ol dval ue, newalue -> if ('Joe' in newvalue) throw ne

Agent agent = new Agent([])

agent . addVal i dat or rejectJoeVali dat or

agent {it << 'Dave'} /1 Accept ed

agent {it << 'Joe'} /1 Erroneously accepted, since by-passes the valic
println agent.val

//Solution 1 - never alter the supplied state object

agent = new Agent ([])

agent . addVal i dat or rejectJoeVali dat or

agent {updateVal ue([' Dave', * it])} /| Accept ed

agent {updateVal ue(['Joe', * it])} /| Rej ect ed

println agent. val

//Solution 2 - use custom copy strategy on the agent

agent = new Agent([], {it.clone()})

agent . addVal i dat or rejectJoeVali dat or

agent {updateValue it << 'Dave'} /1 Accept ed

agent {updateValue it << 'Joe'} // Rejected, since 'it' is now just a copy of the
println agent. val

Grouping

By default all Agent instances belong to the same group sharing its daemon thread pool.

Custom groups can also create instances of Agent. These instances will belong to the group, which
created them, and will share athread pool. To create an Agent instance belonging to a group, call the
agent() factory method on the group. Thisway you can organize and tune performance of agents.

final def group = new NonDaemonPG oup(5) //create a group around a thread pool
def jugMenbers = group.agent(['Me']) //add Me

The default thread pool for agents contains daemon threads. Make sure that your custom
thread pools either use daemon threads, too, which can be achieved either by using
DefaultPGroup or by providing your own thread factory to athread pool constructor, or in
case your thread pools use non-daemon threads, such as when using the NonDaemonPGroup
group class, make sure you shutdown the group or the thread pool explicitly by calling its
shutdown() method, otherwise your applications will not exit.

Direct pool replacement
Alternatively, by calling the attachToThreadPool () method on an Agent instance a custom thread pool
can be specified for it.

def jugMenbers = new Agent<List<String>>(['Me']) //add Me
final ExecutorService pool = Executors. newri xedThr eadPool (10)
j ugMenbers. att achToThr eadPool (new Def aul t Pool (pool))

Remember, like actors, a single Agent instance (aka agent) can never use more than one
thread at atime

The shopping cart example

i mport groovyx.gpars. agent. Agent
cl ass Shoppi ngCart {
private def cartState = new Agent([:])
I T public nethods below here ----------cmommm
public void addltem(String product, int quantity) {
cartState << {it[product] = quantity} //the << operator sends
/la message to the Agent
} public void renoveltem(String product) {
cartState << {it.renove(product)}
} public Cbject listContent() {
return cartState. val
} public void clearltens() {
cart State << perfornC ear
}
p

ublic void increaseQuantity(String product, int quantityChange) {
cartState << this. &hangeQuantity.curry(product, quantityChange)

R private nethods below here --------------o

private void changeQuantity(String product, int quantityChange, Map itens) {
itenms[product] = (itens[product] ?: 0) + quantityChange

} private Closure perfornClear = { it.clear() }

}

I TR script code below here --------mmmm o

final ShoppingCart cart = new Shoppi ngCart ()

cart.addltem ' Pilsner', 10

cart.addltem ' Budwei sser', 5

cart.addltem ' Staropranen', 20

cart.renoveltem ' Budwei sser'

cart.addl tem ' Budwei sser', 15

println "Contents ${cart.listContent()}"

cart.increaseQuantity 'Budwei sser', 3

println "Contents ${cart.listContent()}"

cart.clearltens()

println "Contents ${cart.listContent()}"

Y ou might have noticed two implementation strategies in the code.

1. Public methods may internally just send the required code off to the Agent, instead of executing the
same functionality directly
And so sequential code like

public void addltenm(String product, int quantity) {
cart St at e[product] =quantity
}

becomes

public void addltenm(String product, int quantity) {
cartState << {it[product] = quantity}
}

2. Public methods may send references to internal private methods or closures, which hold the desired
functionality to perform

public void clearltens() {
cartState << perfornC ear

private Cosure perfornClear = { it.clear() }

Currying might be necessary, if the closure takes other arguments besides the current internal state
instance. See the increaseQuantity method.

The printer service example

Another example - a not thread-safe printer service shared by multiple threads. The printer needsto have
the document and quality properties set before printing, so obviously a potential for race conditionsif not
guarded properly. Callers don't want to block until the printer is available, which the fire-and-forget
nature of actors solves very elegantly.

i nport groovyx. gpars. agent. Agent
/**
* A non-thread-safe service that slowy prints docunents on at a tinme
*/
class PrinterService {
String docunent
String quality
public void printDocunent () {
println "Printing $docunent in $quality quality"
Thr ead. sl eep 5000
println "Done printing $docunment™”

}

def printer = new Agent <Printer Service>(new PrinterService())
final Thread threadl = Thread.start {

for (numin (1..3)) {
final String text = "docunment $nunt
printer << {printerService ->
printerService.docunent = text
printerService.quality = 'Hi gh
printerService. print Docunent ()

}
Thr ead. sl eep 200
println "Thread 1 is ready to do sonething else. Al print tasks have been subnitted

}
final Thread thread2 = Thread.start {
for (numin (1..4)) {
final String text = "picture $nunf
printer << {printerService ->
printerService. docunent = text
printerService.quality = 'Medi un
printerService. print Docunent ()

}
Thr ead. sl eep 500

println "Thread 2 is ready to do sonething else. Al print tasks have been submtted

}
[threadl, thread2]*.join()

printer.await()

For latest update, see the respective Demos.

Reading the value

To follow the clojure philosophy closely the Agent class gives reads higher priority than to writes. By
using the instantVal property your read request will bypass the incoming message queue of the Agent and
return the current snapshot of the internal state. The val property will wait in the message queue for
processing, just like the non-blocking variant val Async(Clojure cl) , which will invoke the provided
closure with the internal state as a parameter.

Y ou have to bear in mind that the instantVal property might return although correct, but randomly looking
results, since the internal state of the Agent at the time of instantVal execution is non-deterministic and
depends on the messages that have been processed before the thread scheduler executes the body of
instantVal .

The await() method allows you to wait for processing all the messages submitted to the Agent before and
so blocks the calling thread.

State copy strategy

To avoid leaking the internal state the Agent class allows to specify a copy strategy as the second
constructor argument. With the copy strategy specified, the internal state is processed by the copy strategy
closure and the output value of the copy strategy value is returned to the caller instead of the actual
internal state. This appliesto instantVal , val aswell asto valAsync() .

Error handling

Exceptions thrown from within the submitted commands are stored inside the agent and can be obtained
from the errors property. The property gets cleared once read.

def jugMenmbers = new Agent <Li st >()
assert jugMenbers.errors.enpty
jugMenbers. send {throw new ||| egal StateException('testl')}
jugMenbers. send {throw new ||| egal Argunent Exception('test2')}
j ugMenbers. awai t ()
List errors = jugMenbers.errors
assert Equal s(2, errors.size())
assert errors[0] instanceof Il egal StateException
assertEquals '"testl', errors[0].nessage

assert errors[1] instanceof Il egal Argunment Exception
assertEquals 'test2', errors[1l].nessage
assert jugMenbers.errors.enpty

Fair and Non-fair agents

Agents can be either fair or non-fair. Fair agents give up the thread after processing each message,
non-fair agents keep athread until their message queue is empty. As aresult, non-fair agents tend to
perform better than fair ones. The default setting for all Agent instancesisto be non-fair, however by
calling its makeFair() method the instance can be made fair.

def jugMenbers = new Agent<List>(['M']) //add Me
j ugMenber s. makeFair ()

/. Dataflow Concurrency

Dataflow concurrency offers an alternative concurrency model, which isinherently safe and robust.

I ntroduction
Check out the small example written in Groovy using GPars, which sums results of calculations
performed by three concurrently run tasks:

i mport static groovyx.gpars.datafl ow Dat af |l ow. t ask
final def x new Dat af | owvari abl e()

final def y = new Datafl owvari abl e()
final def z = new Datafl owvari abl e()
task {

z << x.val + y.val
}
task {

X << 10
task {

y << 5

println "Result: ${z.val}"
Or the same algorithm rewritten using the Datafl ows class.

i mport static groovyx.gpars.datafl ow Dat af | ow. t ask
final def df = new Datafl ows()

task {
df .z = df.x + df.y
}
task {
df .x = 10
}
task {
df .y =5

i)ri ntln "Result: ${df.z}"

We start three logical tasks, which can runin parallel and perform their particular activities. The tasks
need to exchange data and they do so using Dataflow Variables. Think of Dataflow Variables as
one-shot channels safely and reliably transferring data from producers to their consumers.

The Dataflow Variables have a pretty straightforward semantics. When a task needs to read a value from
DataflowVariable (through the val property), it will block until the value has been set by another task or
thread (using the '<<' operator). Each DataflowVariable can be set only oncein itslifetime. Notice that
you don't have to bother with ordering and synchronizing the tasks or threads and their access to shared
variables. The values are magically transferred among tasks at the right time without your intervention.
The data flow seamlessly among tasks / threads without your intervention or care.

| mplementation detail: The three tasks in the example do not necessarily need to be mapped to three

physical threads. Tasks represent so-called "green” or "logical" threads and can be mapped under the
covers to any number of physical threads. The actual mapping depends on the scheduler, but the outcome
of dataflow algorithms doesn't depend on the actual scheduling.

The bind operation of dataflow variables silently accepts re-binding to avalue, which is equal
to an already bound value. Call bindUnique to reject equal values on aready-bound variables.

Benefits

Here's what you gain by using Dataflow Concurrency (by Jonas Bonér):

* No race-conditions
®* No live-locks
®* Deterministic deadlocks
® Completely deterministic programs
* BEAUTIFUL code.
This doesn't sound bad, does it?

Concepts

Dataflow programming

Quoting Wikipedia

Operations (in Dataflow programs) consist of "black boxes' with inputs and outputs, all of which are
always explicitly defined. They run as soon as al of their inputs become valid, as opposed to when the
program encounters them. Whereas atraditional program essentially consists of a series of statements
saying "do this, now do this', a dataflow program is more like a series of workers on an assembly line,
who will do their assigned task as soon as the materials arrive. Thisis why dataflow languages are
inherently parallel; the operations have no hidden state to keep track of, and the operations are all "ready"
at the sametime.

Principles

With Dataflow Concurrency you can safely share variables across tasks. These variables (in Groovy
instances of the DataflowVariable class) can only be assigned (using the '<<' operator) avalue oncein
their lifetime. The values of the variables, on the other hand, can be read multiple times (in Groovy
through the val property), even before the value has been assigned. In such cases the reading task is
suspended until the value is set by another task. So you can simply write your code for each task
sequentially using Dataflow Variables and the underlying mechanics will make sure you get all the values
you need in a thread-safe manner.

In brief, you generally perform three operations with Dataflow variables:

® Create adataflow variable
® Wait for the variable to be bound (read it)
® Bind the variable (write to it)
And these are the three essential rules your programs have to follow:

® When the program encounters an unbound variable it waits for a value.

® |tisnot possible to change the value of a dataflow variable onceit is bound.
® Dataflow variables makes it easy to create concurrent stream agents.

Dataflow Queues and Broadcasts

http://www.jonasboner.com

Before you go to check the samples of using Dataflow Variables, Tasks and Operators, you should
know a bit about streams and queues to have afull picture of Dataflow Concurrency. Except for dataflow
variables there are a so the concepts of DataflowQueues and Datafl owBroadcast that you can leveragein
your code. Y ou may think of them as thread-safe buffers or queues for message transfer among
concurrent tasks or threads. Check out atypical producer-consumer demo:

i mport static groovyx.gpars.datafl ow Dat af |l ow. t ask

def words = ['Goovy', 'fantastic', 'concurrency', 'fun', 'enjoy', 'safe', 'GPars', 'datce
final def buffer = new Datafl owQueue()
task {

for (word in words) {
buf fer << word.toUpperCase() //add to the buffer
}
}

task {
while(true) println buffer.val //read fromthe buffer in a | oop
}

Both DataflowBroadcasts and DataflowQueues, just like DataflowVariables , implement the
DataflowChannel interface with common methods allowing usersto write to them and read values from
them. The ability to treat both types identically through the DataflowChannel interface comesin handy
once you start using them to wire tasks, operators or selectors together.

The DataflowChannel interface combines two interfaces, each serving its purpose:

* DataflowReadChannel holding al the methods necessary for reading values from a
channel
® DataflowWriteChannel holding all the methods necessary for writing valuesinto a
channel
Y ou may prefer using these dedicated interfaces instead of the general DataflowChannel
interface, to better express the intended usage.

Point-to-point communication

The DataflowQueue class can be viewed as a point-to-point (1 to 1, many to 1) communication channel. It
allows one or more producers send messages to one reader. If multiple readers read from the same
DataflowQueue , they will each consume different messages. Or to put it a different way, each messageis
consumed by exactly one reader. Y ou can easily imagine a simple load-balancing scheme built around a
shared Datafl owQueue with readers being added dynamically when the consumer part of your algorithm
needsto scale up. Thisis also auseful default choice when connecting tasks or operators.

Publish-subscribe communication

The DataflowBroadcast class offers a publish-subscribe (1 to many, many to many) communication
model. One or more producers write messages, while all registered readers will receive all the messages.
Each message is thus consumed by all readers with a valid subscription at the moment when the message
is being written to the channel. The readers subscribe by calling the createReadChannel () method.

Dat af | owW i t eChannel broadcast Stream = new Dat af | owBr oadcast ()
Dat af | owReadChannel streanl = broadcast Stream creat eReadChannel ()
Dat af | onReadChannel streanR = broadcast Stream cr eat eReadChannel ()
br oadcast St ream << ' Messagel’

br oadcast Stream << ' Message?2'

br oadcast Stream << ' Message3'

assert streaml.val == strean?.val
assert streaml.val == strean®.val
assert streaml.val == strean®.val

Under the hood DataflowBroadcast uses the Datafl owStream class to implement the message delivery.

DataflowStr eam

The Datafl owStream class represents a deterministic dataflow channel. It is build around the concept of a
functiona queue and so provides a lock-free thread-safe implementation for message passing. Essentialy,

you may think of DataflowStream as a 1 to many communication channel, since when areader consumes
amessages, other readers will till be able to read the message. Also, al messages arrive to al readersin
the same order. Since DataflowStream is implemented as a functional queue, its API requires that users
traverse the valuesin the stream themselves. On the other hand Datafl owStream offers handy methods for
value filtering or transformation together with interesting performance characteristics.

The DataflowStream class, unlike the other communication el ements, does not implement the
DataflowChannel interface, since the semantics of its useis different. Use
DataflowStreamReadAdapter and Datafl owStreamWriteAdapter classes to wrap instances of
the DataflowChannel classin DataflowReadChannel or DataflowWriteChannel
implementations.

i mport groovyx.gpars. dat afl ow. stream Dat af | owSt r eam
i mport groovyx. gpars. group. Def aul t PG oup
i mport groovyx. gpars. schedul er. Resi zeabl ePool

/**

* Denpnstrates concurrent inplenentation of the Sieve of Eratosthenes using datafl ow tas

*
* In principle, the algorithmconsists of a concurrently run chained filters,
* each of which detects whether the current nunber can be divided by a single prime nun
* (generate nuns 1, 2, 3, 4, 5 ...) -> (filter by nod 2) -> (filter by nod 3) -> (filte
* The chain is built (grows) on the fly, whenever a new prine is found
*/

/**

* W need a resizeable thread pool, since tasks consunme threads while waiting bl ocked f¢
*/

group = new Def aul t PGroup(new Resi zeabl ePool (true))

final int requestedPrinmeNunberCount = 100
/**

* Generating candi date nunbers

*/
final Datafl owStream candi dates = new Dat af | owSt ream()

group. task {

candi dat es. generate(2, {it + 1}, {it < 1000})

/**
* Chain a new filter for a particular prinme nunber to the end of the Sieve
* @aram i nChannel The current end channel to consune
* @aram prine The prinme nunber to divide future prime candidates with
* @eturn A new channel ending the whole chain
*/
def filter(Datafl owStreaminChannel, int prime) {
i nChannel . filter { nunber ->
group. task {
nunber % prinme !'=0
}

}

/**
* Consume Sieve output and add additional filters for all found prines
*/
def currentCQutput = candi dates
request edPri neNunber Count . ti mes {
int prime = currentQutput.first
println "Found: $prinme"
currentQutput = filter(currentQutput, prine)

}
For convenience and for the ability to use DataflowStream with other dataflow constructs, like e.g.

operators, you can wrap it with DataflowReadAdapter for read access or Datafl owWriteAdapter for write
access. The DataflowStream class is designed for single-threaded producers and consumers. If multiple
threads are supposed to read or write values to the stream, their access to the stream must be serialized
externally or the adapters should be used.

DataflowStream Adapters
Since the DataflowStream API as well as the semantics of its use are very different from the one defined
by Dataflow(Read/Write)Channel , adapters have to be used in order to alow DataflowStreams to be used

with other dataflow elements. The DataflowStreamReadAdapter class will wrap a DataflowStream with
necessary methods to read values, while the Datafl owStreamWriteAdapter class will provide write
methods around the wrapped DataflowStream .

It isimportant to mention that the DataflowStreamWriteAdapter is thread safe allowing
multiple threads to add values to the wrapped DataflowStream through the adapter. On the
other hand, DataflowStreamReadAdapter is designed to be used by a single thread.
To minimize the overhead and stay in-line with the Datafl owStream semantics, the
DataflowStreamReadAdapter classis not thread-safe and should only be used from within a
single thread. If multiple threads need to read from a Datafl owStream, they should each
create their own wrapping DataflowStreamReadAdapter .
Thanks to the adapters DataflowStream can be used for communication between operators or selectors,
which expect Datafl ow(Read/Write)Channels .

i mport groovyx. gpars. dat af | ow. Dat af | owQueue

i mport groovyx. gpars. dat afl ow. st ream Dat af | owSt r eam

i mport groovyx.gpars. dat af | ow. st ream Dat af | owSt r eanrReadAdapt er

i mport groovyx. gpars. datafl ow. stream Dat af | owSt reanWW i t eAdapt er

i mport static groovyx.gpars. datafl ow Dat afl ow. sel ect or

i mport static groovyx.gpars.datafl ow Datafl ow operator

/**
* Denpnstrates the use of Datafl owStreamAdapters to allow datafl ow operators to use Datz¢
*/

final DataflowStream a = new Dat afl owSt rean()

final DataflowStreamb = new Dat af | owSt ream()

def aw = new Dat af | owSt reamW i t eAdapt er (a)
def bw = new Dat af | owSt reamV i t eAdapt er (b)
def ar = new Dat af | owSt r eanrReadAdapt er (a)
def br = new Dat af | owSt r eanrReadAdapt er (b)

def result = new Dat af | owQueue()
def opl = operator(ar, bw {
bi ndQut put it

def op2 = selector([br], [result]) {
result << it
}

aw << 1

aw << 2

aw << 3

assert([1, 2, 3] == [result.val, result.val, result.val])

opl. stop()

op2. stop()

opl.join()

op2.join()

Also the ability to select a value from multiple DataflowChannels can only be used through an adapter
around a DataflowStream :

i mport groovyx. gpars. dat af | ow. Sel ect

i mport groovyx. gpars. dat afl ow. stream Dat af | owSt r eam

i mport groovyx.gpars. dat af | ow. st ream Dat af | owSt r eanrReadAdapt er

i mport groovyx.gpars. datafl ow. stream Dat af | owSt r eanWW i t eAdapt er

i mport static groovyx.gpars. datafl ow Dat af | ow. sel ect

i mport static groovyx.gpars.datafl ow Dataf |l ow. t ask

/**
* Denonstrates the use of Datafl owStreamAdapters to allow datafl ow select to select on I
*/

final DataflowStream a = new Dat af | owSt ream()

final DataflowStreamb = new Dat afl owStream()

def aw = new Dat af | owSt reamW i t eAdapt er (a)
def bw = new Dat af | owSt reamV i t eAdapt er (b)
def ar = new Dat af | owSt r eanrReadAdapt er (a)
def br = new Dat af | owSt r eanrReadAdapt er (b)
final Select<?> select = select(ar, br)
task {

aw << 1

aw << 2

aw << 3

assert 1 == select().val ue
assert 2 == select().value
assert 3 == select().val ue
task {

bw << 4

aw << 5

bw << 6

def result = (1..3).collect{select()}.sort{it.value}
assert result*.value == [4
assert result*.index == [1, 0, 1]

If you don't need any of the functional queue DataflowStream-special functionality, like
generation, filtering or mapping, you may consider using the DataflowBroadcast class
instead, which offers the publish-subscribe communication model through the
DataflowChannel interface.

Bind handlers

def a = new Dat afl owvari abl e()
a >> {println "The variable has just been bound to $it"}
a. whenBound {println "Just to confirmthat the variable has been really set to $it"}

A bound handlers can be registered on all dataflow channels (variables, queues or broadcasts) either using
the >> operator or the whenBound() method. They will be run once avalue is bound to the variable.
Dataflow queues and broadcasts also support a whenever Bound method to register a closure or a message
handler to run each time avalueis bound to them.

def queue = new Dat af | owQueue()
queue. wheneverBound {println "A value $it arrived to the queue"}

Dataflow variables and broadcasts are one of several possible waysto implement Parallel

Speculations . For details, please check out Parallel Speculationsin the Parallel Collections
section of the User Guide.

Further reading
Scala Dataflow library by Jonas Bonér

JVM concurrency presentation slides by Jonas Bonér
Dataflow Concurrency library for Ruby

7.1 Tasks

The Dataflow tasks give you an easy-to-grasp abstraction of mutually-independent logical tasks or
threads, which can run concurrently and exchange data solely through Dataflow V ariables, Queues,
Broadcasts and Streams. Dataflow tasks with their easy-to-express mutual dependencies and inherently
sequential body could also be used as a practical implementation of UML Activity Diagrams.

Check out the examples.

A simple mashup example

In the example we're downloading the front pages of three popular web sites, each in their own task, while
in a separate task we're filtering out sites talking about Groovy today and forming the output. The output
task synchronizes automatically with the three download tasks on the three Dataflow variables through
which the content of each website is passed to the output task.

i mport static groovyx.gpars. GParsPool . *
i mport groovyx. gpars. datafl ow. Dat af | owari abl e
i mport static groovyx.gpars. datafl ow Dat af | ow. t ask

http://github.com/jboner/scala-dataflow/tree/f9a38992f5abed4df0b12f6a5293f703aa04dc33/src
http://jonasboner.com/talks/state_youre_doing_it_wrong/html/all.html
http://github.com/larrytheliquid/dataflow/tree/master

/**

* A sinple mashup sanpl e, downl oads content of three websites
* and checks how many of themrefer to G oovy.
*/
def dzone = new Dat af | owvari abl e()
def jroller = new Datafl owari abl e()
def theserverside = new Dat afl owari abl e()
task {
println 'Started downl oadi ng from DZone'
dzone << 'http://ww. dzone. com .t oURL().text
println ' Done downl oadi ng from DZone'

}

task {
println 'Started downl oadi ng from JRoller’
jroller << 'http://ww.jroller.com.toURL().text
println 'Done downl oading from JRoll er'

task {
println 'Started downl oadi ng from TheServer Si de'
t heserverside << 'http://wwmv. t heserverside.com .toURL().text
println ' Done downl oadi ng from TheServer Si de'

}

task {

wi t hPool {
println "Nunber of Goovy sites today: " +
([dzone, jroller, theserverside].findAlParallel {
it.val.toUpperCase().contains ' GROOVY

}).size()
}
}.join()

Grouping tasks

Dataflow tasks can be organized into groups to allow for performance fine-tuning. Groups provide a
handy task() factory method to create tasks attached to the groups. Using groups allows you to organize
tasks or operators around different thread pools (wrapped inside the group). While the Datafl ow.task()
command schedules the task on a default thread pool (java.util.concurrent.Executor, fixed size=#cpu+1,
daemon threads), you may prefer being able to define your own thread pool(s) to run your tasks.

i mport groovyx.gpars. group. Def aul t PG oup
def group = new Def aul t PG oup()

group.with {
task {
}
task {
}

}

The default thread pool for dataflow tasks contains daemon threads, which means your
application will exit as soon as the main thread finishes and won't wait for all tasks to
complete. When grouping tasks, make sure that your custom thread pools either use daemon
threads, too, which can be achieved by using DefaultPGroup or by providing your own thread
factory to athread pool constructor, or in case your thread pools use non-daemon threads,
such as when using the NonDaemonPGroup group class, make sure you shutdown the group
or the thread pool explicitly by calling its shutdown() method, otherwise your applications
will not exit.

A mashup variant with methods

To avoid giving you wrong impression about structuring the Dataflow code, here's arewrite of the
mashup example, with a downloadPage() method performing the actual download in a separate task and
returning a DataflowV ariable instance, so that the main application thread could eventually get hold of the
downloaded content. Dataflow variables can obviously be passed around as parameters or return values.

package groovyx. gpars. sanpl es. dat af | ow

i mport static groovyx.gpars. GPar sExecut or sPool . *

i mport groovyx. gpars. dat af | ow. Dat af | owari abl e

i mport static groovyx.gpars. datafl ow Dat af |l ow. t ask

/**
* A sinple mashup sanple, downl oads content of three websites and checks how many of t he
*/
final List urls = ["http://ww.dzone.com, "http://ww.jroller.com, "http://ww.theserve
task {
def pages = urls.collect { downl oadPage(it) }
wi t hPool {
println "Nunber of G oovy sites today:
(pages. findAl | Parallel {
it.val.toUpperCase().contains ' GROOVY
}).size()

"o

}
}.join()
def downl oadPage(def url) {
def page = new Dat af | owari abl e()
task {
println "Started downl oading from $url"
page << url.toURL().text
println "Done downl oadi ng from $url"

}

return page

}

A physical calculation example

Dataflow programs naturally scale with the number of processors. Up to a certain level, the more
processors you have the faster the program runs. Check out, for example, the following script, which
calculates parameters of a ssmple physical experiment and prints out the results. Each task performsits
part of the calculation and may depend on values calculated by some other tasks as well asits result might
be needed by some of the other tasks. With Dataflow Concurrency you can split the work between tasks
or reorder the tasks themselves as you like and the dataflow mechanics will ensure the calculation will be
accomplished correctly.

i mport groovyx. gpars. dat afl ow. Dat af | owari abl e
i mport static groovyx.gpars. datafl ow Datafl ow. t ask
final def mass = new Dat af | owari abl e()
final def radius = new Datafl owari abl e()
final def volune new Dat af | owvari abl e()
final def density = new Dat afl owvari abl e()
final def acceleration = new Datafl owari abl e()
final def tine = new Datafl owvari abl e()
final def velocity = new Datafl owvari abl e()
final def decel erationForce = new Datafl owari abl e()
final def deceleration = new Datafl owari abl e()
final def distance = new Datafl owvari abl e()
def t = task {
println """
Cal cul ating distance required to stop a noving ball.

The ball has a radius of ${radius.val} nmeters and is nmade of a material with ${density. v
whi ch means that the ball has a volune of ${volune.val} nB and a nmass of ${mass.val} kg.
The ball has been accelerating with ${acceleration.val} ms2 fromO0O for ${tine.val} secor
G ven our ability to push the ball backwards with a force of ${decel erati onForce.val} N (
of ${deceleration.val} nms2 and so stop the ball at a distance of ${distance.val} m

Thi s exanpl e has been cal cul ated asynchronously in nultiple tasks using GPars Datafl ow cc
Aut hor: ${aut hor.val}

Systemexit O

task {
mass << vol une.val * density. val

task {
vol ume << Math.Pl * (radius.val ** 3)

}

task {
radius << 2.5
density << 998. 2071 //water
accel eration << 9.80665 //free fall
decel erati onForce << 900

task {
println 'Enter your nanme:'
def name = new | nput StreanReader (System i n).readLi ne()
aut hor << (name?.trim)?.size()>0 ? nane : 'anonynous')

task {
time << 10
vel ocity << acceleration.val * tine.val

task {
decel erati on << decel erati onForce.val / nass. val

task {
di stance << deceleration.val * ((velocity.val/deceleration.val) ** 2) * 0.5

}
t.join()

Note: | did my best to make all the physical calculations right. Feel free to change the values and see how
long distance you need to stop the rolling ball.

Deterministic deadlocks

If you happen to introduce a deadlock in your dependencies, the deadlock will occur each time you run
the code. No randomness allowed. That's one of the benefits of Dataflow concurrency. Irrespective of the
actual thread scheduling scheme, if you don't get a deadlock in tests, you won't get them in production.

task {
println a.val
b << 'H there

}
task {

println b.val

a << 'Hello man'
}

Dataflows map

As a handy shortcut the Dataflows class can help you reduce the amount of code you have to write to
leverage Dataflow variables.

def df = new Datafl ows()

df . x = 'val uel'

assert df.x == 'val uel

Dat af | ow. task {df.y = 'value2}
assert df.y == 'val ue2'

Think of Dataflows as a map with Dataflow Variables as keys storing their bound values as appropriate
map values. The semantics of reading avalue (e.g. df.x) and binding avalue (e.g. df.x = 'value’) remain
identical to the semantics of plain Dataflow Variables (x.val and x << 'value' respectively).

Mixing Dataflows and Groovy with blocks
When inside awith block of a Dataflows instance, the dataflow variables stored inside the Dataflows
instance can be accessed directly without the need to prefix them with the Dataflows instance identifier.

new Dat af l ows().with {
x = 'val uel
assert x == 'val uel'

Dat af | ow. task {y = 'val ue2}
assert y == 'val ue2'

}

Returning a value from a task

Typically dataflow tasks communicate through dataflow variables. On top of that, tasks can also return
values, again through a dataflow variable. When you invoke the task() factory method, you get back an
instance of DataflowVariable, on which you can listen for the task's return value, just like when using any
other DataflowV ariable.

final Dataflowariable t1 = task {
return 10

}
final Dataflowariable t2 = task {
return 20

def results = [t1, t2]*.val
println 'Both sub-tasks finished and returned values: ' + results

Obviously the value can also be obtained without blocking the caller using the whenBound() method.

def task = task {
println 'The task is running and cal culating the return val ue'
30

task >> {value -> println "The task finished and returned $val ue"}
h2. Joining tasks
Using the join() operation on the result dataflow variable of atask you can block until the task finishes.

task {
final Dataflowariable t1 = task {
println 'First sub-task running.'

}
final Dataflowariable t2 = task {
println 'Second sub-task running'

}
[t1, t2]*.join()
_ println 'Bot h sub-tasks finished'
}.join()

7.2 Selects

Frequently a value needs to be obtained from one of several dataflow channels (variables, queues,
broadcasts or streams). The Select classis suitable for such scenarios. Select can scan multiple dataflow
channels and pick one channel from all the input channels, which currently have a value available for
read. The value from that channelsis read and returned to the caller together with the index of the
originating channel. Picking the channel is either random, or based on channel priority, in which case
channels with lower position index in the Select constructor have higher priority.

Selecting a value from multiple channels

i mport groovyx. gpars. dat af | ow. Dat af | owQueue
i mport groovyx.gpars. dat af | ow. Dat af | owvari abl e
i mport static groovyx.gpars. datafl ow Dat afl ow. sel ect
i mport static groovyx.gpars. datafl ow Datafl ow. t ask
/**
* Shows a basic use of Select, which nonitors a set of input channels for values and mal
* available on its output irrespective of their original input channel.
* Note that dataflow variables and queues can be conbined for Sel ect.
*
*

You nmight al so consider checking out the prioritySelect nethod, which prioritizes vall
*/
def a = new Dat af | owari abl e()

def b

def c

task {
sl eep 3000
a << 10

new Dat af | owvari abl e()
new Dat af | owQueue()

}

task {
sl eep 1000
b << 20

}

task {
sl eep 5000
c << 30

}

def select = select([a, b, c])

println "The fastest result is ${select().value}"

Note that the return type from select() is SelectResult , holding the value as well as the
originating channel index.
There are multiple ways to read values from a Select:

def sel = select(a, b, ¢, d)

def result = sel.select() /1 Random sel ecti on

def result = sel () /1 Random sel ection (a shec
def result = sel.select([true, true, false, true]) // Random sel ection with ¢
def result = sel([true, true, false, true]) /1 Random sel ection with ¢
def result = sel.prioritySelect() /IPriority selection

def result = sel.prioritySelect([true, true, false, true]) /l/Priority selection witt

By default the Slect blocks the caller until avalueto read is available. Alternatively, Select allowsto
have the value sent to a provided MessageStream (e.g. an actor) without blocking the caller.

def handler = actor {...}

def sel = select(a, b, ¢, d)

sel . sel ect (handl er) /I Random sel ecti on

sel (handl er) /I Random sel ection (a short-t
sel . sel ect (handler, [true, true, false, true]) /I Random sel ection with guart
sel (handl er, [true, true, false, true]) /I Random sel ection with guar
sel . prioritySel ect (handl er) [IPriority selection

sel .prioritySel ect(handler, [true, true, false, true]) [IPriority selection with gus
Guards

Guards alow the caller to omit some input channels from the selection. Guards are specified asaList of
boolean flags passed to the select() or prioritySelect() methods.

def sel = select(leaders, seniors, experts, juniors)
def teanlead = sel([true, true, false, false]).value [IOnly 'leaders' and 'seniors

A typical usefor guardsisto make Selects flexible to adopt to the changes in the user state.

i mport groovyx. gpars. dat af | ow. Dat af | owQueue
i mport static groovyx.gpars.datafl ow Datafl ow. sel ect
i mport static groovyx.gpars.datafl ow Datafl ow. t ask
/**
* Denpnstrates the ability to enabl e/ di sabl e channel s during a val ue selection on a selc¢
*/
final Datafl owQueue operations = new Dat af | owQueue()
final Datafl owQueue nunmbers = new Dat af | owQueue()
def t = task {
final def select = select(operations, nunbers)
3.tines {
def instruction = select([true, false]).value
def numl = select([fal se, true]).value
def nunm2 = select([fal se, true]).value
final def formula = "$numl $instruction $nunk"
println "$formula = ${new G oovyShel |l ().evaluate(formla)}"

task {

}

operations << '+
operations << '+
operations << '*'

task {

numbers << 10
nunbers << 20
nunbers << 30
nunbers << 40
nunbers << 50
nunbers << 60

t.join()

Priority Select
When certain channels should have precedence over others when selecting, the prioritySelect methods
should be used instead.

/

L I R A

*

* [

def critical
def ordinary
def whoCares

Shows a basic use of Priority Select, which nonitors a set of input channels for val ue
available on its output irrespective of their original input channel
Not e that datafl ow variabl es, queues and broadcasts can be conbined for Sel ect.

Unli ke plain select method call, the prioritySel ect call gives precedence to input che
Avai |l abl e nessages fromhigh priority channels will be served before nessages froml o\
Messages received through a single input channel will have their nmutual order preserve

new Dat af | owvari abl e()
new Dat af | owQueue()
new Dat af | owQueue()

task {

ordinary << 'All working fine'
whoCares << '| feel a bit tired
ordinary << 'We are on target'

}
task {
ordinary << 'l have just started nmy work. Busy. WII| come back later...'
sl eep 5000
ordinary << '|I am done for now
}
task {
whoCares << 'Huh, what is that noise'

}

ordinary << "Here | amto do sone cl ean-up work'

whoCares << '| wonder whether unplugging this cable will elimnate that nasty sound.'
critical << 'The server room goes on UPS!'

whoCares << ' The sound has di sappeared

def select = select([critical, ordinary, whoCares])

println 'Starting to nonitor our |IT departnent’

sl eep 3000

10.times {println "Received: ${select.prioritySelect().value}"}

7.3 Operators

Dataflow Operators and Selectors provide a full Dataflow implementation with all the usual ceremony.

Concepts

Full dataflow concurrency builds on the concept of channels connecting operators and selectors, which
consume values coming through input channels, transform them into new values and output the new
valuesinto their output channels. While Operators wait for all input channels to have avaue available
for read before they start process them, Selectors are triggered by a value available on any of the input
channels.

operator(inputs: [a, b, c], outputs: [d]) {x, y, z ->

B{ndCUtput 0, x +y + 2z

}

/**
* CACHE
*
* Caches sites' contents. Accepts requests for url content, outputs the content. CQutputs
* if the site is not in cache yet.
*/
operator(inputs: [url Requests], outputs: [downl oadRequests, sites]) {request ->
if (!request.content) {
println "[Cache] Retrieving ${request.site}"
def content = cache[request.site]
if (content) {
println "[Cache] Found in cache"
bi ndQutput 1, [site: request.site, word:request.word, content: content]

} else {
def downl oads = pendi ngDownl oads[r equest . sit e]
if (downloads !'= null) {

println "[Cache] Awaiting downl oad"
downl oads << request

} else {
pendi ngDownl oads[request.site] = []
println "[Cache] Asking for downl oad"
bi ndQut put 0, request

}

} else {

println "[Cache] Caching ${request.site}"

cache[request.site] = request.content

bi ndQut put 1, request

def downl oads = pendi ngDownl oads[request. site]

if (downloads != null) {

for (downl oadRequest in downl oads) {

println "[Cache] Waking up"
bi ndQut put 1, [site: downl oadRequest.site, word: downl oadRequest.word, cot

pendi ngDownl oads. renove(request.site)

}
}

The standard error handling will print out an error message to standard error output and stop the operator
in case an uncaught exception is thrown from withing the operator's body. To alter the behavior, you can
redefine the reportError() method on the operator:

op. metad ass.reportError = {Throwable e ->
/1handl e the exception
stop() //You can also stop the operator

Types of operators
There are specialized versions of operators serving specific purposes:

operator - the basic general -purpose operator

® selector - operator that istriggered by avalue being available in any of its input channels

® prioritySelector - a selector that prefers delivering messages from lower-indexed input channels
over higher-indexed ones

® gplitter - asingle-input operator copying itsinput valuesto all of its output channels

Chaining operators
Operators are typically combined into networks, when some operators consume output by other operators.

operator(inputs:[a, b], outputs:[c, d]) {...}

splitter(c, [e, f])

selector(inputs:[e, d]: outputs:[]) {...}

Y ou may alternatively refer to output channels through operators themselves:

def opl = operator(inputs:[a, b], outputs:[c, d]) {...}
def spil splitter(opl.outputs[0], [e, f]) //takes the first ¢
sel ector (i nputs:[spl.outputs[0], opl.outputs[1l]]: outputs:[]) {...} //takes the first ¢

Par allelize operators

By default an operator's body is processed by a single thread at atime. While thisis a safe setting
allowing the operator's body to be written in a non-thread-safe manner, once an operator becomes "hot"
and data start to accumulate in the operator's input queues, you might consider allowing multiple threads
to run the operator's body concurrently. Bear in mind that in such a case you need to avoid or protect
shared resources from multi-threaded access. To enable multiple threads to run the operator's body
concurrently, pass an extra maxForks parameter when creating an operator:

def op = operator(inputs: [a, b, c], outputs: [d, e], maxForks: 2) {x, vy, z ->
bindQutput 0, x +y + z
bi ndQutput 1, x * y * z

}

The value of the maxForks parameter indicates the maximum of threads running the operator

concurrently. Only positive numbers are allowed with value 1 being the default.

Please always make sure the group serving the operator holds enough threads to support all
requested forks. Using groups allows you to organize tasks or operators around different
thread pools (wrapped inside the group). While the Dataflow.task() command schedules the
task on a default thread pool (java.util.concurrent.Executor, fixed size=#cpu+1, daemon
threads), you may prefer being able to define your own thread pool(s) to run your tasks.

def group = new Def aul t PGr oup(10)
group.operator((inputs: [a, b, c], outputs: [d, e], maxForks: 5) {x, vy, z -> ...}

The default group uses a resizeable thread pool as so will never run out of threads.

Synchronizing the output

When enabling internal parallelization of an operator by setting the value for maxForks to a value greater
than 1 it isimportant to remember that without explicit or implicit synchronization in the operators body
race-conditions may occur. Especially bear in mind that values written to multiple output channels are not
guarantied to be written atomically in the same order to all the channels

operator (i nputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->
bi ndQut put 0, nsg
bi ndQut put 1, nsg
}
i nput Channel <<
i nput Channel <<
i nput Channel <<
i nput Channel <<
i nput Channel <<

OO WNPE

May result in output channels having the values mixed-up something like:

a->1, 3, 2, 4, 5

b->2 1, 3, 5 4

Explicit synchronization is one way to get correctly bound all output channels and protect operator
not-thread local state:

def lock = new Qbject()
operator (i nputs:[inputChannel], outputs:[a, b], maxForks:5) {nsg ->
doSt uf f That | sThreadSaf e()
synchroni zed(Il ock) {
doSonet hi ngThat Must Not BeAccessedByMil ti pl eThr eadsAt TheSaneTi ne()
bi ndQut put 0, nsg
bi ndQut put 1, 2*nsg
}
}
Obviously you need to weight the pros and cons here, since synchronization may defeat the purpose of
setting maxForks to a value greater than 1.
To set values of all the operator's output channels in one atomic step, you may also consider calling either

the bindAllOutputsAtomically method, passing in asingle value to write to all output channels or the
bindAll OutputsAtomically method, which takes a multiple values, each of which will be written to the
output channel with the same position index.

operator (i nputs:[inputChannel], outputs:[a, b], maxForks:5) {nsg ->
doSt uf f That | sThreadSaf e()
bi ndAl | Qut put Val uesAtoni cally nsg, 2*nsg
}

Using the bindAllOutputs or the bindAll OutputValues methods will not guarantee atomicity
of writes across a the output channels when using internal parallelism. If preserving the order
of messages in multiple output channelsis not an issue, bindAllOutputs as well as
bindAllOutputValues will provide better performance over the atomic variants.

Stopping operators
Dataflow operators and selectors can be stopped in two ways:

1. by calling the stop() method on al operators that need to be stopped
2. by sending a poisson message.
Using the stop() method:

def opl = operator(inputs: [a, b, c], outputs: [d, e]) {x, vy, z ->}

def op2 = selector(inputs: [d], outputs: [f, out]) { }

def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index ->}
[opl, op2, op3]*.stop() //Stop all operators by calling the stop() nethod on them
opl.join()

op2.join()

op3.join()

Using the poisson message:

def opl = operator(inputs: [a, b, c], outputs: [d, e]) {x, vy, z ->}

def op2 = selector(inputs: [d], outputs: [f, out]) { }

def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index ->}
a << PoisonPill.instance //Send the poisson

opl.join()

op2.join()

op3.join()

After receiving a poisson an operator stops. It only makes sure the poisson isfirst sent to all its output
channels, so that the poisson can spread to the connected operators.

Grouping operator s
Dataflow operators can be organized into groups to allow for performance fine-tuning. Groups provide a
handy operator() factory method to create tasks attached to the groups.

i mport groovyx. gpars. group. Def aul t PG oup
def group = new Def aul t PG oup()
group.with {
operator(inputs: [a, b, c], outputs: [d]) {x, vy, z ->

Bfndcutput 0, x +y + 2z

The default thread pool for dataflow operators contains daemon threads, which means your
application will exit as soon as the main thread finishes and won't wait for all tasks to
complete. When grouping operators, make sure that your custom thread pools either use
daemon threads, too, which can be achieved by using DefaultPGroup or by providing your
own thread factory to athread pool constructor, or in case your thread pools use non-daemon
threads, such as when using the NonDaemonPGroup group class, make sure you shutdown
the group or the thread pool explicitly by calling its shutdown() method, otherwise your
applications will not exit.

Selectors

Selector's body should be a closure consuming either one or two arguments.

selector (inputs : [a, b, c], outputs : [d, e]) {value ->

}
The two-argument closure will get a value plus an index of the input channel, the value of whichis

currently being processed. This allows the selector to distinguish between values coming through
different input channels.

selector (inputs : [a, b, c], outputs : [d, e]) {value, index ->

}

Priority Selector
When priorities need to be preserved among input channels, a DataflowPrioritySelector should be used.

prioritySelector(inputs : [a, b, c], outputs : [d, e]) {value, index ->

}
The priority selector will always prefer values from channels with lower position index over values

coming through the channels with higher position index.

Join selector
A selector without a body closure specified will copy all incoming valuesto all of its output channels.

def join = selector (inputs : [programmers, analysis, managers], outputs : [enployees,

Internal parallelism
The maxForks attribute allowing for internal selectors parallelism is also available.

selector (inputs : [a, b, c], outputs : [d, e], maxForks : 5) {value ->

}

Guards
Just like Selects, Selectors also alow the users to temporarily include/exclude individual input channels

from selection. The guards input property can be used to set the initial mask on all input channels and the

setGuards and setGuard methods are then available in the selector's body.

i mport groovyx. gpars. dat af | ow. Dat af | owQueue
i mport static groovyx.gpars. datafl ow Datafl ow. sel ect or
i mport static groovyx.gpars.datafl ow Dataf |l ow. t ask

/**

C(

* Denpnstrates the ability to enabl e/ di sabl e channels during a val ue selection on a selc¢

*/

final Datafl owQueue operations = new Dat af | owQueue()
final Datafl owQueue nunmbers = new Dat af | owQueue()
def instruction

def nums = []

sel ector (inputs: [operations, nunbers], outputs: [], guards: [true, false]) {value, inde

if (index == 0) {
i nstruction = val ue
setQuard(0, false) //setCuard() used here
set Guard(1, true)

}

el se nuns << val ue

if (nuns.size() == 2) {

set Guards([true, false]) /lsetGuards() used he

final def formula = "${nuns[0]} S$instruction ${nuns[1]}"
println "$formula = ${new G oovyShel |l ().evaluate(formula)}"
nuns. cl ear ()

}

task {
operations << '+
operations << '+
operations P

A
N
*

task {
nunbers << 10
nunbers << 20
nunbers << 30
nunbers << 40
nunbers << 50
nunbers << 60

Avoid combining guards and maxForks greater than 1. Although the Selector is thread-safe
and won't be damaged in any way, the guards are likely not to be set the way you expect. The
multiple threads running selector's body concurrently will tend to over-write each-other's
settings to the guards property.

7.4 Dataflow implementation

The Dataflow Concurrency in GPars builds on top of its actor support. All of the dataflow tasks share a
thread pool and so the number threads created through Datafl ow.task() factory method don't need to
correspond to the number of physical threads required from the system. The PGroup.task() factory
method can be used to attach the created task to a group. Since each group defines its own thread pool,
you can easily organize tasks around different thread pools just like you do with actors.

Combining actors and Dataflow Concurrency
The good news s that you can combine actors and Dataflow Concurrency in any way you feel fit for your
particular problem at hands. Y ou can freely you use Dataflow Variables from actors.

final Dataflowariable a = new Datafl owari abl e()
final Actor doubler = Actors.actor {
react {nessage->
a << 2 * message

}
final Actor fakingDoubler = actor {
react {
doubl er.send it //send a nunber to the doubler
println "Result ${a.val}" //wait for the result to be bound to 'a
}

}
f aki ngDoubl er << 10

In the example you see the "fakingDoubler" using both messages and a DataflowVariable to
communicate with the doubler actor.

Using plain javathreads
The DataflowVariable as well as the Datafl owQueue classes can obviously be used from any thread of
your application, not only from the tasks created by Dataflow.task() . Consider the following example:

i mport groovyx. gpars. dat af | ow. Dat af | owari abl e
final Dataflowariable a new Dat af | owvar i abl e<Stri ng>()
final Datafl owariable b new Dat af | owar i abl e<Stri ng>()
Thread. start {

println "Received: $a.val"

Thr ead. sl eep 2000

b << ' Thank you'

}
Thread. start {

Thr ead. sl eep 2000
a << '"An inportant nessage fromthe second thread'

println "Reply: $b.val"
}

We're creating two plain java.lang.Thread instances, which exchange data using the two data flow
variables. Obvioudly, neither the actor lifecycle methods, nor the send/react functionality or thread
pooling take effect in such scenarios.

7.5 Classic examples

The Sieve of Eratosthenesimplementation using dataflow tasks

i mport groovyx. gpars. dat af | ow. Dat af | owQueue

i mport static groovyx.gpars.datafl ow Dat af | ow. t ask

/**
* Denpnstrates concurrent inplenentation of the Sieve of Eratosthenes using dataflowtas
*/

final int requestedPrimeNunberCount = 1000

final DataflowQueue initial Channel = new Dat af | owQueue()

/**
* CGenerating candi date nunbers
*/
task {
(2..10000). each {
initial Channel << it
}
}
/**

* Chain a new filter for a particular prinme nunber to the end of the Sieve
* @aram i nChannel The current end channel to consune
* @aram prine The prinme nunber to divide future prinme candidates with
* @eturn A new channel ending the whole chain
*/
def filter(inChannel, int prine) {
def out Channel = new Dat af | owQueue()

task {
while (true) {
def nunber = inChannel. val
if (nunber %prime !'= 0) {
out Channel << nunber
}
}
}
return out Channel
}
/**

* Consume Sieve output and add additional filters for all found prines
*/
def currentQutput = initial Channel
request edPri neNunber Count . ti mes {
int prime = currentQutput.val
println "Found: $prine"
currentQutput = filter(currentQutput, prine)
}

The Sieve of Eratosthenesimplementation using a combination of dataflow tasks and
operators

i mport groovyx. gpars. dat af | ow. Dat af | owQueue

i mport static groovyx.gpars. datafl ow. Dat af | ow. oper at or

i mport static groovyx.gpars. datafl ow. Datafl ow. t ask

/**
* Denpbnstrates concurrent inplenentation of the Sieve of Eratosthenes using dataf
*/

final int requestedPrinmeNunberCount = 100

final Datafl owQueue initial Channel = new Dat af | owQueue()

/**

* Cenerating candi date nunbers

*/
task {
(2..1000). each {
initial Channel << it
}

}
/**
* Chain a new filter for a particular prime nunber to the end of the Sieve
* @aram i nChannel The current end channel to consune
* @aramprine The prinme nunber to divide future prinme candidates with
* @eturn A new channel ending the whole chain
*/
def filter(inChannel, int prine) {
def out Channel = new Dat af | owQueue()
operator([inputs: [inChannel], outputs: [outChannel]]) {
if (it %prime '=0) {
bi ndQut put it

}
}
return out Channel
/**
* Consune Sieve output and add additional filters for all found prines
*/
def currentQutput = initial Channel

request edPri meNunber Count . ti mes {
int prime = currentQutput. val
println "Found: $prime"
currentQutput = filter(currentQutput, prine)

8. Stm

Software Transactional Memory (STM) gives devel opers transactional semantics for accessing
in-memory data. When multiple threads share datain memory, by marking blocks of code as transactional
(atomic) the developer delegates the responsibility for data consistency to the Stm engine. GPars
leverages the Multiverse Stm engine. Check out more details on the transactional engine at the Multiverse
site

Running a piece of code atomically

When using Stm, devel opers organize their code into transactions. A transaction is a piece of code, which
is executed atomically - either all the codeis run or none at all. The data used by the transactional code
remains consistent irrespective of whether the transaction finishes normally or abruptly. While running
inside atransaction the code is given an illusion of being isolated from the other concurrently run
transactions so that changes to data in one transaction are not visible in the other ones until the
transactions commit. This gives usthe ACI part of the ACID characteristics of database transactions. The
durability transactional aspect so typical for databases, is not typically mandated for Stm.

GPars allows devel opers to specify transaction boundaries by using the atomic closures.

i mport groovyx.gpars.stm GParsStm
i mport org.nultiverse. api.references. | ntRef
i mport static org.multiverse.api.Stmlkils.new nt Ref
public class Account {
private final |IntRef amobunt = new nt Ref (0);
public void transfer(final int a) {
GParsStm atom c {
anount . i ncrenent (a);
}
}

public int getCurrent Anount () {
GParsStm atom cWthlnt {
anount . get () ;

http://multiverse.codehaus.org/overview.html
http://multiverse.codehaus.org/overview.html

}
}
There are several types of atomic closures, each for different type of return value:

atomic - returning Object
atomicWithint - returning int
atomicWithLong - returning long
atomicWithBoolean - returning boolean
atomicWithDoubl e - returning double

® atomicWithVoid - no return value
Multiverse by default uses optimistic locking strategy and automatically rolls back and retries colliding
transactions. Developers should thus restrain from irreversible actions (e.g. writing to the console, sending
and e-mail, launching amissile, etc.) in their transactional code. To increase flexibility, the default
Multiverse settings can be customized through custom atomic blocks .

Customizing the transactional properties

Frequently it may be desired to specify different values for some of the transaction properties (e.g.
read-only transactions, locking strategy, isolation level, etc.). The createAtomicBlock method will create a
new AtomicBlock configured with the supplied values:

i mport groovyx.gpars.stm GParsStm
i mport org.nultiverse. api . Atomi cBl ock
import org. nmultiverse. api . Propagati onLevel
final Atom cBl ock bl ock = GParsStm creat eAt om cBl ock(maxRetries: 3000, fam|yName: ' Cust¢
assert GParsStm atom cWt hBool ean(bl ock) {
true
}

The customized AtomicBlock can then be used to create transactions following the specified settings.
AtomicBlock instances are thread-safe and can be freely reused among threads and transactions.

Using the Transaction obj ect

The atomic closures are provided the current Transaction as a parameter. The Transaction objects can
then be used to manually control the transaction. Thisisillustrated in the example below, where we use
the retry() method to block the current transaction until the counter reaches the desired value:

i mport groovyx.gpars.stm GParsStm
i mport org.nultiverse. api . Atomi cBl ock
import org. nultiverse. api.Propagati onLevel
i mport static org.multiverse.api.Stmlkils.new nt Ref
final Atom cBl ock bl ock = GParsStm creat eAtom cBl ock(maxRetries: 3000, fam | yNane: ' Custc
def counter = new nt Ref (0)
final int max = 100
Thread. start {

while (counter.atom cGet() < max) {

counter. atom cl ncrenment AndGet (1)

sl eep 10
} }
assert max + 1 == GParsStm atoni cWthlnt(block) {tx ->
if (counter.get() == max) return counter.get() + 1
tx.retry()
}
Data structures

Y ou might have noticed in the code examples above that we use dedicated data structures to hold values.
The fact isthat normal Java classes do not support transactions and thus cannot be used directly, since
Multiverse would not be able to share them safely among concurrent transactions, commit them nor roll
them back. We need to use data that know about transactions:

® IntRef
® | ongRef

* BooleanRef
® DoubleRef
* Ref
Y ou typically create these through the factory methods of the org.multiverse.api.SmuUtils class.

Mor e information
We decided not to duplicate the information that is already available on the Multiverse website. Please
visit the Multiverse site and use it as areference for your further Stm adventures with GPars.

O.Tips

General GParsTips

Grouping

High-level concurrency concepts, like Agents, Actors or Dataflow tasks and operators can be grouped
around shared thread pools. The PGroup class and its sub-classes represent convenient GPars wrappers
around thread pools. Objects created using the group's factory methods will share the group's thread pool.

def groupl = new Defaul t PG oup()
def group2 = new NonDaenmonPG oup()
groupl.with {

task {...}

task {...}

def op = operator(...) {...}

def actor = actor{...}

def anotherActor = group2.actor{...} //wll belong to group2
def agent = safe(0)

When customizing the thread pools for groups, consider using the existing GPars
implementations - the DefaultPool or ResizeablePool classes. Or you may create your own
implementation of the groovyx.gpars.scheduler.Pool interface to pass to the DefaultPGroup
or NonDaemonPGroup constructors.

Java API

Most of GPars functionality can be used from Javajust as well as from Groovy. Checkout the 2.6 Java
API - Using GPars from Java section of the User Guide and experiment with the maven-based
stand-alone Java demo application . Take GPars with you wherever you go!

9.1. Performance

Y our code in Groovy can bejust as fast as code written in Java, Scala or any other programing language.
This should not be surprising, since GParsis technically a solid tasty Java-made cake with a Groovy DSL
creamon it.

Unlike in Java, however, with GPars, as well as with other DSL-friendly languages, you are very likely to
experience a useful kind of code speed-up for free, a speed-up coming from a better and cleaner design of
your application. Coding with a concurrency DSL will give you smaller code-base with code using the
concurrency primitives as language constructs. So it is much easier to build robust concurrent
applications, identify potential bottle-necks or errors and eliminate them.

While thiswhole User Guide is describing how to use Groovy and GPars to create beautiful and robust
concurrent code, let's use this chapter to highlight afew places, where some code tuning or minor design
compromises could give you interesting performance gains.

Parallel Collections

Methods for parallel collection processing, like eachParallel() , collectParallel() and such use Parallel

http://multiverse.codehaus.org/overview.html
http://gpars.codehaus.org/Demos

Array , an efficient tree-like data structure behind the scenes. This data structure has to be built from the
original collection each time you call any of the parallel collection methods. Thus when chaining parallel
method calls you might consider using the map/reduce API instead or resort to using the Parallel Array
API directly, to avoid the Parallel Array creation overhead.

GPar sPool . wi t hPool {
people.findAl Il Parallel {it.isMale()}.collectParallel{it.nane}.any{it == "'Joe'}
people.parallel . filter{it.isMale()}.map{it.name}.filter{it == '"Joe'}.size() >0
people.parallel Array.withFilter({it.isMale()} as Predicate).w thMapping({it.nanme} as

}

In many scenarios changing the pool size from the default value may give you performance benefits.
Especially if your tasks perform 10 operations, like file or database access, networking and such,
increasing the number of threads in the pool is likely to help performance.

GPar sPool . wi t hPool (50) {

}
Since the closures you provide to the parallel collection processing methods will get executed frequently

and concurrently, you may further slightly benefit from turning them into Java.

Actors

GPars actors are fast. DynamicDispatchActors and ReactiveActors are about twice as fast as the
DefaultActors, since they don't have to maintain an implicit state between subsequent message arrivals.
The DefaultActors are in fact on par in performance with actorsin Scala , which you can hardly hear of as
being slow.

If top performance is what you're looking for, agood start is to identify the following patterns in your
actor code:

actor {

| oop {
react {nmsg ->
switch(nsg) {
case String: ...
case Integer: ...

}
and replace them with DynamicDispatchActor :

nmessageHandl er {
when{String msg -> ...}
when{Integer nmsg -> ...}

}
The loop and react methods are rather costly to call.

Defining a DynamicDispatchActor or ReactiveActor as classes instead of using the messageHandler and
reactor factory methods will also give you some more speed:

cl ass MyHandl er extends Dynam cDi spat chActor {
public void handl eMessage(String nsg) {

public void handl eMessage(l nteger nmsg) ({
| ;o
Now, moving the MyHandler classinto Javawill squeeze the last bit of performance from GPars.

Pool adjustment
GPars allows you to group actors around thread pools, giving you the freedom to organize actors any way
you like. It is always worthwhile to experiment with the actor pool size and type. FJPool usually gives

better characteristics that DefaultPool , but seems to be more sensitive to the number of threadsin the
pool. Sometimes using a ResizeablePool or ResizeableFJPool could help performance by automatic
eliminating unneeded threads.

def attacker G oup new Def aul t PGr oup(new Resi zeabl eFJPool (10))
def defender Group new Def aul t PGroup(new Def aul t Pool (5))

def attacker attacker G oup. actor {...}

def defender def ender Group. nessageHandl er {...}

Agents

GPars Agents are even a bit faster in processing messages than actors. The advice to group agents wisely
around thread pools and tune the pool sizes and types applies to agents as well as to actors. With agents,
you may also benefit from submitting Java-written closures as messages.

Shareyour experience

The more we hear about GPars uses in the wild the better we can adapt it for the future. Let us know how
you use GPars and how it performs. Send us your benchmarks, performance comparisons or profiling
reports to help us tune GPars for you.

10. Conclusion

Thiswas quite awild ride, wasn't it? Now, after going through the User Guide, you're certainly ready to
build fast, robust and reliable concurrent applications. Y ou've seen that there are many concepts you can
choose from and each has its own areas of applicability. The ability to pick the right concept to apply to a
given problem and combine it with the rest of the system iskey to being a successful developer. If you
feel you can do this with GPars, the mission of the User Guide has been accomplished.

Now, go ahead, use GPars and have fun!

Tackling the complexity of concurrent programming with Groovy.

