
Groovy Parallel Systems

The GPars Project - Reference Documentation
Authors: The whole GPars gang

Version: 0.12

Copies of this document may be made for your own use and for distribution to others, provided that you
do not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

Table of Contents

1. Introduction
1.1. Credits

2. Getting Started
2.1 Downloading and Installing
2.2 A Hello World Example
2.3 Code conventions
2.4 Getting Set-up in an IDE
2.5 Applicability of concepts
2.6 What's new
2.7 Java API - Using GPars from Java

3. Data Parallelism
3.1 Parallel Collections

3.1.1 GParsPool
3.1.2 GParsExecutorsPool
3.1.3 Memoize

3.2 Map-Reduce
3.3 Parallel Arrays
3.4 Asynchronous Invocation
3.5 Composable Asynchronous Functions
3.6 Parallel Speculations
3.6. Fork-Join

4. Groovy CSP
5. Actors

5.1 Actors Principles
5.2 Stateless Actors
5.3 Tips and Tricks
5.4 Active Objects
5.5 Classic Examples using Actors

6. Agent
7. Dataflow Concurrency

7.1 Tasks
7.2 Selects
7.3 Operators
7.4 Dataflow implementation
7.5 Classic examples

8. Stm
9. Tips

9.1. Performance

 | Frames No Frames

10. Conclusion

1. Introduction
The world of mainstream computing is changing rapidly these days. If you open the hood and look under
the covers of your computer, you'll most likely see a dual-core processor there. Or a quad-core, if you're
lucky enough. We all run our software on multi-processors. The code we write today and tomorrow will
probably never run on a single processor system. Parallel hardware has become common-place. Not so
with the software though, at least not yet. People still create single-threaded code, although it will never
be able to leverage the full power of future hardware. Some experiment with low-level concurrency
primitives, like threads, locks or synchronized blocks, however, it has become obvious that the common
shared-memory multithreading causes more troubles than it solves. Low-level concurrency handling is
usually hard to get right. And it's not much fun either. With such a radical change in hardware, software
inevitably has to change dramatically too. Higher-level concurrency concepts like map/reduce, fork/join,
actors or dataflow will provide natural abstractions for different types of problem domains while
leveraging the multi-core hardware underneath.
Meet - an open-source concurrency library for Java and Groovy that aims to give you multipleGPars
high-level abstractions for writing concurrent code in Groovy - map/reduce, fork/join, asynchronous
closures, actors, agents, dataflow concurrency and other concepts, which aim to make your Groovy code
concurrent with little effort. With GPars your Groovy or Java code can easily utilize all the available
processors on the target system. You can run multiple calculations at the same time, request network
resources in parallel, safely solve hierarchical divide-and-conquer problems, perform functional style
map/reduce collection processing or build your applications around the actor model.
The project is open sourced under the . If you're working on a commercial,Apache 2 License
open-source, educational or any other type of software project in Groovy, download the binaries or
integrate them from the maven repository and get going. The way to witting highly concurrent Groovy
code is wide open. Enjoy!

1.1. Credits

This project could not have reached the point where we stand currently, without all the great help and
contribution of many individuals, who have devoted their time, energy and expertise to make GPars a
solid product. First, it is the people in the core team, who should be mentioned:

Václav Pech
Dierk Koenig
Alex Tkachman
Russel Winder
Paul King
Jon Kerridge

Over time, many people have contributed their ideas, provided useful feedback or helped GPars in one
way or another. There are too many people in this group to name them all, but still, let's list at least a few:

Hamlet d'Arcy
Hans Dockter
Guillaume Laforge
Robert Fischer
Johannes Link
Graeme Rocher
Alex Miller
Jeff Gortatowsky
Jií Kropáek

Great thanks to everyone!

http://gpars.codehaus.org
http://gpars.codehaus.org/License

1.

2.

3.
4.
5.

1.

1.

1.

2. Getting Started
Let's make several assumptions before we really start.

You know and love Groovy. Otherwise you'd hardly invest your valuable time into studying a
Groovy concurrency library.
If you don't want to use Groovy, you are prepared to pay the inevitable verbosity tax on using
GPars from Java
You target multi-core hardware with your code
You use or want to use Groovy or Java to write concurrent code.
You have at least some understanding that in concurrent code some things can happen at any time
in any order and often more of them at the same time.

That's about it. Let's roll the ball forward.

Brief overview

 aims to bring several useful concurrency abstractions to Java and Groovy developers. It'sGPars
becoming obvious that dealing with concurrency on the thread/synchronized/lock level, as provided by
the JVM, is way too low level to be safe and comfortable. Many high-level concepts, like actors or
dataflow concurrency have been around for quite some time, since parallel computers had been in use in
computer centers long before multi-core chips hit the hardware mainstream. Now, however, it's the time
to adopt and test these abstractions for the mainstream software industry.
The concepts available in GPars can be categorized into three main groups:

Code-level helpers - constructs that can be applied to small parts of the code-base such as
individual algorithms or data structures without any major changes in the overall project
architecture

Parallel Collections
Asynchronous Processing
Fork/Join (Divide/Conquer)

Architecture-level concepts - constructs that need to be taken into account when designing the
project structure

Actors
Communicating Sequential Processes
Dataflow Concurrency

Shared Mutable State Protection - although about 95 of current use of shared mutable state can be
avoided using proper abstractions, good abstractions are still necessary for the remaining 5% use
cases, when shared mutable state can't be avoided

Agents
Software Transactional Memory (not implemented in GPars yet) would also belong to this
group

2.1 Downloading and Installing

There are several ways to add GPars to your project. Either download and add all the jar files manually,
specify a dependency in Maven, Ivy or Gradle build files or use Grape. If you're building a Grails or a
Griffon application, you can leverage the appropriate plugins to fetch the jar files for you.

Dependency resolution

 requires two compulsory dependencies - the and the jar files, which are theGPars jsr166y extra166y
artifacts of the . These must be on the classpath.JSR-166 initiative

<dependency>
 <groupId>org.codehaus.jsr166-mirror</groupId>
 <artifactId>jsr166y</artifactId>
 <version>1.7.0</version>
</dependency>
<dependency>
 <groupId>org.codehaus.jsr166-mirror</groupId>
 <artifactId>extra166y</artifactId>
 <version>1.7.0</version>
</dependency>

GPars defines both of the dependencies in its own descriptor, so both dependencies should be taken care
of automatically, if you use Gradle, Maven, Ivy or other type of automatic dependency resolution tool.
Please visit the of the project for details.Integration page

2.2 A Hello World Example

Once you got setup, try the following Groovy script to test that your setup is functional. For Java, see
below.

import groovyx.gpars.actor.Actors.actorstatic
/**
 * A demo showing two cooperating actors. The decryptor decrypts received messages and replies them back.
 * The console actor sends a message to decrypt, prints out the reply and terminates both actors.
 * The main thread waits on both actors to finish using the join() method to prevent premature exit,
 * since both actors use the actor group, which uses a daemon thread pool.default
 * @author Dierk Koenig, Vaclav Pech
 */
def decryptor = actor {
 loop {
 react {message ->
 (message) reply message.reverse()if instanceof String
 stop()else
 }
 }
}
def console = actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 println 'Decrypted message: ' + it
 decryptor.send false
 }
}
[decryptor, console]*.join()

You should get a message "Decrypted message: Groovy is parallel" printed out on the console when you
run the code.

GPars - a Java library

Although GPars has been primarily designed for the Groovy programming language, the
solid technical foundation plus good performance characteristics make GPars a good Java
library as well. Since most of GPars is written in Java, there is no extra performance penalty
Java applications would pay when using GPars.
For details please refer to the Java API section.

To quick-test your integration through Java API, run the following Java actor code:

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.actor.DynamicDispatchActor;import
 class StatelessActorDemo {public

 void main([] args) InterruptedException {public static String throws
 MyStatelessActor actor = MyStatelessActor();final new
 actor.start();
 actor.send();"Hello"

http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166y.jar
http://gee.cs.oswego.edu/dl/jsr166/dist/extra166y.jar
http://g.oswego.edu/dl/concurrency-interest/
http://gpars.codehaus.org/Integration

 actor.sendAndWait(10);
 actor.sendAndContinue(10.0, MessagingRunnable< >() {new String
 @Override void doRun(s) {protected final String
 .out.println(+ s);System "Received a reply "
 }
 });
 }
}
class MyStatelessActor DynamicDispatchActor {extends
 void onMessage(msg) {public final String
 .out.println(+ msg);System "Received "
 replyIfExists();"Thank you"
 }
 void onMessage(msg) {public final Integer
 .out.println(+ msg);System "Received a number "
 replyIfExists();"Thank you"
 }
 void onMessage(msg) {public final Object
 .out.println(+ msg);System "Received an object "
 replyIfExists();"Thank you"
 }
}

2.3 Code conventions

We follow certain conventions in the code samples. Understanding these may help you read and
comprehend GPars code samples better.

The operator has been overloaded on actors, agents and dataflow expressions (bothleftShift <<
variables and streams) to mean a message or a value.send assign

myActor << 'message'
myAgent << {account -> account.add('5 USD')}
myDataflowVariable << 120332

On actors and agents the default method has been also overloaded to mean . So sendingcall() send
a message to an actor or agent may look like a regular method call.

myActor "message"
myAgent {house -> house.repair()}

The operator in GPars has the meaning. SorightShift >> when bound

myDataflowVariable >> {value -> doSomethingWith(value)}

will schedule the closure to run only after is bound to a value, with the value as amyDataflowVariable
parameter.
In samples we tend to statically import frequently used factory methods:

GParsPool.withPool()
GParsPool.withExistingPool()
GParsExecutorsPool.withPool()
GParsExecutorsPool.withExistingPool()
Actors.actor()
Actors.reactor()
Actors.fairReactor()
Actors.messageHandler()
Actors.fairMessageHandler()
Agent.agent()
Agent.fairAgent()
Dataflow.task()
Dataflow.operator()

1.

2.

3.

4.

5.

1.

2.

3.

It is more a matter of style preferences and personal taste, but we think static imports make the code more
compact and readable.

2.4 Getting Set-up in an IDE

Adding the GPars jar files to your project or defining the appropriate dependencies in pom.xml should be
enough to get you started with GPars in your IDE.

GPars DSL recognition
 in both the free and the commercial will recognizeIntelliJ IDEA Community Edition Ultimate Edition

the GPars domain specific languages, complete methods like , or andeachParallel() reduce() callAsync()
validate them. GPars uses the mechanism, which teaches IntelliJ IDEA the DSLs as soon asGroovyDSL
the GPars jar file is added to the project.

2.5 Applicability of concepts

Here you could find basic guide-lines helping you decide on which GPars abstraction to apply to your
code at hands.

You're looking at a collection, which needs to be or processed using one of the manyiterated
beautiful Groovy collections method, like , , and such. Proposing thateach() collect() find()
processing each element of the collection is independent of the other items, using GPars parallel

 can be recommended.collections
If you have a , which may safely run in the background, use the long-lasting calculation

 in GPars. You can also benefit, if your long-calculatingasynchronous invocation support
closures need to be passed around and yet you'd like them not to block the main application thread.
You need to an algorithm at hand. You can identify and you're happy toparallelize sub-tasks
explicitly express the options for parallelization. You create internally sequential tasks, each of
which can run concurrently with the others, providing they all have a way to exchange data at some
well-defined moments through communication channels with safe semantics. Use GPars dataflow

.tasks, variables and streams
You can't avoid . Multiple threads will be accessing shared data and (some ofshared mutable state
them) modifying the data. Traditional locking and synchronized approach feels too risky or
unfamiliar. Go for , which will wrap your data and serialize all access to it.agents
You're building a system with high concurrency demands. Tweaking a data structure here or task
there won't cut it. You need to build the architecture from the ground up with concurrency in mind.

 might be the way to go.Message-passing
Groovy CSP will give you highly deterministic and composable model for concurrent
processes.
If you're trying to solve a complex data-processing problem, consider GPars dataflow

 to build a data flow network.operator
Actors will shine if you need to build a general-purpose, highly concurrent and scalable
architecture.

Now you may have a better idea of what concepts to use on your current project. Go and check out more
details on them in the User Guide.

2.6 What's new

Again, the new release, this time GPars 0.12, introduces a lot of gradual enhancements and improvements
on top of the previous release.
Check out the JIRA release notes

Project changes

http://www.jetbrains.net/confluence/display/GRVY/Scripting+IDE+for+DSL+awareness
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=12030&version=16994

See for the list of breaking changes.the Breaking Changes listing

Asynchronous functions

The asyncFun() method now creates composable asynchronous functions
The @AsyncFun annotation can be used to create composable asynchronous functions stored in
fields in a more declarative way

Parallel collections

Collections can now repeatedly be made transparently concurrent or sequential using
makeConcurrent() and makeSequential() methods
Renamed makeTransparent() to makeConcurrent()

Fork / Join

A few new demos illustrating Fork/Join applicability to recursive functions have been added
Leveraging the new and efficient implementation of the jsr-166y (aka Java 7) Fork/Join library
The runChildDirectly() method allowing to mix asynchronous and synchronous child task
execution

Actors

Active Objects wrapping actors with an OO facade
Enhanced DynamicDispatchActor's API for dynamic message handler registration
Added BlockingActor to allow for non-continuation style actors
Removed the deprecated actor classes

Dataflow

Agent

Stm

Initial support for Stm through Multiverse was added

Other

Switched to the most recent Java 7 Fork/Join library to ensure compatibility with future JDKs
Raised the Groovy level used for compilation to 1.7
Created a pdf version of the user guide
An update to the stand-alone maven-based Java API was added to show GParsdemo application
integration and use from Java
Added numerous code examples and demos
Enhanced project documentation

Renaming hints

The method that forces concurrent semantics to iteration methods (each, collect,makeTransparent()
find, etc.) has been renamed to makeConcurrent()
Capitalization has changed in the names of dataflow classes DataFlow -> Dataflow e.g.
DataFlowVariable is now called DataflowVariable
The class has been renamed to DataFlowPoisson PoisonPill

2.7 Java API - Using GPars from Java

http://gpars.codehaus.org/Breaking+Changes
http://gpars.codehaus.org/Demos

Using GPars is very addictive, I guarantee. Once you get hooked you won't be able to code without it.
May the world force you to write code in Java, you will still be able to benefit from most of GPars
features.

Java API specifics
Some parts of GPars are irrelevant in Java and it is better to use the underlying Java libraries directly:

Parallel Collection - use jsr-166y library's Parallel Array directly
Fork/Join - use jsr-166y library's Fork/Join support directly
Asynchronous functions - use Java executor services directly

The other parts of GPars can be used from Java just like from Groovy, although most will miss the
Groovy DSL capabilities.

GPars Closures in Java API
To overcome the lack of closures as a language element in Java and to avoid forcing users to use Groovy
closures directly through the Java API, a few handy wrapper classes have been provided to help you
define callbacks, actor body or dataflow tasks.

groovyx.gpars.MessagingRunnable - used for single-argument callbacks or actor body
groovyx.gpars.ReactorMessagingRunnable - used for ReactiveActor body
groovyx.gpars.DataflowMessagingRunnable - used for dataflow operators' body

These classes can be used in all places GPars API expects a Groovy closure.

Actors
The as well as the classes can be used just like in Groovy:DynamicDispatchActor ReactiveActor

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.actor.DynamicDispatchActor;import
 class StatelessActorDemo {public
 void main([] args) InterruptedException {public static String throws
 MyStatelessActor actor = MyStatelessActor();final new
 actor.start();
 actor.send();"Hello"
 actor.sendAndWait(10);
 actor.sendAndContinue(10.0, MessagingRunnable< >() {new String
 @Override void doRun(s) {protected final String
 .out.println(+ s);System "Received a reply "
 }
 });
 }
 }
 class MyStatelessActor DynamicDispatchActor {extends
 void onMessage(msg) {public final String
 .out.println(+ msg);System "Received "
 replyIfExists();"Thank you"
 }
 void onMessage(msg) {public final Integer
 .out.println(+ msg);System "Received a number "
 replyIfExists();"Thank you"
 }
 void onMessage(msg) {public final Object
 .out.println(+ msg);System "Received an object "
 replyIfExists();"Thank you"
 }
 }

Although there are not many differences between Groovy and Java GPars use, notice, the callbacks
instantiating the MessagingRunnable class in place for a groovy closure.

import groovy.lang.Closure;
 groovyx.gpars.ReactorMessagingRunnable;import
 groovyx.gpars.actor.Actor;import
 groovyx.gpars.actor.ReactiveActor;import

 class ReactorDemo {public
 void main([] args) InterruptedException {public static final String throws
 Closure handler = ReactorMessagingRunnable< , >() {final new Integer Integer
 @Override doRun(integer) {protected Integer final Integer
 integer * 2;return
 }
 };
 Actor actor = ReactiveActor(handler);final new
 actor.start();
 .out.println(+ actor.sendAndWait(1));System "Result: "
 .out.println(+ actor.sendAndWait(2));System "Result: "
 .out.println(+ actor.sendAndWait(3));System "Result: "
 }
}

Convenience factory methods
Obviously, all the essential factory methods to build actors quickly are available where you'd expect
them.

import groovy.lang.Closure;
 groovyx.gpars.ReactorMessagingRunnable;import
 groovyx.gpars.actor.Actor;import
 groovyx.gpars.actor.Actors;import
 class ReactorDemo {public

 void main([] args) InterruptedException {public static final String throws
 Closure handler = ReactorMessagingRunnable< , >() {final new Integer Integer
 @Override doRun(integer) {protected Integer final Integer
 integer * 2;return
 }
 };
 Actor actor = Actors.reactor(handler);final
 .out.println(+ actor.sendAndWait(1));System "Result: "
 .out.println(+ actor.sendAndWait(2));System "Result: "
 .out.println(+ actor.sendAndWait(3));System "Result: "
 }
}

Agents

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.agent.Agent;import
 class AgentDemo {public
 void main([] args) InterruptedException {public static final String throws
 Agent counter = Agent< >(0);final new Integer
 counter.send(10);
 .out.println(+ counter.getVal());System "Current value: "
 counter.send(MessagingRunnable< >() {new Integer
 @Override void doRun(integer) {protected final Integer
 counter.updateValue(integer + 1);
 }
 });
 .out.println(+ counter.getVal());System "Current value: "
 }
 }

Dataflow Concurrency
Both and can be used from Java without any hiccups. Just avoid theDataflowVariables DataflowQueues
handy overloaded operators and go straight to the methods, like , , and other. Youbind whenBound getVal
may also continue using dataflow passing to them instances of or just liketasks Runnable Callable
groovy .Closure

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.dataflow.DataflowVariable;import
 groovyx.gpars.group.DefaultPGroup;import
 java.util.concurrent.Callable;import
 class DataflowTaskDemo {public

 void main([] args) InterruptedException {public static final String throws

1.
2.
3.

 DefaultPGroup group = DefaultPGroup(10);final new
 DataflowVariable a = DataflowVariable();final new
 group.task(() {new Runnable
 void run() {public
 a.bind(10);
 }
 });
 DataflowVariable result = group.task(Callable() {final new
 call() Exception {public Object throws
 ()a.getVal() + 10;return Integer
 }
 });
 result.whenBound(MessagingRunnable< >() {new Integer
 @Override void doRun(integer) {protected final Integer
 .out.println(+ integer);System "arguments = "
 }
 });
 .out.println(+ result.getVal());System "result = "
 }
}

Dataflow operators
The sample below should illustrate the main differences between Groovy and Java API for dataflow
operators.

Use the convenience factory methods accepting list of channels to create operators or selectors
Use to specify the operator bodyDataflowMessagingRunnable
Call to get hold of the operator from within the body in order to e.g. bindgetOwningProcessor()
output values

import groovyx.gpars.DataflowMessagingRunnable;
 groovyx.gpars.dataflow.Dataflow;import
 groovyx.gpars.dataflow.DataflowQueue;import
 groovyx.gpars.dataflow. .DataflowProcessor;import operator
 java.util.Arrays;import
 java.util.List;import
 class DataflowOperatorDemo {public

 void main([] args) InterruptedException {public static final String throws
 DataflowQueue stream1 = DataflowQueue();final new
 DataflowQueue stream2 = DataflowQueue();final new
 DataflowQueue stream3 = DataflowQueue();final new
 DataflowQueue stream4 = DataflowQueue();final new
 DataflowProcessor op1 = Dataflow.selector(Arrays.asList(stream1), Arrays.asList(stream2), DataflowMessagingRunnable(1) {final new
 @Override void doRun([] objects) {protected final Object
 getOwningProcessor().bindOutput(2*()objects[0]);Integer
 }
 });
 List secondOperatorInput = Arrays.asList(stream2, stream3);final
 DataflowProcessor op2 = Dataflow. (secondOperatorInput, Arrays.asList(stream4), DataflowMessagingRunnable(2) {final operator new
 @Override void doRun([] objects) {protected final Object
 getOwningProcessor().bindOutput(() objects[0] + () objects[1]);Integer Integer
 }
 });
 stream1.bind(1);
 stream1.bind(2);
 stream1.bind(3);
 stream3.bind(100);
 stream3.bind(100);
 stream3.bind(100);
 .out.println(+ stream4.getVal());System "Result: "
 .out.println(+ stream4.getVal());System "Result: "
 .out.println(+ stream4.getVal());System "Result: "
 op1.stop();
 op2.stop();
 }
}

Performance

1.
2.
3.

In general, GPars overhead is identical irrespective of whether you use it from Groovy or Java and tends
to be very low. GPars actors, for example, can compete head-to-head with other JVM actor options, like
Scala actors.
Since Groovy code in general runs slower than Java code, mainly due to dynamic method invocation, you
might consider writing your code in Java to improve performance. Typically numeric operations or
frequent fine-grained method calls within a task or actor body may benefit from a rewrite into Java.

Prerequisites
All the GPars integration rules apply to Java projects just like they do to Groovy projects. You only need
to include the groovy distribution jar file in your project and all is clear to march ahead. You may also
want to check out the sample Java Maven project to get tips on how to integrate GPars into a
maven-based pure Java application - Sample Java Maven Project

3. Data Parallelism
Focusing on data instead of processes helps a great deal to create robust concurrent programs. You as a
programmer define your data together with functions that should be applied to it and then let the
underlying machinery to process the data. Typically a set of concurrent tasks will be created and then they
will be submitted to a thread pool for processing.
In the and classes give you access to low-level data parallelismGPars GParsPool GParsExecutorsPool
techniques. While the class relies on the jsr-166y Fork/Join framework and so offers greaterGParsPool
functionality and better performance, the uses good old Java executors and so isGParsExecutorsPool
easier to setup in a managed or restricted environment.
There are three fundamental domains covered by the GPars low-level data parallelism:

Processing collections concurrently
Running functions (closures) asynchronously
Performing Fork/Join (Divide/Conquer) algorithms

3.1 Parallel Collections

Dealing with data frequently involves manipulating collections. Lists, arrays, sets, maps, iterators, strings
and lot of other data types can be viewed as collections of items. The common pattern to process such
collections is to take elements sequentially, one-by-one, and make an action for each of the items in row.
Take, for example, the function, which is supposed to return the smallest element of a collection.min()
When you call the method on a collection of numbers, the caller thread will create an min() accumulator
or initialized to the minimum value of the given type, let say to zero. And thenso-far-the-smallest-value
the thread will iterate through the elements of the collection and compare them with the value in the

 . Once all elements have been processed, the minimum value is stored in the .accumulator accumulator
This algorithm, however simple, is on multi-core hardware. Running the function ontotally wrong min()
a dual-core chip can leverage of the computing power of the chip. On a quad-core it wouldat most 50%
be only 25%. Correct, this algorithm effectively of the chip.wastes 75% of the computing power
Tree-like structures proved to be more appropriate for parallel processing. The function in ourmin()
example doesn't need to iterate through all the elements in row and compare their values with the

 . What it can do instead is relying on the multi-core nature of your hardware. A accumulator
 function could, for example, compare pairs (or tuples of certain size) of neighboring valuesparallel_min()

in the collection and promote the smallest value from the tuple into a next round of comparison.
Searching for minimum in different tuples can safely happen in parallel and so tuples in the same round
can be processed by different cores at the same time without races or contention among threads.

Meet Parallel Arrays
The jsr-166y library brings a very convenient abstraction called . GPars leverages theParallel Arrays
Parallel Arrays implementation in several ways. The and classesGParsPool GParsExecutorsPool
provide parallel variants of the common Groovy iteration methods like , , andeach() collect() findAll()

http://gpars.codehaus.org/Demos
http://groovy.dzone.com/articles/parallelize-your-arrays-with-j

such.

def selfPortraits = images.findAllParallel{it.contains me}.collectParallel {it.resize()}

It also allows for a more functional style map/reduce collection processing.

def smallestSelfPortrait = images.parallel.filter{it.contains me}.map{it.resize()}.min{it.sizeInMB}

3.1.1 GParsPool

Use of - the JSR-166y based concurrent collection processorGParsPool

Usage of GParsPool

The class enables a ParallelArray-based (from JSR-166y) concurrency DSL for collectionsGParsPool
and objects.
Examples of use:

//summarize numbers concurrently
 GParsPool.withPool {
 AtomicInteger result = AtomicInteger(0)final new
 [1, 2, 3, 4, 5].eachParallel {result.addAndGet(it)}
 assertEquals 15, result
 }
 //multiply numbers asynchronously
 GParsPool.withPool {
 List result = [1, 2, 3, 4, 5].collectParallel {it * 2}final
 assert ([2, 4, 6, 8, 10].equals(result))
 }

The passed-in closure takes an instance of a ForkJoinPool as a parameter, which can be then used freely
inside the closure.

//check whether all elements within a collection meet certain criteria
 GParsPool.withPool(5) {ForkJoinPool pool ->
 assert [1, 2, 3, 4, 5].everyParallel {it > 0}
 assert ![1, 2, 3, 4, 5].everyParallel {it > 1}
 }

The method takes optional parameters for number of threads in the created poolGParsPool.withPool()
and an unhandled exception handler.

withPool(10) {...}
withPool(20, exceptionHandler) {...}

The takes an already existing ForkJoinPool instance to reuse. The DSL isGParsPool.withExistingPool()
valid only within the associated block of code and only for the thread that has called the or withPool()

 methods. The method returns only after all the worker threads havewithExistingPool() withPool()
finished their tasks and the pool has been destroyed, returning back the return value of the associated
block of code. The method doesn't wait for the pool threads to finish.withExistingPool()
Alternatively, the class can be statically imported ,GParsPool import static groovyx.gpars.GParsPool.`*`
which will allow omitting the class name.GParsPool

withPool {
 assert [1, 2, 3, 4, 5].everyParallel {it > 0}
 assert ![1, 2, 3, 4, 5].everyParallel {it > 1}
 }

The following methods are currently supported on all objects in Groovy:

eachParallel()
eachWithIndexParallel()
collectParallel()
findAllParallel()
findAnyParallel

findParallel()
everyParallel()
anyParallel()
grepParallel()
groupByParallel()
foldParallel()
minParallel()
maxParallel()
sumParallel()
splitParallel()
countParallel()
foldParallel()

Meta-class enhancer
As an alternative you can use the class to enhance meta-classes of any classes orParallelEnhancer
individual instances with the parallel methods.

import groovyx.gpars.ParallelEnhancer
def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
ParallelEnhancer.enhanceInstance(list)
println list.collectParallel {it * 2 }
def animals = ['dog', 'ant', 'cat', 'whale']
ParallelEnhancer.enhanceInstance animals
println (animals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')
println (animals.everyParallel {it.contains('a')} ? 'All animals contain a' : 'Some animals can live without an a')

When using the class, you're not restricted to a block with the use of theParallelEnhancer withPool()
GParsPool DSLs. The enhanced classed or instances remain enhanced till they get garbage collected.

Exception handling
If an exception is thrown while processing any of the passed-in closures, the first exception gets
re-thrown from the xxxParallel methods and the algorithm stops as soon as possible.

The exception handling mechanism of GParsPool builds on the one built into the Fork/Join
framework. Since Fork/Join algorithms are by nature hierarchical, once any part of the
algorithm fails, there's usually little benefit from continuing the computation, since some
branches of the algorithm will never return a result.
Bear in mind that the GParsPool implementation doesn't give any guarantees about its
behavior after a first unhandled exception occurs, beyond stopping the algorithm and
re-throwing the first detected exception to the caller. This behavior, after all, is consistent
with what the traditional sequential iteration methods do.

Transparently parallel collections
On top of adding new xxxParallel() methods, can also let you change the semantics of the originalGPars
iteration methods. For example, you may be passing a collection into a library method, which will process
your collection in a sequential way, let say using the method. By changing the semantics of the collect()

 method on your collection you can effectively parallelize the library sequential code.collect()

GParsPool.withPool {
 //The selectImportantNames() will process the name collections concurrently
 assert ['ALICE', 'JASON'] == selectImportantNames(['Joe', 'Alice', 'Dave', 'Jason'].makeConcurrent())
}
/**
 * A function implemented using standard sequential collect() and findAll() methods.
 */
def selectImportantNames(names) {
 names.collect {it.toUpperCase()}.findAll{it.size() > 4}
}

The method will reset the collection back to the original sequential semantics.makeSequential()

import groovyx.gpars.GParsPool.withPoolstatic

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
println 'Sequential: '
list.each { print it + ',' }
println()
withPool {
 println 'Sequential: '
 list.each { print it + ',' }
 println()
 list.makeConcurrent()
 println 'Concurrent: '
 list.each { print it + ',' }
 println()
 list.makeSequential()
 println 'Sequential: '
 list.each { print it + ',' }
 println()
}
println 'Sequential: '
list.each { print it + ',' }
println()

The convenience method will allow you to specify code blocks, in which the collectionasConcurrent()
maintains concurrent semantics.

import groovyx.gpars.GParsPool.withPoolstatic
def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
println 'Sequential: '
list.each { print it + ',' }
println()
withPool {
 println 'Sequential: '
 list.each { print it + ',' }
 println()
 list.asConcurrent {
 println 'Concurrent: '
 list.each { print it + ',' }
 println()
 }
 println 'Sequential: '
 list.each { print it + ',' }
 println()
}
println 'Sequential: '
list.each { print it + ',' }
println()

Transparent parallelizm, including the , and makeConcurrent() makeSequential() asConcurrent()
methods, is also available in combination with .ParallelEnhancer

/**
 * A function implemented using standard sequential collect() and findAll() methods.
 */
def selectImportantNames(names) {
 names.collect {it.toUpperCase()}.findAll{it.size() > 4}
}
def names = ['Joe', 'Alice', 'Dave', 'Jason']
ParallelEnhancer.enhanceInstance(names)
//The selectImportantNames() will process the name collections concurrently
assert ['ALICE', 'JASON'] == selectImportantNames(names.makeConcurrent())

import groovyx.gpars.ParallelEnhancer
def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
println 'Sequential: '
list.each { print it + ',' }
println()
ParallelEnhancer.enhanceInstance(list)
println 'Sequential: '
list.each { print it + ',' }
println()
list.asConcurrent {
 println 'Concurrent: '
 list.each { print it + ',' }

 println()
}
list.makeSequential()
println 'Sequential: '
list.each { print it + ',' }
println()

Avoid side-effects in functions

We have to warn you. Since the closures that are provided to the parallel methods like or eachParallel()
 may be run in parallel, you have to make sure that each of the closures is written in acollectParallel()

thread-safe manner. The closures must hold no internal state, share data nor have side-effects beyond the
boundaries the single element that they've been invoked on. Violations of these rules will open the door
for race conditions and deadlocks, the most severe enemies of a modern multi-core programmer.
Don't do this:

def thumbnails = []
images.eachParallel {thumbnails << it.thumbnail} //Concurrently accessing a not-thread-safe collection of thumbnails, don't !do this

At least, you've been warned.

3.1.2 GParsExecutorsPool

Use of GParsExecutorsPool - the Java Executors' based concurrent collection processor

Usage of GParsExecutorsPool

The class enables a Java Executors-based concurrency DSL for collections and objects.GParsPool
The class can be used as a pure-JDK-based collection parallel processor. Unlike the GParsExecutorsPool

 class, doesn't require jsr-166y jar file, but leverages the standard JDKGParsPool GParsExecutorsPool
executor services to parallelize closures processing a collections or an object iteratively. It needs to be
states, however, that performs typically much better than does.GParsPool GParsExecutorsPool
Examples of use:

//multiply numbers asynchronously
 GParsExecutorsPool.withPool {
 Collection<Future> result = [1, 2, 3, 4, 5].collectParallel{it * 10}
 assertEquals(HashSet([10, 20, 30, 40, 50]), HashSet((Collection)result*.get()))new new
 }
 //multiply numbers asynchronously using an asynchronous closure
 GParsExecutorsPool.withPool {
 def closure={it * 10}
 def asyncClosure=closure.async()
 Collection<Future> result = [1, 2, 3, 4, 5].collect(asyncClosure)
 assertEquals(HashSet([10, 20, 30, 40, 50]), HashSet((Collection)result*.get()))new new
 }

The passed-in closure takes an instance of a ExecutorService as a parameter, which can be then used
freely inside the closure.

//find an element meeting specified criteria
 GParsExecutorsPool.withPool(5) {ExecutorService service ->
 service.submit({performLongCalculation()} as)Runnable
 }

The method takes optional parameters for number of threads in theGParsExecutorsPool.withPool()
created pool and a thread factory.

withPool(10) {...}
withPool(20, threadFactory) {...}

The takes an already existing executor service instance to reuse.GParsExecutorsPool.withExistingPool()
The DSL is valid only within the associated block of code and only for the thread that has called the

 or method. The method returns only after all the worker threadswithPool() withExistingPool() withPool()
have finished their tasks and the executor service has been destroyed, returning back the return value of
the associated block of code. The method doesn't wait for the executor service threadswithExistingPool()
to finish.
Alternatively, the class can be statically imported GParsExecutorsPool import static

 , which will allow omitting the class name.groovyx.gpars.GParsExecutorsPool.`*` GParsExecutorsPool

withPool {
 def result = [1, 2, 3, 4, 5].findParallel{ number -> number > 2}Number
 assert result in [3, 4, 5]
 }

The following methods on all objects, which support iterations in Groovy, are currently supported:

eachParallel()
eachWithIndexParallel()
collectParallel()
findAllParallel()
findParallel()
allParallel()
anyParallel()
grepParallel()
groupByParallel()

Meta-class enhancer
As an alternative you can use the class to enhance meta-classes for anyGParsExecutorsPoolEnhancer
classes or individual instances with asynchronous methods.

import groovyx.gpars.GParsExecutorsPoolEnhancer
def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
GParsExecutorsPoolEnhancer.enhanceInstance(list)
println list.collectParallel {it * 2 }
def animals = ['dog', 'ant', 'cat', 'whale']
GParsExecutorsPoolEnhancer.enhanceInstance animals
println (animals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')
println (animals.allParallel {it.contains('a')} ? 'All animals contain a' : 'Some animals can live without an a')

When using the class, you're not restricted to a block with theGParsExecutorsPoolEnhancer withPool()
use of the GParsExecutorsPool DSLs. The enhanced classed or instances remain enhanced till they get
garbage collected.

Exception handling
If exceptions are thrown while processing any of the passed-in closures, an instance of AsyncException
wrapping all the original exceptions gets re-thrown from the xxxParallel methods.

Avoid side-effects in functions

Once again we need to warn you about using closures with side-effects effecting objects beyond the scope
of the single currently processed element or closures which keep state. Don't do that! It is dangerous to
pass them to any of the methods.xxxParallel()

3.1.3 Memoize

The function enables caching of function's return values. Repeated calls to the memoizedmemoize
function with the same argument values will, instead of invoking the calculation encoded in the original
function, retrieve the result value from an internal transparent cache. Provided the calculation is
considerably slower than retrieving a cached value from the cache, this allows users to trade-off memory
for performance. Checkout out the example, where we attempt to scan multiple websites for particular
content:
The memoize functionality of GPars has been contributed to Groovy in version 1.8 and if you run on

Groovy 1.8 or later, it is recommended to use the Groovy functionality. Memoize in GPars is almost
identical, except that it searches the memoize caches concurrently using the surrounding thread pool and
so may give performance benefits in some scenarios.

The GPars memoize functionality has been renamed to avoid future conflicts with the
memoize functionality in Groovy. GPars now calls the methods with a preceding letter ,g
such as gmemoize().

Examples of use
GParsPool.withPool {
 def urls = ['http://www.dzone.com', 'http://www.theserverside.com', 'http://www.infoq.com']
 Closure download = {url ->
 println "Downloading $url"
 url.toURL().text.toUpperCase()
 }
 Closure cachingDownload = download.gmemoize()
 println 'Groovy sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GROOVY')}
 println 'Grails sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GRAILS')}
 println 'Griffon sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GRIFFON')}
 println 'Gradle sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GRADLE')}
 println 'Concurrency sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('CONCURRENCY')}
 println 'GPars sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GPARS')}
}

Notice closures are enhanced inside the blocks with a function, whichGParsPool.withPool() memoize()
returns a new closure wrapping the original closure with a cache. In the example we're calling the

 function in several places in the code, however, each unique url gets downloaded onlycachingDownload
once - the first time it is needed. The values are then cached and available for subsequent calls. And also
to all threads, no matter which thread originally came first with a download request for the particular url
and had to handle the actual calculation/download.
So, to wrap up, memoize shields a function by a cache of past return values. However, can domemoize
even more. In some algorithms adding a little memory may have dramatic impact on the computational
complexity of the calculation. Let's look at a classical example of Fibonacci numbers.

Fibonacci example

A purely functional, recursive implementation, following closely the definition of Fibonacci numbers is
exponentially complex:

Closure fib = {n -> n > 1 ? call(n - 1) + call(n - 2) : n}

Try calling the function with numbers around 30 and you'll see how slow it is.fib
Now with a little twist and added memoize cache the algorithm magically turns into a linearly complex
one:

Closure fib
fib = {n -> n > 1 ? fib(n - 1) + fib(n - 2) : n}.gmemoize()

The extra memory we added cut off all but one recursive branches of the calculation. And all subsequent
calls to the same function will also benefit from the cached values.fib
Also, see below, how the variant can reduce memory consumption in our example, yetmemoizeAtMost
preserve the linear complexity of the algorithm.

Available variants

memoize
The basic variant, which keeps values in the internal cache for the whole lifetime of the memoized
function. Provides the best performance characteristics of all the variants.

memoizeAtMost

1.
2.

Allows the user to set a hard limit on number of items cached. Once the limit has been reached, all
subsequently added values will eliminate the oldest value from the cache using the LRU (Last Recently
Used) strategy.
So for our Fibonacci number example, we could safely reduce the cache size to two items:

Closure fib
fib = {n -> n > 1 ? fib(n - 1) + fib(n - 2) : n}.memoizeAtMost(2)

Setting an upper limit on the cache size may have two purposes:

Keep the memory footprint of the cache within defined boundaries
Preserve desired performance characteristics of the function. Too large caches may take longer to
retrieve the cached value than it would have taken to calculate the result directly.

memoizeAtLeast
Allows unlimited growth of the internal cache until the JVM's garbage collector decides to step in and
evict SoftReferences, used by our implementation, from the memory. The single parameter value to the

 method specifies the minimum number of cached items that should be protected frommemoizeAtLeast()
gc eviction. The cache will never shrink below the specified number of entries. The cache ensures it only
protects the most recently used items from eviction using the LRU (Last Recently Used) strategy.

memoizeBetween
Combines memoizeAtLeast and memoizeAtMost and so allowing the cache to grow and shrink in the
range between the two parameter values depending on available memory and the gc activity, yet the cache
size will never exceed the upper size limit to preserve desired performance characteristics of the cache.

3.2 Map-Reduce

The Parallel Collection Map/Reduce DSL gives GPars a more functional flavor. In general, the
Map/Reduce DSL may be used for the same purpose as the family methods and has veryxxxParallel()
similar semantics. On the other hand, Map/Reduce can perform considerably faster, if you need to chain
multiple methods to process a single collection in multiple steps:

println ' of occurrences of the word GROOVY today: ' + urls.parallelNumber
 .map {it.toURL().text.toUpperCase()}
 .filter {it.contains('GROOVY')}
 .map{it.split()}
 .map{it.findAll{word -> word.contains 'GROOVY'}.size()}
 .sum()

The methods have to follow the contract of their non-parallel peers. So a xxxParallel() collectParallel()
method must return a legal collection of items, which you can again treat as a Groovy collection.
Internally the parallel collect method builds an efficient parallel structure, called parallel array, performs
the required operation concurrently and before returning destroys the Parallel Array building the
collection of results to return to you. A potential call to let say on the resulting collectionfindAllParallel()
would repeat the whole process of construction and destruction of a Parallel Array instance under the
covers.
With Map/Reduce you turn your collection into a Parallel Array and back only once. The Map/Reduce
family of methods do not return Groovy collections, but are free to pass along the internal Parallel Arrays
directly. Invoking the property on a collection will build a Parallel Array for the collection andparallel
return a thin wrapper around the Parallel Array instance. Then you can chain all required methods like:

map()
reduce()
filter()
size()
sum()
min()
max()
sort()

groupBy()
combine()

Returning back to a plain Groovy collection instance is always just a matter of retrieving the collection
property.

def myNumbers = (1..1000).parallel.filter{it % 2 == 0}.map{ .sqrt it}.collectionMath

Avoid side-effects in functions

Once again we need to warn you. To avoid nasty surprises, please, keep your closures, which you pass to
the Map/Reduce functions, stateless and clean from side-effects.

Availability
This feature is only available when using in the Fork/Join-based , not in GParsPool GParsExecutorsPool
.

Classical Example
A classical example, inspired by http://github.com/thevery, counting occurencies of words in a string:

import groovyx.gpars.GParsPool.withPoolstatic
def words = "This is just a plain text to count words in"
print count(words)
def count(arg) {
 withPool {
 arg.parallelreturn
 .map{[it, 1]}
 .groupBy{it[0]}.getParallel()
 .map {it.value=it.value.size();it}
 .sort{-it.value}.collection
 }
}

The same example, now implemented the more general operation:combine

def words = "This is just a plain text to count words in"
print count(words)
def count(arg) {
 withPool {
 arg.parallelreturn
 .map{[it, 1]}
 .combine(0) {sum, value -> sum + value}.getParallel()
 .sort{-it.value}.collection
 }
}

Combine
The operation expects on its input a list of tuples (two-element lists) considered to be key-valuecombine
pairs (such as [key1, value1, key2, value2, key1, value3, key3, value4 …]) with potentially repeating
keys. When invoked, merges the values for identical keys using the provided accumulatorcombine
function and produces a map mapping the original (unique) keys to their accumulated values. E.g. [a, b, c,
d, a, e, c, f] will be combined into a : b+e, c : d+f, while the '+' operation on the values needs to be
provided by the user as the accumulation closure. The argument needs to specify aaccumulation function
function to use for combining (accumulating) the values belonging to the same key. An initial

 needs to be provided as well. Since the method processes items in parallel,accumulator value combine
the will be reused multiple times. Thus the provided value must allow for reuse.initial accumulator value
It should be either a or value or a returning a fresh initial accumulator eachcloneable immutable closure
time requested. Good combinations of accumulator functions and reusable initial values include:

accumulator = {List acc, value -> acc << value} initialValue = []
accumulator = {List acc, value -> acc << value} initialValue = {-> []}
accumulator = { sum, value -> acc + value} initialValue = 0int int
accumulator = { sum, value -> sum + value} initialValue = {-> 0}int int
accumulator = {ShoppingCart cart, Item value -> cart.addItem(value)} initialValue = {-> ShoppingCart()}new

The return type is a map. E.g. ['he', 1, 'she', 2, 'he', 2, 'me', 1, 'she, 5, 'he', 1 with the initial value provided
a 0 will be combined into 'he' : 4, 'she' : 7, 'he', : 2, 'me' : 1

3.3 Parallel Arrays

As an alternative, the efficient tree-based data structures defines in JSR-166y can be used directly. The
 property on any collection or object will return a instanceparallelArray jsr166y.forkjoin.ParallelArray

holding the elements of the original collection, which then can be manipulated through the jsr166y API.
Please refer to the jsr166y documentation for the API details.

groovyx.gpars.GParsPool.withPool {
 assert 15 == [1, 2, 3, 4, 5].parallelArray.reduce({a, b -> a + b} as Reducer, 0) //summarize
 assert 55 == [1, 2, 3, 4, 5].parallelArray.withMapping({it ** 2} as Mapper).reduce({a, b -> a + b} as Reducer, 0) //summarize squares
 assert 20 == [1, 2, 3, 4, 5].parallelArray.withFilter({it % 2 == 0} as Predicate) //summarize squares of even numbers
 .withMapping({it ** 2} as Mapper)
 .reduce({a, b -> a + b} as Reducer, 0)
 assert 'aa:bb:cc:dd:ee' == 'abcde'.parallelArray //concatenate duplicated characters with separator
 .withMapping({it * 2} as Mapper)
 .reduce({a, b -> } as Reducer,)"$a:$b" ""

3.4 Asynchronous Invocation

Running long-lasting tasks in the background belongs to the activities, the need for which arises quite
frequently. Your main thread of execution wants to initialize a few calculations, downloads, searches or
such, however, the results may not be needed immediately. gives the developers the tools toGPars
schedule the asynchronous activities for processing in the background and collect the results once they're
needed.

Usage of GParsPool and GParsExecutorsPool asynchronous
processing facilities

Both and provide almost identical services in this domain, although theyGParsPool GParsExecutorsPool
leverage different underlying machinery, based on which of the two classes the user chooses.

Closures enhancements
The following methods are added to closures inside the blocks:GPars(Executors)Pool.withPool()

async() - Creates an asynchronous variant of the supplied closure, which when invoked returns a
future for the potential return value
callAsync() - Calls a closure in a separate thread supplying the given arguments, returning a future
for the potential return value,

Examples:

GParsPool.withPool() {
 Closure longLastingCalculation = {calculate()}
 Closure fastCalculation = longLastingCalculation.async() //create a closure, which starts the original closure on a thread poolnew
 Future result=fastCalculation() //returns almost immediately
 // stuff calculation performs …do while
 println result.get()
}

GParsPool.withPool() {
 /**
 * The callAsync() method is an asynchronous variant of the call() method to invoke a closure.default
 * It will a Future the result value.return for
 */
 assert 6 == {it * 2}.call(3)
 assert 6 == {it * 2}.callAsync(3).get()
}

Timeouts
The methods, taking either a long value or a Duration instance, allow the user to havecallTimeoutAsync()
the calculation cancelled after a given time interval.

{->
 () {while true
 .sleep 1000 //Simulate a bit of interesting calculationThread
 (.currentThread().isInterrupted()) ; //We've been cancelledif Thread break
 }
}.callTimeoutAsync(2000)

In order to allow cancellation, the asynchronously running code must keep checking the flaginterrupted
of its own thread and cease the calculation once the flag is set to true.

Executor Service enhancements
The ExecutorService and jsr166y.forkjoin.ForkJoinPool class is enhanced with the << (leftShift) operator
to submit tasks to the pool and return a for the result.Future
Example:

GParsExecutorsPool.withPool {ExecutorService executorService ->
 executorService << {println 'Inside parallel task'}
}

Running functions (closures) in parallel
The and classes also provide handy methods and GParsPool GParsExecutorsPool executeAsync()

 to easily run multiple closures asynchronously.executeAsyncAndWait()
Example:

GParsPool.withPool {
 assertEquals([10, 20], GParsPool.executeAsyncAndWait({calculateA()}, {calculateB()})) //waits resultsfor
 assertEquals([10, 20], GParsPool.executeAsync({calculateA()}, {calculateB()})*.get()) //returns Futures instead and doesn't wait results to be calculatedfor
}

3.5 Composable Asynchronous Functions

Functions are to be composed. In fact, composing side-effect-free functions is very easy. Much easier and
reliable than composing objects, for example. Given the same input, functions always return the same
result, they never change their behavior unexpectedly nor they break when multiple threads call them at
the same time.

Functions in Groovy

We can treat Groovy closures as functions. They take arguments, do their calculation and return a value.
Provided you don't let your closures touch anything outside their scope, your closures are well-behaved
pure functions. Functions that you can combine for a better good.

def sum = (0..100000).inject(0, {a, b -> a + b})

For example, by combining a function adding two numbers with the function, which iteratesinject
through the whole collection, you can quickly summarize all items. Then, replacing the functionadding
with a function will immediately give you a combined function calculating maximum.comparison

def max = myNumbers.inject(0, {a, b -> a>b?a:b})

You see, functional programming is popular for a reason.

Are we concurrent yet?

This all works just fine until you realize you're not utilizing the full power of your expensive hardware.
The functions are plain sequential. No parallelism in here. All but one processor core do nothing, they're
idle, totally wasted.

Those paying attention would suggest to use the techniques describedParallel Collection
earlier and they would certainly be correct. For our scenario described here, where we
process a collection, using those methods would be the best choice. However, we'reparallel
now looking for a , whichgeneric way to create and combine asynchronous functions
would help us not only for collection processing but mostly in other more generic cases, like
the one right below.

To make things more obvious, here's an example of combining four functions, which are supposed to
check whether a particular web page matches the contents of a local file. We need to download the page,
load the file, calculate hashes of both and finally compare the resulting numbers.

Closure download = { url ->String
 url.toURL().text
}
Closure loadFile = { fileName ->String
 … //load the file here
}
Closure hash = {s -> s.hashCode()}.asyncFun()
Closure compare = { first, second ->int int
 first == second
}
def result = compare(hash(download('http://www.gpars.org')), hash(loadFile('/coolStuff/gpars/website/index.html')))
println + result"The result of comparison: "

We need to download the page, load up the file, calculate hashes of both and finally compare the resulting
numbers. Each of the functions is responsible for one particular job. One downloads the content, second
loads the file, third calculates the hashes and finally the fourth one will do the comparison. Combining the
functions is as simple as nesting their calls.

Making it all asynchronous
The downside of our code is that we don't leverage the independence of the and the download() loadFile()
functions. Neither we allow the two hashes to be run concurrently. They could well run in parallel, but
our way to combine functions restricts any parallelism.
Obviously not all of the functions can run concurrently. Some functions depend on results of others. They
cannot start before the other function finishes. We need to block them till their parameters are available.
The functions needs a string to work on. The function needs two numbers to compare.hash() compare()
So we can only parallelize some functions, while blocking parallelism of others. Seems like a challenging
task.

Things are bright in the functional world
Luckily, the dependencies between functions are already expressed implicitly in the code. There's no need
for us to duplicate the dependency information. If one functions takes parameters and the parameters need
first to be calculated by another function, we implicitly have a dependency here. The functionhash()
depends on the as well as on the functions in our example. The function inloadFile() download() inject
our earlier example depends on the results of the functions invoked gradually on all the elementsaddition
of the collection.

However difficult it may seem at first, our task is in fact very simple. We only need to teach
our functions to return of their future results. And we need to teach the otherpromises
functions to accept those as parameters so that they wait for the real values beforepromises
they start their work. And if we convince the functions to release the threads they hold while
waiting for the values, we get directly to where the magic can happen.

In the good tradition of we've made it very straightforward for you to convince any function toGPars
believe in other functions' promises. Call the function on a closure and you're asynchronous.asyncFun()

withPool {
 def maxPromise = numbers.inject(0, {a, b -> a>b?a:b}.asyncFun())
 println "Look Ma, I can talk to the user the math is being done me!"while for
 println maxPromise.get()
}

The function doesn't really care what objects are being returned from the function, maybeinject addition

it is just a little surprised that each call to the function returns so fast, but doesn't moan much,addition
keeps iterating and finally returns the overall result to you.
Now, this is the time you should stand behind what you say and do what you want others to do. Don't
frown at the result and just accepts that you got back just a promise. A to get the result deliveredpromise
as soon as the calculation is done. The extra heat coming out of your laptop is an indication the
calculation exploits natural parallelism in your functions and makes its best effort to deliver the result to
you quickly.

The is a good old , so you may query its status, registerpromise DataflowVariable
notification hooks or make it an input to a Dataflow algorithm.

withPool {
 def sumPromise = (0..100000).inject(0, {a, b -> a + b}.asyncFun())
 println + sumPromise.bound"Are we done yet? "
 sumPromise.whenBound {sum -> println sum}
}

The method has also a variant with a timeout parameter, if you want to avoid the risk ofget()
waiting indefinitely.

Can things go wrong?
Sure. But you'll get an exception thrown from the result promise method.get()

try {
 sumPromise.get()
} (MyCalculationException e) {catch
 println "Guess, things are not ideal today."
}

This is all fine, but what functions can be really combined?
There are no limits. Take any sequential functions you need to combine and you should be able to
combine their asynchronous variants as well.
Back to our initial example comparing content of a file with a web page, we simply make all the functions
asynchronous by calling the method on them and we are ready to set off.asyncFun()

Closure download = { url ->String
 url.toURL().text
 }.asyncFun()
 Closure loadFile = { fileName ->String
 … //load the file here
 }.asyncFun()
 Closure hash = {s -> s.hashCode()}.asyncFun()
 Closure compare = { first, second ->int int
 first == second
 }.asyncFun()
 def result = compare(hash(download('http://www.gpars.org')), hash(loadFile('/coolStuff/gpars/website/index.html')))
 println 'Allowed to something now'do else
 println + result.get()"The result of comparison: "

Calling asynchronous functions from within asynchronous functions
Another very valuable characteristics of asynchronous functions is that their result promises can also be
composed.

import groovyx.gpars.GParsPool.withPoolstatic
 withPool {
 Closure plus = { a, b ->Integer Integer
 sleep 3000
 println 'Adding numbers'
 a + b
 }.asyncFun()
 Closure multiply = { a, b ->Integer Integer
 sleep 2000
 a * b

 }.asyncFun()
 Closure measureTime = {->
 sleep 3000
 4
 }.asyncFun()
 Closure distance = { initialDistance, velocity, time ->Integer Integer Integer
 plus(initialDistance, multiply(velocity, time))
 }.asyncFun()
 Closure chattyDistance = { initialDistance, velocity, time ->Integer Integer Integer
 println 'All parameters are now ready - starting'
 println 'About to call another asynchronous function'
 def innerResultPromise = plus(initialDistance, multiply(velocity, time))
 println 'Returning the promise the calculation as my own result'for inner
 innerResultPromisereturn
 }.asyncFun()
 println + distance(100, 20, measureTime()).get() + ' m'"Distance = "
 println + chattyDistance(100, 20, measureTime()).get() + ' m'"ChattyDistance = "
 }

If an asynchronous function (e.f. the function in the example) in its body calls anotherdistance
asynchronous function (e.g.) and returns the the promise of the invoked function, the inner function'splus
() result promise will compose with the outer function's () result promise. The innerplus distance
function () will now bind its result to the outer function's () promise, once the innerplus distance
function (plus) finishes its calculation. This ability of promises to compose allows functions to cease their
calculation without blocking a thread not only when waiting for parameters, but also whenever they call
another asynchronous function anywhere in their body.

Methods as asynchronous functions
Methods can be referred to as closures using the operator. These closures can then be transformed.&
using into composable asynchronous functions just like ordinary closures.asyncFun

class DownloadHelper {
 download(url) {String String
 url.toURL().text
 }
 scanFor(word, text) {int String String
 text.findAll(word).size()
 }
 lower(s) {String
 s.toLowerCase()
 }
}
//now we'll make the methods asynchronous
withPool {
 DownloadHelper d = DownloadHelper()final new
 Closure download = d.&download.asyncFun()
 Closure scanFor = d.&scanFor.asyncFun()
 Closure lower = d.&lower.asyncFun()
 //asynchronous processing
 def result = scanFor('groovy', lower(download('http://www.infoq.com')))
 println 'Allowed to something now'do else
 println result.get()
}

Using annotation to create asynchronous functions
Instead of calling the function, the annotation can be used to annotateasyncFun() @AsyncFun
Closure-typed fields. The fields have to be initialized in-place and the containing class needs to be
instantiated withing a block.withPool

import groovyx.gpars.GParsPool.withPoolstatic
 groovyx.gpars.AsyncFunimport

class DownloadingSearch {
 @AsyncFun Closure download = { url ->String
 url.toURL().text
 }
 @AsyncFun Closure scanFor = { word, text ->String String
 text.findAll(word).size()

 }
 @AsyncFun Closure lower = {s -> s.toLowerCase()}
 void scan() {
 def result = scanFor('groovy', lower(download('http://www.infoq.com'))) //synchronous processing
 println 'Allowed to something now'do else
 println result.get()
 }
}
withPool {
 DownloadingSearch().scan()new
}

Alternative pools
The annotation by default uses an instance of from the wrapping withPool block.AsyncFun GParsPool
You may, however, specify the type of pool explicitly:

@AsyncFun(GParsExecutorsPoolUtil) def sum6 = {a, b -> a + b }

Blocking functions through annotations
The also allows the user to specify, whether the resulting function should have blocking (true)AsyncFun
or non-blocking (false - default) semantics.

@AsyncFun(blocking =)true
def sum = {a, b -> a + b }

On our side this is a very interesting domain to explore, so any comments, questions or suggestions on
combining asynchronous functions or hints about its limits are welcome.

3.6 Parallel Speculations

With processor cores having become plentiful, some algorithms might benefit from brutal-force parallel
duplication. Instead of deciding up-front about how to solve a problem, what algorithm to use or which
location to connect to, you run all potential solutions in parallel.

Parallel speculations

Imagine you need to perform a task like e.g. calculate an expensive function or read data from a file,
database or internet. Luckily, you know of several good ways (e.g. functions or urls) to achieve your goal.
However, they are not all equal. Although they return back the same (as far as your needs are concerned)
result, they may all take different amount of time to complete and some of them may even fail (e.g.
network issues). What's worse, no-one is going to tell you which path gives you the solution first nor
which paths lead to no solution at all. Shall I run or on my list? Which url will workquick sort merge sort
best? Is this service available at its primary location or should I use the backup one?
GPars speculations give you the option to try all the available alternatives in parallel and so get the result
from the fastest functional path, silently ignoring the slow or broken ones.
This is what the methods on and can do.speculate() GParsPool GParsExecutorsPool()

def numbers = …
def quickSort = …
def mergeSort = …
def sortedNumbers = speculate(quickSort, mergeSort)

Here we're performing both and , while getting the result of the fasterquick sort merge sort concurrently
one. Given the parallel resources available these days on mainstream hardware, running the two functions
in parallel will not have dramatic impact on speed of calculation of either one, and so we get the result in
about the same time as if we ran solely the faster of the two calculations. And we get the result sooner
than when running the slower one. Yet we didn't have to know up-front, which of the two sorting
algorithms would perform better on our data. Thus we speculated.
Similarly, downloading a document from multiple sources of different speed and reliability would look
like this:

import groovyx.gpars.GParsPool.speculatestatic

 groovyx.gpars.GParsPool.withPoolimport static
def alternative1 = {
 'http://www.dzone.com/links/index.html'.toURL().text
}
def alternative2 = {
 'http://www.dzone.com/'.toURL().text
}
def alternative3 = {
 'http://www.dzzzzzone.com/'.toURL().text //wrong url
}
def alternative4 = {
 'http://dzone.com/'.toURL().text
}
withPool(4) {
 println speculate([alternative1, alternative2, alternative3, alternative4]).contains('groovy')
}

Make sure the surrounding thread pool has enough threads to process all alternatives in
parallel. The size of the pool should match the number of closures supplied.

Alternatives using dataflow variables and streams
In cases, when stopping unsuccessful alternatives is not needed, dataflow variables or streams may be
used to obtain the result value from the winning speculation.

Please refer to the Dataflow Concurrency section of the User Guide for details on Dataflow
variables and streams.

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.taskimport static

def alternative1 = {
 'http://www.dzone.com/links/index.html'.toURL().text
}
def alternative2 = {
 'http://www.dzone.com/'.toURL().text
}
def alternative3 = {
 'http://www.dzzzzzone.com/'.toURL().text //will fail due to wrong url
}
def alternative4 = {
 'http://dzone.com/'.toURL().text
}
//Pick either one of the following, both will work:

 def result = DataflowQueue()final new
// def result = DataflowVariable()final new
[alternative1, alternative2, alternative3, alternative4].each {code ->
 task {
 {try
 result << code()
 } (ignore) { } //We deliberately ignore unsuccessful urlscatch
 }
}
println result.val.contains('groovy')

3.6. Fork-Join

Fork/Join or Divide and Conquer is a very powerful abstraction to solve hierarchical problems.

The abstraction

When talking about hierarchical problems, think about quick sort, merge sort, file system or general tree
navigation and such.

Fork / Join algorithms essentially split a problem at hands into several smaller sub-problems and
recursively apply the same algorithm to each of the sub-problems.

Once the sub-problem is small enough, it is solved directly.
The solutions of all sub-problems are combined to solve their parent problem, which in turn helps
solve its own parent problem.

Check out the fancy , which will show you howinteractive Fork/Join visualization demo
threads cooperate to solve a common divide-and-conquer algorithm.

The mighty library solves Fork / Join orchestration pretty nicely for us, but leaves a couple ofJSR-166y
rough edges, which can hurt you, if you don't pay attention enough. You still deal with threads, pools or
synchronization barriers.

The GPars abstraction convenience layer
GPars can hide the complexities of dealing with threads, pools and recursive tasks from you, yet let you
leverage the powerful Fork/Join implementation in jsr166y.

import groovyx.gpars.GParsPool.runForkJoinstatic
 groovyx.gpars.GParsPool.withPoolimport static

withPool() {
 println """ of files: ${Number

./src runForkJoin(File("new ")) {file ->
 count = 0long
 file.eachFile {
 (it.isDirectory()) {if

Forking a child task $it println " for "
 forkOffChild(it) //fork a child task
 } {else
 count++
 }
 }
 count + (childrenResults.sum(0))return
 //use results of children tasks to calculate and store own result
 }
 }"""
}

The factory method will use the supplied recursive code together with the provided valuesrunForkJoin()
and build a hierarchical Fork/Join calculation. The number of values passed to the methodrunForkJoin()
must match the number of expected parameters of the closure as well as the number of arguments passed
into the or methods.forkOffChild() runChildDirectly()

def quicksort(numbers) {
 withPool {
 runForkJoin(0, numbers) {index, list ->
 def groups = list.groupBy {it <=> list[list.size().intdiv(2)]}
 ((list.size() < 2) || (groups.size() == 1)) {if
 [index: index, list: list.clone()]return
 }
 (-1..1).each {forkOffChild(it, groups[it] ?: [])}
 [index: index, list: childrenResults.sort {it.index}.sum {it.list}]return
 }.list
 }
}

Alternative approach
Alternatively, the underlying mechanism of nested Fork/Join worker tasks can be used directly.
Custom-tailored workers can eliminate the performance overhead associated with parameter spreading
imposed when using the generic workers. Also, custom workers can be implemented in Java and so
further increase the performance of the algorithm.

public class FileCounter AbstractForkJoinWorker< > {final extends Long
 File file;private final
 def FileCounter(File file) {final
 .file = filethis
 }
 @Override
 computeTask() {protected Long

http://blog.krecan.net/2011/03/27/visualizing-forkjoin/

 count = 0;long
 file.eachFile {
 (it.isDirectory()) {if
 println "Forking a thread $it"for
 forkOffChild(FileCounter(it)) //fork a child tasknew
 } {else
 count++
 }
 }
 count + ((childrenResults)?.sum() ?: 0) //use results of children tasks to calculate and store own resultreturn
 }
}
withPool(1) {pool -> //feel free to experiment with the number of fork/join threads in the pool
 println .." of files: ${runForkJoin(FileCounter(File("Number new new ")))}"
}

The AbstractForkJoinWorker subclasses may be written both in Java or Groovy, giving you the option to
easily optimize for execution speed, if row performance of the worker becomes a bottleneck.

Fork / Join saves your resources
Fork/Join operations can be safely run with small number of threads thanks to internally using the
TaskBarrier class to synchronize the threads. While a thread is blocked inside an algorithm waiting for its
sub-problems to be calculated, the thread is silently returned to the pool to take on any of the available
sub-problems from the task queue and process them. Although the algorithm creates as many tasks as
there are sub-directories and tasks wait for the sub-directory tasks to complete, as few as one thread is
enough to keep the computation going and eventually calculate a valid result.

Mergesort example

import groovyx.gpars.GParsPool.runForkJoinstatic
 groovyx.gpars.GParsPool.withPoolimport static

/**
 * Splits a list of numbers in half
 */
def split(List< > list) {Integer
 listSize = list.size()int
 middleIndex = listSize / 2int
 def list1 = list[0..<middleIndex]
 def list2 = list[middleIndex..listSize - 1]
 [list1, list2]return
}
/**
 * Merges two sorted lists into one
 */
List< > merge(List< > a, List< > b) {Integer Integer Integer
 i = 0, j = 0int
 newSize = a.size() + b.size()final int
 List< > result = ArrayList< >(newSize)Integer new Integer
 ((i < a.size()) && (j < b.size())) {while
 (a[i] <= b[j]) result << a[i++]if
 result << b[j++]else
 }
 (i < a.size()) result.addAll(a[i..-1])if
 result.addAll(b[j..-1])else
 resultreturn
}

 def numbers = [1, 5, 2, 4, 3, 8, 6, 7, 3, 4, 5, 2, 2, 9, 8, 7, 6, 7, 8, 1, 4, 1, 7, 5, 8, 2, 3, 9, 5, 7, 4, 3]final
withPool(3) { //feel free to experiment with the number of fork/join threads in the pool
 println """Sorted numbers: ${
 runForkJoin(numbers) {nums ->

 ${ .currentThread().name[-1]}: Sorting $nums println "Thread Thread "
 (nums.size()) {switch
 0..1:case
 nums //store own resultreturn
 2:case
 (nums[0] <= nums[1]) nums //store own resultif return
 nums[-1..0] //store own resultelse return
 :default
 def splitList = split(nums)

 [splitList[0], splitList[1]].each {forkOffChild it} //fork a child task
 merge(* childrenResults) //use results of children tasks to calculate and store own resultreturn
 }
 }
 }"""
}

Mergesort example using a custom-tailored worker class

public class SortWorker AbstractForkJoinWorker<List< >> {final extends Integer
 List numbersprivate final
 def SortWorker(List< > numbers) {final Integer
 .numbers = numbers.asImmutable()this
 }
 /**
 * Splits a list of numbers in half
 */
 def split(List< > list) {Integer
 listSize = list.size()int
 middleIndex = listSize / 2int
 def list1 = list[0..<middleIndex]
 def list2 = list[middleIndex..listSize - 1]
 [list1, list2]return
 }
 /**
 * Merges two sorted lists into one
 */
 List< > merge(List< > a, List< > b) {Integer Integer Integer
 i = 0, j = 0int
 newSize = a.size() + b.size()final int
 List< > result = ArrayList< >(newSize)Integer new Integer
 ((i < a.size()) && (j < b.size())) {while
 (a[i] <= b[j]) result << a[i++]if
 result << b[j++]else
 }
 (i < a.size()) result.addAll(a[i..-1])if
 result.addAll(b[j..-1])else
 resultreturn
 }
 /**
 * Sorts a small list or delegates to two children, the list contains more than two elements.if
 */
 @Override
 List< > computeTask() {protected Integer
 println " ${ .currentThread().name[-1]}: Sorting $numbers"Thread Thread
 (numbers.size()) {switch
 0..1:case
 numbers //store own resultreturn
 2:case
 (numbers[0] <= numbers[1]) numbers //store own resultif return
 numbers[-1..0] //store own resultelse return
 :default
 def splitList = split(numbers)
 [SortWorker(splitList[0]), SortWorker(splitList[1])].each{forkOffChild it} //fork a child tasknew new
 merge(* childrenResults) //use results of children tasks to calculate and store own resultreturn
 }
 }
}

 def numbers = [1, 5, 2, 4, 3, 8, 6, 7, 3, 4, 5, 2, 2, 9, 8, 7, 6, 7, 8, 1, 4, 1, 7, 5, 8, 2, 3, 9, 5, 7, 4, 3]final
withPool(1) { //feel free to experiment with the number of fork/join threads in the pool
 println "Sorted numbers: ${runForkJoin(SortWorker(numbers))}"new
}

Running child tasks directly
The method has a sibling - the method, which will run the child taskforkOffChild() runChildDirectly()
directly and immediately within the current thread instead of scheduling the child task for asynchronous
processing on the thread pool. Typically you'll call _forkOffChild() on all sub-tasks but the last, which
you invoke directly without the scheduling overhead.

Closure fib = {number ->
 (number <= 2) {if
 1return
 }
 forkOffChild(number - 1) // This task will run asynchronously, probably in a different thread
 def result = runChildDirectly(number - 2) // This task is run directly within the current threadfinal
 () getChildrenResults().sum() + resultreturn Integer
 }
 withPool {
 assert 55 == runForkJoin(10, fib)
 }

Availability
This feature is only available when using in the Fork/Join-based , not in GParsPool GParsExecutorsPool
.

4. Groovy CSP
The CSP (Communicating Sequential Processes) abstraction builds on independent composable
processes, which exchange messages in a synchronous manner. GPars leverages the JCSP library
developed at the University of Kent, UK.
Jon Kerridge, the author of the CSP implementation in GPars, provides exhaustive examples on of
GroovyCSP use at his website:

The GroovyCSP implementation leverages JCSP, a Java-based CSP library, which is licensed
under GPL. Unlike the liberal Apache 2 license, which GPars uses, GPL is more restrictive
on use in commercial software. Please make sure your application conforms to the GPL rules
before enabling use of JCSP in your code.

If the GPL license is too restrictive for your use, you might consider checking out the Dataflow
Concurrency chapter of this User Guide to learn about , and , which may helptasks selectors operators
you resolve concurrency issues in ways similar to the CSP approach. In fact the dataflow and CSP
concepts stand very close to each other.

By default, without actively adding an explicit dependency on JCSP in your build file or
downloading and including the JCSP jar file in your project, the standard
commercial-software-friendly Apache 2 License terms apply to your project. GPars directly
only depends on software licensed under licenses compatible with the Apache 2 License.

5. Actors
The actor support in GPars was originally inspired by the Actors library in Scala, but has since gone well
beyond what Scala offers as standard.
Actors allow for a message passing-based concurrency model: programs are collections of independent
active objects that exchange messages and have no mutable shared state. Actors can help developers
avoid issues such as deadlock, live-lock and starvation, which are common problems for shared memory
based approaches. Actors are a way of leveraging the multi-core nature of today's hardware without all
the problems traditionally associated with shared-memory multi-threading, which is why programming
languages such as Erlang and Scala have taken up this model.
A nice article summarizing the key was written recently by Ruben Vermeersch.concepts behind actors
Actors always guarantee that at any one time and also,at most one thread processes the actor's body
under the covers, that the memory gets synchronized each time a thread gets assigned to an actor so the
actor's state by code in the body can be safely modified without any other extra (synchronization or

 . Ideally actor's code should directly from outside so all the code of thelocking) effort never be invoked
actor class can only be executed by the thread handling the last received message and so all the actor's
code is . If any of the actor's methods is allowed to be called by other objectsimplicitly thread-safe
directly, the thread-safety guarantee for the actor's code and state are .no longer valid

http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://www.soc.napier.ac.uk/~cs10/#_Toc271192596
http://ruben.savanne.be/articles/concurrency-in-erlang-scala

Types of actors

In general, you can find two types of actors in the wild - ones that hold and those, whoimplicit state
don't. GPars gives you both options. actors, represented in by the Stateless GPars DynamicDispatchActor
and the classes, keep no track of what messages have arrived previously. You may thing ofReactiveActor
these as flat message handlers, which process messages as they come. Any state-based behavior has to be
implemented by the user.
The actors, represented in GPars by the class (and previously also by the stateful DefaultActor

 class), allow the user to handle implicit state directly. After receiving a message theAbstractPooledActor
actor moves into a new state with different ways to handle future messages. To give you an example, a
freshly started actor may only accept some types of messages, e.g. encrypted messages for decryption,
only after it has received the encryption keys. The stateful actors allow to encode such dependencies
directly in the structure of the message-handling code. Implicit state management, however, comes at a
slight performance cost, mainly due to the lack of continuations support on JVM.

Actor threading model

Since actors are detached from the system threads, a great number of actors can share a relatively small
thread pool. This can go as far as having many concurrent actors that share a single pooled thread. This
architecture allows to avoid some of the threading limitations of the JVM. In general, while the JVM can
only give you a limited number of threads (typically around a couple of thousands), the number of actors
is only limited by the available memory. If an actor has no work to do, it doesn't consume threads.
Actor code is processed in chunks separated by quiet periods of waiting for new events (messages). This
can be naturally modeled through . As JVM doesn't support continuations directly, theycontinuations
have to be simulated in the actors frameworks, which has slight impact on organization of the actors'
code. However, the benefits in most cases outweigh the difficulties.

import groovyx.gpars.actor.Actor
 groovyx.gpars.actor.DefaultActorimport

class GameMaster DefaultActor {extends
 secretNumint
 void afterStart() {
 secretNum = Random().nextInt(10)new
 }
 void act() {
 loop {
 react { num ->int
 (num > secretNum)if
 reply 'too large'
 (num < secretNum)else if
 reply 'too small'
 {else
 reply 'you win'
 terminate()
 }
 }
 }
 }
}
class Player DefaultActor {extends
 nameString
 Actor server
 myNumint
 void act() {
 loop {
 myNum = Random().nextInt(10)new
 server.send myNum
 react {
 (it) {switch
 'too large': println ; case "$name: $myNum was too large" break
 'too small': println ; case "$name: $myNum was too small" break
 'you win': println ; terminate(); case "$name: I won $myNum" break

 }
 }
 }
 }
}
def master = GameMaster().start()new
def player = Player(name: 'Player', server: master).start()new
// forces main thread to live until both actors stopthis
[master, player]*.join()

example by Jordi Campos i Miralles, Departament de Matem tica Aplicada i An lisi, MAiA Facultat de
Matem tiques, Universitat de Barcelona

Usage of Actors
Gpars provides consistent Actor APIs and DSLs. Actors in principal perform three specific operations -
send messages, receive messages and create new actors. Although not specifically enforced by GPars
messages should be immutable or at least follow the policy when the sender never touches thehands-off
messages after the message has been sent off.

Sending messages

Messages can be sent to actors using the method.send()

def passiveActor = Actors.actor{
 loop {
 react { msg -> println ; }"Received: $msg"
 }
}
passiveActor.send 'Message 1'
passiveActor << 'Message 2' //using the << operator
passiveActor 'Message 3' //using the implicit call() method

Alternatively, the operator or the implicit method can be used. A family of << call() sendAndWait()
methods is available to block the caller until a reply from the actor is available. The is returned fromreply
the method as a return value. The methods may also return after a timeoutsendAndWait() sendAndWait()
expires or in case of termination of the called actor.

def replyingActor = Actors.actor{
 loop {
 react { msg ->
 println ;"Received: $msg"
 reply "I've got $msg"
 }
 }
}
def reply1 = replyingActor.sendAndWait('Message 4')
def reply2 = replyingActor.sendAndWait('Message 5', 10, TimeUnit.SECONDS)
use (TimeCategory) {
 def reply3 = replyingActor.sendAndWait('Message 6', 10.seconds)
}

The method allows the caller to continue its processing while the supplied closure issendAndContinue()
waiting for a reply from the actor.

friend.sendAndContinue 'I need money!', {money -> pocket money}
println 'I can my friend is collecting money me'continue while for

All , or methods will throw an exception if invoked on asend() sendAndWait() sendAndContinue()
non-active actor.

Receiving messages

Non-blocking message retrieval

Calling the method, optionally with a timeout parameter, from within the actor's code willreact()
consume the next message from the actor's inbox, potentially waiting, if there is no message to be
processed immediately.

println 'Waiting a gift'for
react {gift ->
 (myWife.likes gift) reply 'Thank you!'if
}

Under the covers the supplied closure is not invoked directly, but scheduled for processing by any thread
in the thread pool once a message is available. After scheduling the current thread will then be detached
from the actor and freed to process any other actor, which has received a message already.
To allow detaching actors from the threads the method demands the code to be written in a specialreact()

.Continuation-style

Actors.actor {
 loop {
 println 'Waiting a gift'for
 react {gift ->
 (myWife.likes gift) reply 'Thank you!'if
 {else
 reply 'Try again, please'
 react {anotherGift ->
 (myChildren.like gift) reply 'Thank you!'if
 }
 println 'Never reached'
 }
 }
 println 'Never reached'
 }
 println 'Never reached'
}

The method has a special semantics to allow actors to be detached from threads when no messagesreact()
are available in their mailbox. Essentially, schedules the supplied code (closure) to be executedreact()
upon next message arrival and returns. The closure supplied to the methods is the code where thereact()
computation should . Thus .continue continuation style
Since actor has to preserve the guarantee of at most one thread active within the actor's body, the next
message cannot be handled before the current message processing finishes. Typically, there shouldn't be a
need to put code after calls to . Some actor implementations even enforce this, however, GParsreact()
does not for performance reasons. The method allows iteration within the actor body. Unlikeloop()
typical looping constructs, like or loops, cooperates with nested blocks and willfor while loop() react()
ensure looping across subsequent message retrievals.

Sending replies

The methods are not only defined on the actors themselves, but for reply/replyIfExists
 (not available in , nor classes)AbstractPooledActor DefaultActor DynamicDispatchActor ReactiveActor

also on the processed messages themselves upon their reception, which is particularly handy when
handling multiple messages in a single call. In such cases invoked on the actor sends a reply toreply()
authors of all the currently processed message (the last one), whereas called on messages sends areply()
reply to the author of the particular message only.
See demo here

The sender property
Messages upon retrieval offer the sender property to identify the originator of the message. The property
is available inside the Actor's closure:

react {tweet ->
 (isSpam(tweet)) ignoreTweetsFrom senderif
 sender.send 'Never write me again!'
}

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=blob_plain;f=src/test/groovy/groovyx/gpars/samples/actors/stateful/DemoMultiMessage.groovy;hb=HEAD

Forwarding
When sending a message, a different actor can be specified as the sender so that potential replies to the
message will be forwarded to the specified actor and not to the actual originator.

def decryptor = Actors.actor {
 react {message ->
 reply message.reverse()
// sender.send message.reverse() //An alternative way to send replies
 }
}
def console = Actors.actor { //This actor will print out decrypted messages, since the replies are forwarded to it
 react {
 println 'Decrypted message: ' + it
 }
}
decryptor.send 'lellarap si yvoorG', console //Specify an actor to send replies to
console.join()

Creating Actors

Actors share a of threads, which are dynamically assigned to actors when the actors need to topool react
messages sent to them. The threads are returned to back the pool once a message has been processed and
the actor is idle waiting for some more messages to arrive.
For example, this is how you create an actor that prints out all messages that it receives.

def console = Actors.actor {
 loop {
 react {
 println it
 }
 }
}

Notice the method call, which ensures that the actor doesn't stop after having processed the firstloop()
message.
Here's an example with a decryptor service, which can decrypt submitted messages and send the
decrypted messages back to the originators.

final def decryptor = Actors.actor {
 loop {
 react { message ->String
 ('stopService' == message) {if
 println 'Stopping decryptor'
 stop()
 }
 reply message.reverse()else
 }
 }
}
Actors.actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 println 'Decrypted message: ' + it
 decryptor.send 'stopService'
 }
}.join()

Here's an example of an actor that waits for up to 30 seconds to receive a reply to its message.

def friend = Actors.actor {
 react {
 // doesn't reply -> caller won't receive any answer in timethis
 println it
 //reply 'Hello' //uncomment to answer conversationthis
 react {
 println it

 }
 }
}
def me = Actors.actor {
 friend.send('Hi')
 //wait answer 1secfor
 react(1000) {msg ->
 (msg == Actor.TIMEOUT) {if
 friend.send('I see, busy as usual. Never mind.')
 stop()
 } {else
 // conversationcontinue
 println "Thank you $msg"for
 }
 }
}
me.join()

Undelivered messages

Sometimes messages cannot be delivered to the target actor. When special action needs to be taken for
undelivered messages, at actor termination all unprocessed messages from its queue have their

 method called. The method or closure defined on the message can,onDeliveryError() onDeliveryError()
for example, send a notification back to the original sender of the message.

final DefaultActor me
me = Actors.actor {
 def message = 1
 message.metaClass.onDeliveryError = {->
 //send message back to the caller
 me << "Could not deliver $delegate"
 }
 def actor = Actors.actor {
 react {
 //wait 2sec in order next call in demo can be emitted
 .sleep(2000)Thread
 //stop actor after first message
 stop()
 }
 }
 actor << message
 actor << message
 react {
 //print whatever comes back
 println it
 }
}
me.join()

Alternatively the method can be specified on the sender itself. The method can beonDeliveryError()
added both dynamically

final DefaultActor me
me = Actors.actor {
 def message1 = 1
 def message2 = 2
 def actor = Actors.actor {
 react {
 //wait 2sec in order next call in demo can be emitted
 .sleep(2000)Thread
 //stop actor after first message
 stop()
 }
 }
 me.metaClass.onDeliveryError = {msg ->
 //callback on actor inaccessibility
 println "Could not deliver message $msg"
 }
 actor << message1

 actor << message2
 actor.join()
}
me.join()

and statically in actor definition:

class MyActor DefaultActor {extends
 void onDeliveryError(msg) {public
 println "Could not deliver message $msg"
 }
 …
}

Joining actors

Actors provide a method to allow callers to wait for the actor to terminate. A variant accepting ajoin()
timeout is also available. The Groovy operator comes in handy when joining multiple actors atspread-dot
a time.

def master = GameMaster().start()new
def player = Player(name: 'Player', server: master).start()new
[master, player]*.join()

Conditional and counting loops

The method allows for either a condition or a number of iterations to be specified, optionallyloop()
accompanied with a closure to invoke once the loop finishes - .After Loop Termination Code Handler
The following actor will loop three times to receive 3 messages and then prints out the maximum of the
received messages.

final Actor actor = Actors.actor {
 def candidates = []
 def printResult = {-> println }"The best offer is ${candidates.max()}"
 loop(3, printResult) {
 react {
 candidates << it
 }
 }
}
actor 10
actor 30
actor 20
actor.join()

The following actor will receive messages until a value greater then 30 arrives.

final Actor actor = Actors.actor {
 def candidates = []
 Closure printResult = {-> println }final "Reached best offer - ${candidates.max()}"
 loop({-> candidates.max() < 30}, printResult) {
 react {
 candidates << it
 }
 }
}
actor 10
actor 20
actor 25
actor 31
actor 20
actor.join()

The can use actor's but not .After Loop Termination Code Handler react{} loop()

 can be set to behave in a fair on non-fair (default) manner. Depending on theDefaultActor

strategy chosen, the actor either makes the thread available to other actors sharing the same
parallel group (fair), or keeps the thread fot itself until the message queue gets empty
(non-fair). Generally, non-fair actors perform 2 - 3 times better than fair ones.
Use either the factory method or the actor's makeFair() method.fairActor()

Custom schedulers

Actors leverage the standard JDK concurrency library by default. To provide a custom thread scheduler
use the appropriate constructor parameter when creating a parallel group (PGroup class). The supplied
scheduler will orchestrate threads in the group's thread pool.
Please also see the numerous .Actor Demos

5.1 Actors Principles

Actors share a of threads, which are dynamically assigned to actors when the actors need to topool react
messages sent to them. The threads are returned back to the pool once a message has been processed and
the actor is idle waiting for some more messages to arrive. Actors become detached from the underlying
threads and so a relatively small thread pool can serve potentially unlimited number of actors. Virtually
unlimited scalability in number of actors is the main advantage of , which are detachedevent-based actors
from the underlying physical threads.
Here are some examples of how to use actors. This is how you create an actor that prints out all messages
that it receives.

import groovyx.gpars.actor.Actors.*static
def console = actor {
 loop {
 react {
 println it
 }
 }

Notice the method call, which ensures that the actor doesn't stop after having processed the firstloop()
message.
As an alternative you can extend the class and override the method. Once youDefaultActor act()
instantiate the actor, you need to start it so that it attaches itself to the thread pool and can start accepting
messages. The factory method will take care of starting the actor.actor()

class CustomActor DefaultActor {extends
 @Override
 void act() {protected
 loop {
 react {
 println it
 }
 }
 }
}
def console= CustomActor()new
console.start()

Messages can be sent to the actor using multiple methods

console.send('Message')
console 'Message'
console.sendAndWait 'Message' //Wait a replyfor
console.sendAndContinue 'Message', {reply -> println } //Forward the reply to a function"I received reply: $reply"

Creating an asynchronous service

import groovyx.gpars.actor.Actors.*static
 def decryptor = actor {final

 loop {

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=tree;f=src/test/groovy/groovyx/gpars/samples;h=f9a751689a034a1d3de13c4874f4f4e839cb1026;hb=HEAD

 react { message->String
 reply message.reverse()
 }
 }
}
def console = actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 println 'Decrypted message: ' + it
 }
}
console.join()

As you can see, you create new actors with the method passing in the actor's body as a closureactor()
parameter. Inside the actor's body you can use to iterate, to receive messages and toloop() react() reply()
send a message to the actor, which has sent the currently processed message. The sender of the current
message is also available through the actor's property. When the decryptor actor doesn't find asender
message in its message queue at the time when is called, the method gives up the threadreact() react()
and returns it back to the thread pool for other actors to pick it up. Only after a new message arrives to the
actor's message queue, the closure of the method gets scheduled for processing with the pool.react()
Event-based actors internally simulate continuations - actor's work is split into sequentially run chunks,
which get invoked once a message is available in the inbox. Each chunk for a single actor can be
performed by a different thread from the thread pool.
Groovy flexible syntax with closures allows our library to offer multiple ways to define actors. For
instance, here's an example of an actor that waits for up to 30 seconds to receive a reply to its message.
Actors allow time DSL defined by org.codehaus.groovy.runtime.TimeCategory class to be used for
timeout specification to the method, provided the user wraps the call within a usereact() TimeCategory
block.

def friend = Actors.actor {
 react {
 // doesn't reply -> caller won't receive any answer in timethis
 println it
 //reply 'Hello' //uncomment to answer conversationthis
 react {
 println it
 }
 }
}
def me = Actors.actor {
 friend.send('Hi')
 //wait answer 1secfor
 react(1000) {msg ->
 (msg == Actor.TIMEOUT) {if
 friend.send('I see, busy as usual. Never mind.')
 stop()
 } {else
 // conversationcontinue
 println "Thank you $msg"for
 }
 }
}
me.join()

When a timeout expires when waiting for a message, the Actor.TIMEOUT message arrives instead. Also
the handler is invoked, if present on the actor:onTimeout()

def friend = Actors.actor {
 react {
 // doesn't reply -> caller won't receive any answer in timethis
 println it
 //reply 'Hello' //uncomment to answer conversationthis
 react {
 println it
 }
 }
}
def me = Actors.actor {
 friend.send('Hi')

 delegate.metaClass.onTimeout = {->
 friend.send('I see, busy as usual. Never mind.')
 stop()
 }
 //wait answer 1secfor
 react(1000) {msg ->
 (msg != Actor.TIMEOUT) {if
 // conversationcontinue
 println "Thank you $msg"for
 }
 }
}
me.join()

Notice the possibility to use Groovy meta-programming to define actor's lifecycle notification methods
(e.g.) dynamically. Obviously, the lifecycle methods can be defined the usual way when youonTimeout()
decide to define a new class for your actor.

class MyActor DefaultActor {extends
 void onTimeout() {public
 …
 }
 void act() {protected
 …
 }
}

Actors guarantee thread-safety for non-thread-safe code
Actors guarantee that always at most one thread processes the actor's body at a time and also under the
covers the memory gets synchronized each time a thread gets assigned to an actor so the actor's state can

 by code in the body .be safely modified without any other extra (synchronization or locking) effort

class MyCounterActor DefaultActor {extends
 counter = 0private Integer
 void act() {protected
 loop {
 react {
 counter++
 }
 }
 }
}

Ideally actor's code should directly from outside so all the code of the actor class cannever be invoked
only be executed by the thread handling the last received message and so all the actor's code is implicitly

 . If any of the actor's methods is allowed to be called by other objects directly, thethread-safe
thread-safety guarantee for the actor's code and state are .no longer valid

Simple calculator

A little bit more realistic example of an event-driven actor that receives two numeric messages, sums
them up and sends the result to the console actor.

import groovyx.gpars.group.DefaultPGroup
//not necessary, just showing that a single-threaded pool can still handle multiple actors
def group = DefaultPGroup(1);new

 def console = group.actor {final
 loop {
 react {
 println 'Result: ' + it
 }
 }
}

 def calculator = group.actor {final
 react {a ->
 react {b ->
 console.send(a + b)
 }

 }
}
calculator.send 2
calculator.send 3
calculator.join()
group.shutdown()

Notice that event-driven actors require special care regarding the method. Since react() event_driven
 need to split the code into independent chunks assignable to different threads sequentially and actors

 are not natively supported on JVM, the chunks are created artificially. The methodcontinuations react()
creates the next message handler. As soon as the current message handler finishes, the next message
handler (continuation) gets scheduled.

Concurrent Merge Sort Example
For comparison I'm also including a more involved example performing a concurrent merge sort of a list
of integers using actors. You can see that thanks to flexibility of Groovy we came pretty close to the Scala
model, although I still miss Scala pattern matching for message handling.

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.actor.Actors.actorimport static

Closure createMessageHandler(def parentActor) {
 {return
 react {List< > message ->Integer
 assert message != null
 (message.size()) {switch
 0..1:case
 parentActor.send(message)
 break
 2:case
 (message[0] <= message[1]) parentActor.send(message)if
 parentActor.send(message[-1..0])else
 break
 :default
 def splitList = split(message)
 def child1 = actor(createMessageHandler(delegate))
 def child2 = actor(createMessageHandler(delegate))
 child1.send(splitList[0])
 child2.send(splitList[1])
 react {message1 ->
 react {message2 ->
 parentActor.send merge(message1, message2)
 }
 }
 }
 }
 }
}
def console = DefaultPGroup(1).actor {new
 react {
 println "Sorted array:t${it}"
 .exit 0System
 }
}
def sorter = actor(createMessageHandler(console))
sorter.send([1, 5, 2, 4, 3, 8, 6, 7, 3, 9, 5, 3])
console.join()
def split(List< > list) {Integer
 listSize = list.size()int
 middleIndex = listSize / 2int
 def list1 = list[0..<middleIndex]
 def list2 = list[middleIndex..listSize - 1]
 [list1, list2]return
}
List< > merge(List< > a, List< > b) {Integer Integer Integer
 i = 0, j = 0int
 newSize = a.size() + b.size()final int
 List< > result = ArrayList< >(newSize)Integer new Integer
 ((i < a.size()) && (j < b.size())) {while
 (a[i] <= b[j]) result << a[i++]if

 result << b[j++]else
 }
 (i < a.size()) result.addAll(a[i..-1])if
 result.addAll(b[j..-1])else
 resultreturn
}

Since reuse threads from a pool, the script will work with virtually , noactors any size of a thread pool
matter how many actors are created along the way.

Actor lifecycle methods

Each Actor can define lifecycle observing methods, which will be called whenever a certain lifecycle
event occurs.

afterStart() - called right after the actor has been started.
afterStop(List undeliveredMessages) - called right after the actor is stopped, passing in all the
unprocessed messages from the queue.
onInterrupt(InterruptedException e) - called when the actor's thread gets interrupted. Thread
interruption will result in the stopping the actor in any case.
onTimeout() - called when no messages are sent to the actor within the timeout specified for the
currently blocking react method.
onException(Throwable e) - called when an exception occurs in the actor's event handler. Actor
will stop after return from this method.

You can either define the methods statically in your Actor class or add them dynamically to the actor's
metaclass:

class MyActor DefaultActor {extends
 void afterStart() {public
 …
 }
 void onTimeout() {public
 …
 }
 void act() {protected
 …
 }
}

def myActor = actor {
 delegate.metaClass.onException = {
 log.error('Exception occurred', it)
 }
…
}

To help performance, you may consider using the method instead of whensilentStart() start()
starting a or a . Calling will by-pass someDynamicDispatchActor ReactiveActor silentStart()
of the start-up machinery and as a result will also avoid calling the method. DueafterStart()
to its stateful nature, cannot be started silently.DefaultActor

Pool management
 can be organized into groups and as a default there's always an application-wide pooled actorActors

group available. And just like the abstract factory can be used to create actors in the default group,Actors
custom groups can be used as abstract factories to create new actors instances belonging to these groups.

def myGroup = DefaultPGroup()new
def actor1 = myGroup.actor {
…
}
def actor2 = myGroup.actor {
…
}

The actors belonging to the same group share the of that group. The pool byunderlying thread pool

default contains , where stands for the number of detected by the JVM. The n + 1 threads n CPUs pool
 can be set either by setting the system property or individually for eachsize explicitly gpars.poolsize

actor group by specifying the appropriate constructor parameter.

def myGroup = DefaultPGroup(10) //the pool will contain 10 threadsnew

The thread pool can be manipulated through the appropriate class, which to the DefaultPGroup delegates
 interface of the thread pool. For example, the method allows you to change the pool size anyPool resize()

time and the sets it back to the default value. The method can be calledresetDefaultSize() shutdown()
when you need to safely finish all tasks, destroy the pool and stop all the threads in order to exit JVM in
an organized manner.

… (n+1 threads in the pool after startup)default
Actors.defaultActorPGroup.resize 1 //use one-thread pool
… (1 thread in the pool)
Actors.defaultActorPGroup.resetDefaultSize()
… (n+1 threads in the pool)
Actors.defaultActorPGroup.shutdown()

As an alternative to the , which creates a pool of daemon threads, the DefaultPGroup NonDaemonPGroup
class can be used when non-daemon threads are required.

def daemonGroup = DefaultPGroup()new
def actor1 = daemonGroup.actor {
…
}
def nonDaemonGroup = NonDaemonPGroup()new
def actor2 = nonDaemonGroup.actor {
…
}
class MyActor {
 def MyActor() {
 .parallelGroup = nonDaemonGroupthis
 }
 void act() {...}
}

Actors belonging to the same group share the . With pooled actor groups you canunderlying thread pool
split your actors to leverage multiple thread pools of different sizes and so assign resources to different
components of your system and tune their performance.

def coreActors = NonDaemonPGroup(5) //5 non-daemon threads poolnew
def helperActors = DefaultPGroup(1) //1 daemon thread poolnew
def priceCalculator = coreActors.actor {
…
}
def paymentProcessor = coreActors.actor {
…
}
def emailNotifier = helperActors.actor {
…
}
def cleanupActor = helperActors.actor {
…
}
//increase size of the core actor group
coreActors.resize 6
//shutdown the group's pool once you no longer need the group to release resources
helperActors.shutdown()

Do not forget to shutdown custom pooled actor groups, once you no longer need them and their actors, to
preserve system resources.

Common trap: App terminates while actors do not receive messages
Most likely you're using daemon threads and pools, which is the default setting, and your main thread
finishes. Calling on any, some or all of your actors would block the main thread until the actoractor.join()
terminates and thus keep all your actors running. Alternatively use instances of andNonDaemonPGroup
assign some of your actors to these groups.

def nonDaemonGroup = NonDaemonPGroup()new
def myActor = nonDaemonGroup.actor {...}

alternatively

def nonDaemonGroup = NonDaemonPGroup()new
class MyActor DefaultActor {extends
 def MyActor() {
 .parallelGroup = nonDaemonGroupthis
 }
 void act() {...}
}
def myActor = MyActor()new

Blocking Actors
Instead of event-driven continuation-styled actors, you may in some scenarios prefer using blocking
actors. Blocking actors hold a single pooled thread for their whole life-time including the time when
waiting for messages. They avoid some of the thread management overhead, since they never fight for
threads after start, and also they let you write straight code without the necessity of continuation style,
since they only do blocking message reads via the method. Obviously the number of blockingreceive
actors running concurrently is limited by the number of threads available in the shared pool. On the other
hand, blocking actors typically provide better performance compared to continuation-style actors,
especially when the actor's message queue rarely gets empty.

def decryptor = blockingActor {
 () {while true
 receive {message ->
 (message) reply message.reverse()if instanceof String
 stop()else
 }
 }
}
def console = blockingActor {
 decryptor.send 'lellarap si yvoorG'
 println 'Decrypted message: ' + receive()
 decryptor.send false
}
[decryptor, console]*.join()

Blocking actors increase the number of options to tune performance of your applications. They may in
particular be good candidates for high-traffic positions in your actor network.

5.2 Stateless Actors

Dynamic Dispatch Actor
The class is an actor allowing for an alternative structure of the message handlingDynamicDispatchActor
code. In general repeatedly scans for messages and dispatches arrived messagesDynamicDispatchActor
to one of the methods defined on the actor. The leveragesonMessage(message) DynamicDispatchActor
the Groovy dynamic method dispatch mechanism under the covers. Since, unlike DefaultActor
descendants, a not (discussed below) do not need to implicitlyDynamicDispatchActor ReactiveActor
remember actor's state between subsequent message receptions, they provide much better performance
characteristics, generally comparable to other actor frameworks, like e.g. Scala Actors.

import groovyx.gpars.actor.Actors
 groovyx.gpars.actor.DynamicDispatchActorimport
 class MyActor DynamicDispatchActor {final extends

 void onMessage(message) {String
 println 'Received string'
 }
 void onMessage(message) {Integer
 println 'Received integer'
 reply 'Thanks!'
 }
 void onMessage(message) {Object
 println 'Received object'
 sender.send 'Thanks!'

 }
 void onMessage(List message) {
 println 'Received list'
 stop()
 }
}

 def myActor = MyActor().start()final new
Actors.actor {
 myActor 1
 myActor ''
 myActor 1.0
 myActor(ArrayList())new
 myActor.join()
}.join()

In some scenarios, typically when no implicit conversation-history-dependent state needs to be preserved
for the actor, the dynamic dispatch code structure may be more intuitive than the traditional one using
nested and statements.loop react
The class also provides a handy facility to add message handlers dynamically atDynamicDispatchActor
actor construction time or any time later using the handlers, optionally wrapped inside a when become
method:

final Actor myActor = DynamicDispatchActor().become {new
 when { msg -> println 'A '; reply 'Thanks'}String String
 when { msg -> println 'A '; reply 'Thanks'}Double Double
 when {msg -> println 'A something ...'; reply 'What was that?';stop()}
}
myActor.start()
Actors.actor {
 myActor 'Hello'
 myActor 1.0d
 myActor 10 as BigDecimal
 myActor.join()
}.join()

Obviously the two approaches can be combined:

final class MyDDA DynamicDispatchActor {extends
 void onMessage(message) {String
 println 'Received string'
 }
 void onMessage(message) {Integer
 println 'Received integer'
 }
 void onMessage(message) {Object
 println 'Received object'
 }
 void onMessage(List message) {
 println 'Received list'
 stop()
 }
}

 def myActor = MyDDA().become {final new
 when {BigDecimal num -> println 'Received BigDecimal'}
 when { num -> println 'Got a '}Float float
}.start()
Actors.actor {
 myActor 'Hello'
 myActor 1.0f
 myActor 10 as BigDecimal
 myActor.send([])
 myActor.join()
}.join()

The dynamic message handlers registered via take precedence over the static handlers.when onMessage

 can be set to behave in a fair on non-fair (default) manner.DynamicDispatchActor
Depending on the strategy chosen, the actor either makes the thread available to other actors
sharing the same parallel group (fair), or keeps the thread fot itself until the message queue
gets empty (non-fair). Generally, non-fair actors perform 2 - 3 times better than fair ones.
Use either the factory method or the actor's makeFair() method.fairMessageHandler()

def fairActor = Actors.fairMessageHandler {...}

Reactive Actor
The class, constructed typically by calling or ,ReactiveActor Actors.reactor() DefaultPGroup.reactor()
allow for more event-driven like approach. When a reactive actor receives a message, the supplied block
of code, which makes up the reactive actor's body, is run with the message as a parameter. The result
returned from the code is sent in reply.

final def group = DefaultPGroup()new
 def doubler = group.reactor {final

 2 * it
}
group.actor {
 println ' of 10 = ' + doubler.sendAndWait(10)Double
}
group.actor {
 println ' of 20 = ' + doubler.sendAndWait(20)Double
}
group.actor {
 println ' of 30 = ' + doubler.sendAndWait(30)Double
}

(i in (1..10)) {for
 println " of $i = ${doubler.sendAndWait(i)}"Double
}
doubler.stop()
doubler.join()

Here's an example of an actor, which submits a batch of numbers to a for processing andReactiveActor
then prints the results gradually as they arrive.

import groovyx.gpars.actor.Actor
 groovyx.gpars.actor.Actorsimport
 def doubler = Actors.reactor {final

 2 * it
}
Actor actor = Actors.actor {
 (1..10).each {doubler << it}
 i = 0int
 loop {
 i += 1
 (i > 10) stop()if
 {else
 react {message ->
 println " of $i = $message"Double
 }
 }
 }
}
actor.join()
doubler.stop()
doubler.join()

Essentially reactive actors provide a convenience shortcut for an actor that would wait for messages in a
loop, process them and send back the result. This is schematically how the reactive actor looks inside:

public class ReactiveActor DefaultActor {extends
 Closure body
 void act() {
 loop {
 react {message ->
 reply body(message)
 }
 }
 }
}

 can be set to behave in a fair on non-fair (default) manner. Depending on theReactiveActor

strategy chosen, the actor either makes the thread available to other actors sharing the same
parallel group (fair), or keeps the thread fot itself until the message queue gets empty
(non-fair). Generally, non-fair actors perform 2 - 3 times better than fair ones.
Use either the factory method or the actor's makeFair() method.fairReactor()

def fairActor = Actors.fairReactor {...}

5.3 Tips and Tricks

Structuring actor's code

When extending the class, you can call any actor's methods from within the methodDefaultActor act()
and use the or methods in them.react() loop()

class MyDemoActor DefaultActor {extends
 void act() {protected
 handleA()
 }
 void handleA() {private
 react {a ->
 handleB(a)
 }
 }
 void handleB(a) {private int
 react {b ->
 println a + b
 reply a + b
 }
 }
}

 def demoActor = MyDemoActor()final new
demoActor.start()
Actors.actor {
 demoActor 10
 demoActor 20
 react {
 println "Result: $it"
 }
}.join()

Bear in mind that the methods and in all our examples will only schedule thehandleA() handleB()
supplied message handlers to run as continuations of the current calculation in reaction to the next
message arriving.
Alternatively, when using the factory method, you can add event-handling code through the metaactor()
class as closures.

Actor demoActor = Actors.actor {
 delegate.metaClass {
 handleA = {->
 react {a ->
 handleB(a)
 }
 }
 handleB = {a ->
 react {b ->
 println a + b
 reply a + b
 }
 }
 }
 handleA()
}
Actors.actor {
 demoActor 10
 demoActor 20
 react {

 println "Result: $it"
 }
}.join()

Closures, which have the actor set as their delegate can also be used to structure event-handling code.

Closure handleB = {a ->
 react {b ->
 println a + b
 reply a + b
 }
}
Closure handleA = {->
 react {a ->
 handleB(a)
 }
}
Actor demoActor = Actors.actor {
 handleA.delegate = delegate
 handleB.delegate = delegate
 handleA()
}
Actors.actor {
 demoActor 10
 demoActor 20
 react {
 println "Result: $it"
 }
}.join()

Event-driven loops

When coding event-driven actors you have to have in mind that calls to and methods havereact() loop()
slightly different semantics. This becomes a bit of a challenge once you try to implement any types of
loops in your actors. On the other hand, if you leverage the fact that only schedules a continuationreact()
and returns, you may call methods recursively without fear to fill up the stack. Look at the examples
below, which respectively use the three described techniques for structuring actor's code.
A subclass of DefaultActor

class MyLoopActor DefaultActor {extends
 void act() {protected
 outerLoop()
 }
 void outerLoop() {private
 react {a ->
 println 'Outer: ' + a
 (a != 0) innerLoop()if
 println 'Done'else
 }
 }
 void innerLoop() {private
 react {b ->
 println 'Inner ' + b
 (b == 0) outerLoop()if
 innerLoop()else
 }
 }
}

 def actor = MyLoopActor().start()final new
actor 10
actor 20
actor 0
actor 0
actor.join()

Enhancing the actor's metaClass

Actor actor = Actors.actor {
 delegate.metaClass {
 outerLoop = {->

 react {a ->
 println 'Outer: ' + a
 (a!=0) innerLoop()if
 println 'Done'else
 }
 }
 innerLoop = {->
 react {b ->
 println 'Inner ' + b
 (b==0) outerLoop()if
 innerLoop()else
 }
 }
 }
 outerLoop()
}
actor 10
actor 20
actor 0
actor 0
actor.join()

Using Groovy closures

Closure innerLoop
Closure outerLoop = {->
 react {a ->
 println 'Outer: ' + a
 (a!=0) innerLoop()if
 println 'Done'else
 }
}
innerLoop = {->
 react {b ->
 println 'Inner ' + b
 (b==0) outerLoop()if
 innerLoop()else
 }
}
Actor actor = Actors.actor {
 outerLoop.delegate = delegate
 innerLoop.delegate = delegate
 outerLoop()
}
actor 10
actor 20
actor 0
actor 0
actor.join()

Plus don't forget about the possibility to use the actor's method to create a loop that runs until theloop()
actor terminates.

class MyLoopingActor DefaultActor {extends
 void act() {protected
 loop {
 outerLoop()
 }
 }
 void outerLoop() {private
 react {a ->
 println 'Outer: ' + a
 (a!=0) innerLoop()if
 println 'Done now, but will loop again'else for
 }
 }
 void innerLoop() {private
 react {b ->
 println 'Inner ' + b
 (b == 0) outerLoop()if
 innerLoop()else
 }

 }
}

 def actor = MyLoopingActor().start()final new
actor 10
actor 20
actor 0
actor 0
actor 10
actor.stop()
actor.join()

5.4 Active Objects

Active objects provide an OO facade on top of actors, allowing you to avoid dealing directly with the
actor machinery, having to match messages, wait for results and send replies.

Actors with a friendly facade
import groovyx.gpars.activeobject.ActiveObject

 groovyx.gpars.activeobject.ActiveMethodimport
@ActiveObject
class Decryptor {
 @ActiveMethod
 def decrypt(encryptedText) {String
 encryptedText.reverse()return
 }
 @ActiveMethod
 def decrypt(encryptedNumber) {Integer
 -1*encryptedNumber + 142return
 }
}

 Decryptor decryptor = Decryptor()final new
def part1 = decryptor.decrypt(' noitcA ni yvoorG')
def part2 = decryptor.decrypt(140)
def part3 = decryptor.decrypt('noittide dn')
print part1.get()
print part2.get()
println part3.get()

You mark active objects with the annotation. This will ensure a hidden actor instance is@ActiveObject
created for each instance of your class. Now you can mark methods with the annotation@ActiveMethod
indicating that you want the method to be invoked asynchronously by the target object's internal actor. An
optional boolean parameter to the annotation specifies, whether the callerblocking @ActiveMethod
should block until a result is available or whether instead the caller should only receive a for apromise
future result in a form of a and so the caller is not blocked waiting.DataflowVariable

By default, all active methods are set to be . However, methods, which declarenon-blocking
their return type explicitly, must be configured as blocking, otherwise the compiler will
report an error. Only , and are allowed return types fordef void DataflowVariable
non-blocking methods.

Under the covers, GPars will translate your method call to .a message being sent to the internal actor
The actor will eventually handle that message by invoking the desired method on behalf of the caller and
once finished a reply will be sent back to the caller. Non-blocking methods return promises for results,
aka .DataflowVariables

But blocking means we're not really asynchronous, are we?
Indeed, if you mark your active methods as , the caller will be blocked waiting for the result, justblocking
like when doing normal plain method invocation. All we've achieved is being thread-safe inside the
Active object from concurrent access. Something the keyword could give you as well. So itsynchronized
is the methods that should drive your decision towards using active objects. Blockingnon-blocking
methods will then provide the usual synchronous semantics yet give the consistency guarantees across
concurrent method invocations. The blocking methods are then still very useful when used in combination
with non-blocking ones.

1.
2.
3.
4.

5.

import groovyx.gpars.activeobject.ActiveMethod
 groovyx.gpars.activeobject.ActiveObjectimport
 groovyx.gpars.dataflow.DataflowVariableimport

@ActiveObject
class Decryptor {
 @ActiveMethod(blocking=)true
 decrypt(encryptedText) {String String
 encryptedText.reverse()
 }
 @ActiveMethod(blocking=)true
 decrypt(encryptedNumber) {Integer Integer
 -1*encryptedNumber + 142
 }
}

 Decryptor decryptor = Decryptor()final new
print decryptor.decrypt(' noitcA ni yvoorG')
print decryptor.decrypt(140)
println decryptor.decrypt('noittide dn')

Non-blocking semantics
Now calling the non-blocking active method will return as soon as the actor has been sent a message. The
caller is now allowed to do whatever he likes, while the actor is taking care of the calculation. The state of
the calculation can be polled using the property on the promise. Calling the method on thebound get()
returned promise will block the caller until a value is available. The call to will eventually return aget()
value or throw an exception, depending on the outcome of the actual calculation.

The method has also a variant with a timeout parameter, if you want to avoid the risk ofget()
waiting indefinitely.

Annotation rules
There are a few rules to follow when annotating your objects:

The annotations are only accepted in classes annotated as ActiveMethod ActiveObject
Only instance (non-static) methods can be annotated as ActiveMethod
You can override active methods with non-active ones and vice versa
Subclasses of active objects can declare additional active methods, provided they are themselves
annotated as ActiveObject
Combining concurrent use of active and non-active methods may result in race conditions. Ideally
design your active objects as completely encapsulated classes with all non-private methods marked
as active

Inheritance
The annotation can appear on any class in an inheritance hierarchy. The actor field will@ActiveObject
only be created in top-most annotated class in the hierarchy, the subclasses will reuse the field.

import groovyx.gpars.activeobject.ActiveObject
 groovyx.gpars.activeobject.ActiveMethodimport
 groovyx.gpars.dataflow.DataflowVariableimport

@ActiveObject
class A {
 @ActiveMethod
 def fooA(value) {
 …
 }
}
class B A {extends
}
@ActiveObject
class C B {extends
 @ActiveMethod
 def fooC(value1, value2) {

 …
 }
}

In our example the actor field will be generated into class . Class has to be annotated with A C
 since it holds the annotation on method , while class does not@ActiveObject @ActiveMethod fooC() B

need the annotation, since none of its methods is active.

Groups
Just like actors can be grouped around thread pools, active objects can be configured to use threads from
particular parallel groups.

@ActiveObject()"group1"
class MyActiveObject {
 …
}

The parameter to the annotation specifies a name of parallel group to bind thevalue @ActiveObject
internal actor to. Only threads from the specified group will be used to run internal actors of instances of
the class. The groups, however, need to be created and registered prior to creation of any of the active
object instances belonging to that group. If not specified explicitly, an active object will use the default
actor group - .Actors.defaultActorPGroup

final DefaultPGroup group = DefaultPGroup(10)new
ActiveObjectRegistry.instance.register(, group)"group1"

Alternative names for the internal actor
You will probably only rarely run into name collisions with the default name for the active object's
internal actor field. May you need to change the default name , use the internalActiveObjectActor

 parameter to the annotation.actorName @ActiveObject

@ActiveObject(actorName =)"alternativeActorName"
class MyActiveObject {
 …
}

Alternative names for internal actors as well as their desired groups cannot be overriden in
subclasses. Make sure you only specify these values in the top-most active objects in your
inheritance hierarchy. Obviously, the top most active object is still allowed to subclass other
classes, just none of the predecessors must be an active object.

5.5 Classic Examples using Actors

A few examples on Actors use

Examples

The Sieve of Eratosthenes
Sleeping Barber
Dining Philosophers
Word Sort
Load Balancer

The Sieve of Eratosthenes

Problem description

import groovyx.gpars.actor.DynamicDispatchActor
/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using actors

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

 *
 * In principle, the algorithm consists of concurrently run chained filters,
 * each of which detects whether the current number can be divided by a single prime number.
 * (generate nums 1, 2, 3, 4, 5, ...) -> (filter by mod 2) -> (filter by mod 3) -> (filter by mod 5) -> (filter by mod 7) -> (filter by mod 11) -> (caution! Primes falling out here)
 * The chain is built (grows) on the fly, whenever a prime is found.new
 */

 requestedPrimeNumberBoundary = 1000int
 def firstFilter = FilterActor(2).start()final new

/**
 * Generating candidate numbers and sending them to the actor chain
 */
(2..requestedPrimeNumberBoundary).each {
 firstFilter it
}
firstFilter.sendAndWait 'Poison'
/**
 * Filter out numbers that can be divided by a single prime number
 */

 class FilterActor DynamicDispatchActor {final extends
 myPrimeprivate final int
 def followerprivate
 def FilterActor(myPrime) { .myPrime = myPrime; }final this
 /**
 * Try to divide the received number with the prime. If the number cannot be divided, send it along the chain.
 * If there's no-one to send it to, I'm the last in the chain, the number is a prime and so I will create and chain
 * a actor responsible filtering by newly found prime number.new for this
 */
 def onMessage(value) {int
 (value % myPrime != 0) {if
 (follower) follower valueif
 {else
 println "Found $value"
 follower = FilterActor(value).start()new
 }
 }
 }
 /**
 * Stop the actor on poisson reception
 */
 def onMessage(def poisson) {
 (follower) {if
 def sender = sender
 follower.sendAndContinue(poisson, { .stop(); sender?.send('Done')}) //Pass the poisson along and stop after a replythis
 } { //I am the last in the chainelse
 stop()
 reply 'Done'
 }
 }
}

Sleeping Barber

Problem description

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.actor.DefaultActorimport
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.actor.Actorimport
 def group = DefaultPGroup()final new
 def barber = group.actor {final

 def random = Random()final new
 loop {
 react {message ->
 (message) {switch
 Enter:case
 message.customer.send Start()new
 println "Barber: Processing customer ${message.customer.name}"
 doTheWork(random)
 message.customer.send Done()new

http://en.wikipedia.org/wiki/Sleeping_barber_problem

 reply Next()new
 break
 Wait:case
 println "Barber: No customers. Going to have a sleep"
 break
 }
 }
 }
}

 def doTheWork(Random random) {private
 .sleep(random.nextInt(10) * 1000)Thread
}

 Actor waitingRoomfinal
waitingRoom = group.actor {
 capacity = 5final int
 List<Customer> waitingCustomers = []final
 barberAsleep = boolean true
 loop {
 react {message ->
 (message) {switch
 Enter:case
 (waitingCustomers.size() == capacity) {if
 reply Full()new
 } {else
 waitingCustomers << message.customer
 (barberAsleep) {if
 assert waitingCustomers.size() == 1
 barberAsleep = false
 waitingRoom.send Next()new
 }
 reply Wait()else new
 }
 break
 Next:case
 (waitingCustomers.size()>0) {if
 def customer = waitingCustomers.remove(0)
 barber.send Enter(customer:customer)new
 } {else
 barber.send Wait()new
 barberAsleep = true
 }
 }
 }
 }
}
class Customer DefaultActor {extends
 nameString
 Actor localBarbers
 void act() {
 localBarbers << Enter(customer:)new this
 loop {
 react {message ->
 (message) {switch
 Full:case
 println "Customer: $name: The waiting room is full. I am leaving."
 stop()
 break
 Wait:case
 println "Customer: $name: I will wait."
 break
 Start:case
 println "Customer: $name: I am now being served."
 break
 Done:case
 println "Customer: $name: I have been served."
 stop();
 break
 }
 }

 }
 }
}
class Enter { Customer customer }
class Full {}
class Wait {}
class Next {}
class Start {}
class Done {}
def customers = []
customers << Customer(name:'Joe', localBarbers:waitingRoom).start()new
customers << Customer(name:'Dave', localBarbers:waitingRoom).start()new
customers << Customer(name:'Alice', localBarbers:waitingRoom).start()new
sleep 15000
customers << Customer(name: 'James', localBarbers: waitingRoom).start()new
sleep 5000
customers*.join()
barber.stop()
waitingRoom.stop()

Dining Philosophers

Problem description

import groovyx.gpars.actor.DefaultActor
 groovyx.gpars.actor.Actorsimport

Actors.defaultActorPGroup.resize 5
 class Philosopher DefaultActor {final extends

 Random random = Random()private new
 nameString
 def forks = []
 void act() {
 assert 2 == forks.size()
 loop {
 think()
 forks*.send Take()new
 def messages = []
 react {a ->
 messages << [a, sender]
 react {b ->
 messages << [b, sender]
 ([a, b].any {Rejected.isCase it}) {if
 println "$name: tOops, can't get my forks! Giving up."
 def accepted = messages.find {Accepted.isCase it[0]}final
 (accepted!=) accepted[1].send Finished()if null new
 } {else
 eat()
 reply Finished()new
 }
 }
 }
 }
 }
 void think() {
 println "$name: tI'm thinking"
 .sleep random.nextInt(5000)Thread
 println "$name: tI'm done thinking"
 }
 void eat() {
 println "$name: tI'm EATING"
 .sleep random.nextInt(2000)Thread
 println "$name: tI'm done EATING"
 }
}

 class Fork DefaultActor {final extends
 nameString
 available = boolean true
 void act() {
 loop {

http://en.wikipedia.org/wiki/Dining_philosophers_problem

 react {message ->
 (message) {switch
 Take:case
 (available) {if
 available = false
 reply Accepted()new
 } reply Rejected()else new
 break
 Finished:case
 assert !available
 available = true
 break
 : IllegalStateException()default throw new "Cannot process the message: $message"
 }
 }
 }
 }
}

 class Take {}final
 class Accepted {}final
 class Rejected {}final
 class Finished {}final

def forks = [
 Fork(name:'Fork 1'),new
 Fork(name:'Fork 2'),new
 Fork(name:'Fork 3'),new
 Fork(name:'Fork 4'),new
 Fork(name:'Fork 5')new
]
def philosophers = [
 Philosopher(name:'Joe', forks:[forks[0], forks[1]]),new
 Philosopher(name:'Dave', forks:[forks[1], forks[2]]),new
 Philosopher(name:'Alice', forks:[forks[2], forks[3]]),new
 Philosopher(name:'James', forks:[forks[3], forks[4]]),new
 Philosopher(name:'Phil', forks:[forks[4], forks[0]]),new
]
forks*.start()
philosophers*.start()
sleep 10000
forks*.stop()
philosophers*.stop()

Word sort

Given a folder name, the script will sort words in all files in the folder. The actor creates aSortMaster
given number of , splits among them the files to sort words in and collects the results.WordSortActors
Inspired by Scala Concurrency blog post by Michael Galpin

//Messages
 class FileToSort { fileName }private final String
 class SortResult { fileName; List< > words }private final String String

//Worker actor
 class WordSortActor DefaultActor {final extends

 List< > sortedWords(fileName) {private String String
 parseFile(fileName).sort {it.toLowerCase()}
 }
 List< > parseFile(fileName) {private String String
 List< > words = []String
 File(fileName).splitEachLine(' ') {words.addAll(it)}new
 wordsreturn
 }
 void act() {
 loop {
 react {message ->
 (message) {switch
 FileToSort:case
 println "Sorting file=${message.fileName} on thread ${ .currentThread().name}"Thread
 reply SortResult(fileName: message.fileName, words: sortedWords(message.fileName))new
 }

http://fupeg.blogspot.com/2009/06/scala-concurrency.html

 }
 }
 }
}
//Master actor

 class SortMaster DefaultActor {final extends
 docRoot = '/'String
 numActors = 1int
 List<List< >> sorted = []String
 CountDownLatch startupLatch = CountDownLatch(1)private new
 CountDownLatch doneLatchprivate
 void beginSorting() {private
 cnt = sendTasksToWorkers()int
 doneLatch = CountDownLatch(cnt)new
 }
 List createWorkers() {private
 (1..numActors).collect { WordSortActor().start()}return new
 }
 sendTasksToWorkers() {private int
 List<Actor> workers = createWorkers()
 cnt = 0int
 File(docRoot).eachFile {new
 workers[cnt % numActors] << FileToSort(fileName: it)new
 cnt += 1
 }
 cntreturn
 }
 void waitUntilDone() {public
 startupLatch.await()
 doneLatch.await()
 }
 void act() {
 beginSorting()
 startupLatch.countDown()
 loop {
 react {
 (it) {switch
 SortResult:case
 sorted << it.words
 doneLatch.countDown()
 println "Received results file=${it.fileName}"for
 }
 }
 }
 }
}
//start the actors to sort words
def master = SortMaster(docRoot: 'c:/tmp/Logs/', numActors: 5).start()new
master.waitUntilDone()
println 'Done'
File file = File()new "c:/tmp/Logs/sorted_words.txt"
file.withPrintWriter { printer ->
 master.sorted.each { printer.println it }
}

Load Balancer

Demonstrates work balancing among adaptable set of workers. The load balancer receives tasks and
queues them in a temporary task queue. When a worker finishes his assignment, it asks the load balancer
for a new task.
If the load balancer doesn't have any tasks available in the task queue, the worker is stopped. If the
number of tasks in the task queue exceeds certain limit, a new worker is created to increase size of the
worker pool.

import groovyx.gpars.actor.Actor
 groovyx.gpars.actor.DefaultActorimport

/**
 * Demonstrates work balancing among adaptable set of workers.

 * The load balancer receives tasks and queues them in a temporary task queue.
 * When a worker finishes his assignment, it asks the load balancer a task.for new
 * If the load balancer doesn't have any tasks available in the task queue, the worker is stopped.
 * If the number of tasks in the task queue exceeds certain limit, a worker is creatednew
 * to increase size of the worker pool.
 */

 class LoadBalancer DefaultActor {final extends
 workers = 0int
 List taskQueue = []
 QUEUE_SIZE_TRIGGER = 10private static final
 void act() {
 loop {
 react { message ->
 (message) {switch
 NeedMoreWork:case
 (taskQueue.size() == 0) {if
 println 'No more tasks in the task queue. Terminating the worker.'
 reply DemoWorker.EXIT
 workers -= 1
 } reply taskQueue.remove(0)else
 break
 WorkToDo:case
 taskQueue << message
 ((workers == 0) || (taskQueue.size() >= QUEUE_SIZE_TRIGGER)) {if
 println 'Need more workers. Starting one.'
 workers += 1
 DemoWorker().start()new this
 }
 }
 println "Active workers=${workers}tTasks in queue=${taskQueue.size()}"
 }
 }
 }
}

 class DemoWorker DefaultActor {final extends
 EXIT = ()final static Object new Object
 Random random = Random()private static final new
 Actor balancer
 def DemoWorker(balancer) {
 .balancer = balancerthis
 }
 void act() {
 loop {
 .balancer << NeedMoreWork()this new
 react {
 (it) {switch
 WorkToDo:case
 processMessage(it)
 break
 EXIT: terminate()case
 }
 }
 }
 }
 void processMessage(message) {private
 (random) {synchronized
 .sleep random.nextInt(5000)Thread
 }
 }
}

 class WorkToDo {}final
 class NeedMoreWork {}final
 Actor balancer = LoadBalancer().start()final new

//produce tasks
 (i in 1..20) {for

 .sleep 100Thread
 balancer << WorkToDo()new
}
//produce tasks in a parallel thread

.start {Thread
 (i in 1..10) {for

 .sleep 1000Thread
 balancer << WorkToDo()new
 }
}

.sleep 35000 //let the queues get emptyThread
balancer << WorkToDo()new
balancer << WorkToDo()new

.sleep 10000Thread
balancer.stop()
balancer.join()

6. Agent
The Agent class, which is a thread-safe non-blocking shared mutable state wrapper implementation
inspired by Agents in Clojure.

A lot of the concurrency problems disappear when you eliminate the need for Shared
Mutable State with your architecture. Indeed, concepts like actors, CSP or dataflow
concurrency avoid or isolate mutable state completely. In some cases, however, sharing
mutable data is either inevitable or makes the design more natural and understandable. Think,
for example, of a shopping cart in a typical e-commerce application, when multiple AJAX
requests may hit the cart with read or write requests concurrently.

Introduction

In the Clojure programing language you can find a concept of Agents, the purpose of which is to protect
mutable data that need to be shared across threads. Agents hide the data and protect it from direct access.
Clients can only send commands (functions) to the agent. The commands will be serialized and processed
against the data one-by-one in turn. With the commands being executed serially the commands do not
need to care about concurrency and can assume the data is all theirs when run. Although implemented
differently, GPars Agents, called , fundamentally behave like actors. They accept messages andAgent
process them asynchronously. The messages, however, must be commands (functions or Groovy closures)
and will be executed inside the agent. After reception the received function is run against the internal state
of the Agent and the return value of the function is considered to be the new internal state of the Agent.
Essentially, agents safe-guard mutable values by allowing only a single to makeagent-managed thread
modifications to them. The mutable values are from outside, but instead not directly accessible requests

 and the agent guarantees to process the requests sequentially on behalf of thehave to be sent to the agent
callers. Agents guarantee sequential execution of all requests and so consistency of the values.
Schematically:

agent = Agent(0) //created a Agent wrapping an integer with initial value 0new new
agent.send {increment()} //asynchronous send operation, sending the increment() function
…
//after some delay to process the message the internal Agent's state has been updated
…
assert agent.val== 1

To wrap integers, we can certainly use AtomicXXX types on the Java platform, but when the state is a
more complex object we need more support.

Concepts

GPars provides an Agent class, which is a special-purpose thread-safe non-blocking implementation
inspired by Agents in Clojure.
An Agent wraps a reference to mutable state, held inside a single field, and accepts code (closures /
commands) as messages, which can be sent to the Agent just like to any other actor using the '<<'
operator, the send() methods or the implicit method. At some point after reception of a closure /call()
command, the closure is invoked against the internal mutable field and can make changes to it. The

closure is guaranteed to be run without intervention from other threads and so may freely alter the internal
state of the Agent held in the internal <i>data</i> field.
The whole update process is of the fire-and-forget type, since once the message (closure) is sent to the
Agent, the caller thread can go off to do other things and come back later to check the current value with
Agent.val or Agent.valAsync(closure).

Basic rules

When executed, the submitted commands obtain the agent's state ar a parameter.
The submitted commands /closures can call any methods on the agent's state.
Replacing the state object with a new one is also possible and is done using the updateValue()

.method
The of the submitted closure doesn't have a special meaning and is ignored.return value
If the message sent to an is , it is considered to be a for the internalAgent not a closure new value
reference field.
The property of an will wait until all preceding commands in the agent's queue areval Agent
consumed and then safely return the value of the Agent.
The property will return an immediate snapshot of the internal agent's state.instantVal
The method will do the same the caller.valAsync() without blocking
All Agent instances share a default daemon thread pool. Setting the property of anthreadPool
Agent instance will allow it to use a different thread pool.
Exceptions thrown by the commands can be collected using the property.errors

Examples

Shared list of members
The Agent wraps a list of members, who have been added to the jug. To add a new member a message
(command to add a member) has to be sent to the Agent.jugMembers

import groovyx.gpars.agent.Agent
 java.util.concurrent.ExecutorServiceimport
 java.util.concurrent.Executorsimport

/**
 * Create a Agent wrapping a list of stringsnew
 */
def jugMembers = Agent<List< >>(['Me']) //add Menew String
jugMembers.send {it.add 'James'} //add James

 t1 = .start {final Thread Thread
 jugMembers.send {it.add 'Joe'} //add Joe
}

 t2 = .start {final Thread Thread
 jugMembers << {it.add 'Dave'} //add Dave
 jugMembers {it.add 'Alice'} //add Alice (using the implicit call() method)
}
[t1, t2]*.join()
println jugMembers.val
jugMembers.valAsync {println }"Current members: $it"
jugMembers.await()

Shared conference counting number of registrations
The Conference class allows registration and un-registration, however these methods can only be called
from the commands sent to the Agent.conference

import groovyx.gpars.agent.Agent
/**
 * Conference stores number of registrations and allows parties to register and unregister.
 * It inherits from the Agent class and adds the register() and unregister() methods,private
 * which callers may use it the commands they submit to the Conference.
 */
class Conference Agent< > {extends Long
 def Conference() { (0) }super
 def register(num) { data += num }private long

1.
2.

 def unregister(num) { data -= num }private long
}

 Agent conference = Conference() // Conference createdfinal new new
/**
 * Three external parties will to register/unregister concurrentlytry
 */

 t1 = .start {final Thread Thread
 conference << {register(10L)} //send a command to register 10 attendees
}

 t2 = .start {final Thread Thread
 conference << {register(5L)} //send a command to register 5 attendees
}

 t3 = .start {final Thread Thread
 conference << {unregister(3L)} //send a command to unregister 3 attendees
}
[t1, t2, t3]*.join()
assert 12L == conference.val

Factory methods

Agent instances can also be created using the factory method.Agent.agent()

def jugMembers = Agent.agent ['Me'] //add Me

Listeners and validators

Agents allow the user to add listeners and validators. While listeners will get notified each time the
internal state changes, validators get a chance to reject a coming change by throwing an exception.

final Agent counter = Agent()new
counter.addListener {oldValue, newValue -> println }"Changing value from $oldValue to $newValue"
counter.addListener {agent, oldValue, newValue -> println }"Agent $agent changing value from $oldValue to $newValue"
counter.addValidator {oldValue, newValue -> (oldValue > newValue) IllegalArgumentException('Things can only go up in Groovy')}if throw new
counter.addValidator {agent, oldValue, newValue -> (oldValue == newValue) IllegalArgumentException('Things never stay the same $agent')}if throw new for
counter 10
counter 11
counter {updateValue 12}
counter 10 //Will be rejected
counter {updateValue it - 1} //Will be rejected
counter {updateValue it} //Will be rejected
counter {updateValue 11} //Will be rejected
counter 12 //Will be rejected
counter 20
counter.await()

Both listeners and validators are essentially closures taking two or three arguments. Exceptions thrown
from the validators will be logged inside the agent and can be tested using the method orhasErrors()
retrieved through the property.errors

assert counter.hasErrors()
assert counter.errors.size() == 5

Validator gotchas
With Groovy being not very strict on data types and immutability, agent users should be aware of
potential bumps on the road. If the submitted code modifies the state directly, validators will not be able
to un-do the change in case of a validation rule violation. There are two possible solutions available:

Make sure you never change the supplied object representing current agent state
Use custom copy strategy on the agent to allow the agent to create copies of the internal state

In both cases you need to call to set and validate the new state properly.updateValue()
The problem as well as both of the solutions are shown below:

//Create an agent storing names, rejecting 'Joe'
 Closure rejectJoeValidator = {oldValue, newValue -> ('Joe' in newValue) IllegalArgumentException('Joe is not allowed to enter our list.')}final if throw new

Agent agent = Agent([])new
agent.addValidator rejectJoeValidator
agent {it << 'Dave'} //Accepted
agent {it << 'Joe'} //Erroneously accepted, since by-passes the validation mechanism
println agent.val
//Solution 1 - never alter the supplied state object
agent = Agent([])new
agent.addValidator rejectJoeValidator
agent {updateValue(['Dave', * it])} //Accepted
agent {updateValue(['Joe', * it])} //Rejected
println agent.val
//Solution 2 - use custom copy strategy on the agent
agent = Agent([], {it.clone()})new
agent.addValidator rejectJoeValidator
agent {updateValue it << 'Dave'} //Accepted
agent {updateValue it << 'Joe'} //Rejected, since 'it' is now just a copy of the internal agent's state
println agent.val

Grouping

By default all Agent instances belong to the same group sharing its daemon thread pool.
Custom groups can also create instances of Agent. These instances will belong to the group, which
created them, and will share a thread pool. To create an Agent instance belonging to a group, call the

 factory method on the group. This way you can organize and tune performance of agents.agent()

final def group = NonDaemonPGroup(5) //create a group around a thread poolnew
def jugMembers = group.agent(['Me']) //add Me

The default thread pool for agents contains daemon threads. Make sure that your custom
thread pools either use daemon threads, too, which can be achieved either by using
DefaultPGroup or by providing your own thread factory to a thread pool constructor, or in
case your thread pools use non-daemon threads, such as when using the NonDaemonPGroup
group class, make sure you shutdown the group or the thread pool explicitly by calling its
shutdown() method, otherwise your applications will not exit.

Direct pool replacement
Alternatively, by calling the method on an Agent instance a custom thread poolattachToThreadPool()
can be specified for it.

def jugMembers = Agent<List< >>(['Me']) //add Menew String
 ExecutorService pool = Executors.newFixedThreadPool(10)final

jugMembers.attachToThreadPool(DefaultPool(pool))new

Remember, like actors, a single Agent instance (aka agent) can never use more than one
thread at a time

The shopping cart example

import groovyx.gpars.agent.Agent
class ShoppingCart {
 def cartState = Agent([:])private new
//----------------- methods below here ----------------------------------public
 void addItem(product, quantity) {public String int
 cartState << {it[product] = quantity} //the << sendsoperator
 //a message to the Agent
 } void removeItem(product) {public String
 cartState << {it.remove(product)}
 } listContent() {public Object
 cartState.valreturn
 } void clearItems() {public
 cartState << performClear
 }
 void increaseQuantity(product, quantityChange) {public String int
 cartState << .&changeQuantity.curry(product, quantityChange)this

1.

 }
//----------------- methods below here ---------------------------------private
 void changeQuantity(product, quantityChange, Map items) {private String int
 items[product] = (items[product] ?: 0) + quantityChange
 } Closure performClear = { it.clear() }private
}
//----------------- script code below here -------------------------------------

 ShoppingCart cart = ShoppingCart()final new
cart.addItem 'Pilsner', 10
cart.addItem 'Budweisser', 5
cart.addItem 'Staropramen', 20
cart.removeItem 'Budweisser'
cart.addItem 'Budweisser', 15
println "Contents ${cart.listContent()}"
cart.increaseQuantity 'Budweisser', 3
println "Contents ${cart.listContent()}"
cart.clearItems()
println "Contents ${cart.listContent()}"

You might have noticed two implementation strategies in the code.

Public methods may internally just send the required code off to the Agent, instead of executing the
same functionality directly

And so sequential code like

public void addItem(product, quantity) {String int
 cartState[product]=quantity
}

becomes

public void addItem(product, quantity) {String int
 cartState << {it[product] = quantity}
}

2. Public methods may send references to internal private methods or closures, which hold the desired
functionality to perform

public void clearItems() {
 cartState << performClear
}

 Closure performClear = { it.clear() }private

, if the closure takes other arguments besides the current internal stateCurrying might be necessary
instance. See the method.increaseQuantity

The printer service example
Another example - a not thread-safe printer service shared by multiple threads. The printer needs to have
the document and quality properties set before printing, so obviously a potential for race conditions if not
guarded properly. Callers don't want to block until the printer is available, which the fire-and-forget
nature of actors solves very elegantly.

import groovyx.gpars.agent.Agent
/**
 * A non-thread-safe service that slowly prints documents on at a time
 */
class PrinterService {
 documentString
 qualityString
 void printDocument() {public
 println "Printing $document in $quality quality"
 .sleep 5000Thread
 println "Done printing $document"
 }
}
def printer = Agent<PrinterService>(PrinterService())new new

 thread1 = .start {final Thread Thread

 (num in (1..3)) {for
 text = final String "document $num"
 printer << {printerService ->
 printerService.document = text
 printerService.quality = 'High'
 printerService.printDocument()
 }
 .sleep 200Thread
 }
 println ' 1 is ready to something . All print tasks have been submitted'Thread do else
}

 thread2 = .start {final Thread Thread
 (num in (1..4)) {for
 text = final String "picture $num"
 printer << {printerService ->
 printerService.document = text
 printerService.quality = 'Medium'
 printerService.printDocument()
 }
 .sleep 500Thread
 }
 println ' 2 is ready to something . All print tasks have been submitted'Thread do else
}
[thread1, thread2]*.join()
printer.await()

For latest update, see the respective Demos.

Reading the value

To follow the clojure philosophy closely the Agent class gives reads higher priority than to writes. By
using the property your read request will bypass the incoming message queue of the Agent andinstantVal
return the current snapshot of the internal state. The property will wait in the message queue forval
processing, just like the non-blocking variant , which will invoke the providedvalAsync(Clojure cl)
closure with the internal state as a parameter.
You have to bear in mind that the property might return although correct, but randomly lookinginstantVal
results, since the internal state of the Agent at the time of execution is non-deterministic andinstantVal
depends on the messages that have been processed before the thread scheduler executes the body of

 .instantVal
The method allows you to wait for processing all the messages submitted to the Agent before andawait()
so blocks the calling thread.

State copy strategy

To avoid leaking the internal state the Agent class allows to specify a copy strategy as the second
constructor argument. With the copy strategy specified, the internal state is processed by the copy strategy
closure and the output value of the copy strategy value is returned to the caller instead of the actual
internal state. This applies to , as well as to .instantVal val valAsync()

Error handling

Exceptions thrown from within the submitted commands are stored inside the agent and can be obtained
from the property. The property gets cleared once read.errors

def jugMembers = Agent<List>()new
 assert jugMembers.errors.empty
 jugMembers.send { IllegalStateException('test1')}throw new
 jugMembers.send { IllegalArgumentException('test2')}throw new
 jugMembers.await()
 List errors = jugMembers.errors
 assertEquals(2, errors.size())
 assert errors[0] IllegalStateExceptioninstanceof
 assertEquals 'test1', errors[0].message

 assert errors[1] IllegalArgumentExceptioninstanceof
 assertEquals 'test2', errors[1].message
 assert jugMembers.errors.empty

Fair and Non-fair agents

Agents can be either fair or non-fair. Fair agents give up the thread after processing each message,
non-fair agents keep a thread until their message queue is empty. As a result, non-fair agents tend to
perform better than fair ones. The default setting for all Agent instances is to be , however bynon-fair
calling its method the instance can be made fair.makeFair()

def jugMembers = Agent<List>(['Me']) //add Menew
 jugMembers.makeFair()

7. Dataflow Concurrency
Dataflow concurrency offers an alternative concurrency model, which is inherently safe and robust.

Introduction

Check out the small example written in Groovy using GPars, which sums results of calculations
performed by three concurrently run tasks:

import groovyx.gpars.dataflow.Dataflow.taskstatic
 def x = DataflowVariable()final new
 def y = DataflowVariable()final new
 def z = DataflowVariable()final new

task {
 z << x.val + y.val
}
task {
 x << 10
}
task {
 y << 5
}
println "Result: ${z.val}"

Or the same algorithm rewritten using the class.Dataflows

import groovyx.gpars.dataflow.Dataflow.taskstatic
 def df = Dataflows()final new

task {
 df.z = df.x + df.y
}
task {
 df.x = 10
}
task {
 df.y = 5
}
println "Result: ${df.z}"

We start three logical tasks, which can run in parallel and perform their particular activities. The tasks
need to exchange data and they do so using . Think of Dataflow Variables asDataflow Variables
one-shot channels safely and reliably transferring data from producers to their consumers.
The Dataflow Variables have a pretty straightforward semantics. When a task needs to read a value from

 (through the val property), it will block until the value has been set by another task orDataflowVariable
thread (using the '<<' operator). Each can be set in its lifetime. Notice thatDataflowVariable only once
you don't have to bother with ordering and synchronizing the tasks or threads and their access to shared
variables. The values are magically transferred among tasks at the right time without your intervention.
The data flow seamlessly among tasks / threads without your intervention or care.

 The three tasks in the example Implementation detail: do not necessarily need to be mapped to three

. Tasks represent so-called "green" or "logical" threads and can be mapped under thephysical threads
covers to any number of physical threads. The actual mapping depends on the scheduler, but the outcome
of dataflow algorithms doesn't depend on the actual scheduling.

The operation of dataflow variables silently accepts re-binding to a value, which is equalbind
to an already bound value. Call to reject equal values on already-bound variables.bindUnique

Benefits

Here's what you gain by using Dataflow Concurrency (by):Jonas Bonér

No race-conditions
No live-locks
Deterministic deadlocks
Completely deterministic programs
BEAUTIFUL code.

This doesn't sound bad, does it?

Concepts

Dataflow programming

Quoting Wikipedia
Operations (in Dataflow programs) consist of "black boxes" with inputs and outputs, all of which are
always explicitly defined. They run as soon as all of their inputs become valid, as opposed to when the
program encounters them. Whereas a traditional program essentially consists of a series of statements
saying "do this, now do this", a dataflow program is more like a series of workers on an assembly line,
who will do their assigned task as soon as the materials arrive. This is why dataflow languages are
inherently parallel; the operations have no hidden state to keep track of, and the operations are all "ready"
at the same time.

Principles

With Dataflow Concurrency you can safely share variables across tasks. These variables (in Groovy
instances of the class) can only be assigned (using the '<<' operator) a value once inDataflowVariable
their lifetime. The values of the variables, on the other hand, can be read multiple times (in Groovy
through the val property), even before the value has been assigned. In such cases the reading task is
suspended until the value is set by another task. So you can simply write your code for each task
sequentially using Dataflow Variables and the underlying mechanics will make sure you get all the values
you need in a thread-safe manner.
In brief, you generally perform three operations with Dataflow variables:

Create a dataflow variable
Wait for the variable to be bound (read it)
Bind the variable (write to it)

And these are the three essential rules your programs have to follow:

When the program encounters an unbound variable it waits for a value.
It is not possible to change the value of a dataflow variable once it is bound.
Dataflow variables makes it easy to create concurrent stream agents.

Dataflow Queues and Broadcasts

http://www.jonasboner.com

Before you go to check the samples of using , and , you shouldDataflow Variables Tasks Operators
know a bit about streams and queues to have a full picture of Dataflow Concurrency. Except for dataflow
variables there are also the concepts of and that you can leverage inDataflowQueues DataflowBroadcast
your code. You may think of them as thread-safe buffers or queues for message transfer among
concurrent tasks or threads. Check out a typical producer-consumer demo:

import groovyx.gpars.dataflow.Dataflow.taskstatic
def words = ['Groovy', 'fantastic', 'concurrency', 'fun', 'enjoy', 'safe', 'GPars', 'data', 'flow']

 def buffer = DataflowQueue()final new
task {
 (word in words) {for
 buffer << word.toUpperCase() //add to the buffer
 }
}
task {
 () println buffer.val //read from the buffer in a loopwhile true
}

Both and , just like , implement the DataflowBroadcasts DataflowQueues DataflowVariables
 interface with common methods allowing users to write to them and read values fromDataflowChannel

them. The ability to treat both types identically through the interface comes in handyDataflowChannel
once you start using them to wire , or together.tasks operators selectors

The interface combines two interfaces, each serving its purpose:DataflowChannel

DataflowReadChannel holding all the methods necessary for reading values from a
channel
DataflowWriteChannel holding all the methods necessary for writing values into a
channel

You may prefer using these dedicated interfaces instead of the general DataflowChannel
interface, to better express the intended usage.

Point-to-point communication
The class can be viewed as a point-to-point (1 to 1, many to 1) communication channel. ItDataflowQueue
allows one or more producers send messages to one reader. If multiple readers read from the same

 , they will each consume different messages. Or to put it a different way, each message isDataflowQueue
consumed by exactly one reader. You can easily imagine a simple load-balancing scheme built around a
shared with readers being added dynamically when the consumer part of your algorithmDataflowQueue
needs to scale up. This is also a useful default choice when connecting tasks or operators.

Publish-subscribe communication
The class offers a publish-subscribe (1 to many, many to many) communicationDataflowBroadcast
model. One or more producers write messages, while all registered readers will receive all the messages.
Each message is thus consumed by all readers with a valid subscription at the moment when the message
is being written to the channel. The readers subscribe by calling the method.createReadChannel()

DataflowWriteChannel broadcastStream = DataflowBroadcast()new
DataflowReadChannel stream1 = broadcastStream.createReadChannel()
DataflowReadChannel stream2 = broadcastStream.createReadChannel()
broadcastStream << 'Message1'
broadcastStream << 'Message2'
broadcastStream << 'Message3'
assert stream1.val == stream2.val
assert stream1.val == stream2.val
assert stream1.val == stream2.val

Under the hood uses the class to implement the message delivery.DataflowBroadcast DataflowStream

DataflowStream

The class represents a deterministic dataflow channel. It is build around the concept of aDataflowStream
functional queue and so provides a lock-free thread-safe implementation for message passing. Essentially,

you may think of as a 1 to many communication channel, since when a reader consumesDataflowStream
a messages, other readers will still be able to read the message. Also, all messages arrive to all readers in
the same order. Since is implemented as a functional queue, its API requires that usersDataflowStream
traverse the values in the stream themselves. On the other hand offers handy methods forDataflowStream
value filtering or transformation together with interesting performance characteristics.

The class, unlike the other communication elements, does not implement theDataflowStream
 interface, since the semantics of its use is different. Use DataflowChannel

 and classes to wrap instances ofDataflowStreamReadAdapter DataflowStreamWriteAdapter
the class in or DataflowChannel DataflowReadChannel DataflowWriteChannel
implementations.

import groovyx.gpars.dataflow.stream.DataflowStream
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.scheduler.ResizeablePoolimport

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using dataflow tasks
 *
 * In principle, the algorithm consists of a concurrently run chained filters,
 * each of which detects whether the current number can be divided by a single prime number.
 * (generate nums 1, 2, 3, 4, 5, ...) -> (filter by mod 2) -> (filter by mod 3) -> (filter by mod 5) -> (filter by mod 7) -> (filter by mod 11) -> (caution! Primes falling out here)
 * The chain is built (grows) on the fly, whenever a prime is foundnew
 */
/**
 * We need a resizeable thread pool, since tasks consume threads waiting blocked values at DataflowQueue.valwhile for
 */
group = DefaultPGroup(ResizeablePool())new new true

 requestedPrimeNumberCount = 100final int
/**
 * Generating candidate numbers
 */

 DataflowStream candidates = DataflowStream()final new
group.task {
 candidates.generate(2, {it + 1}, {it < 1000})
}
/**
 * Chain a filter a particular prime number to the end of the Sievenew for
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide prime candidates withfuture
 * @ A channel ending the whole chainreturn new
 */
def filter(DataflowStream inChannel, prime) {int
 inChannel.filter { number ->
 group.task {
 number % prime != 0
 }
 }
}
/**
 * Consume Sieve output and add additional filters all found primesfor
 */
def currentOutput = candidates
requestedPrimeNumberCount.times {
 prime = currentOutput.firstint
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
}

For convenience and for the ability to use with other dataflow constructs, like e.g.DataflowStream
operators, you can wrap it with for read access or for writeDataflowReadAdapter DataflowWriteAdapter
access. The class is designed for single-threaded producers and consumers. If multipleDataflowStream
threads are supposed to read or write values to the stream, their access to the stream must be serialized
externally or the adapters should be used.

DataflowStream Adapters
Since the API as well as the semantics of its use are very different from the one definedDataflowStream
by , adapters have to be used in order to allow to be usedDataflow(Read/Write)Channel DataflowStreams

with other dataflow elements. The class will wrap a withDataflowStreamReadAdapter DataflowStream
necessary methods to read values, while the class will provide writeDataflowStreamWriteAdapter
methods around the wrapped .DataflowStream

It is important to mention that the is thread safe allowingDataflowStreamWriteAdapter
multiple threads to add values to the wrapped through the adapter. On theDataflowStream
other hand, is designed to be used by a single thread.DataflowStreamReadAdapter
To minimize the overhead and stay in-line with the semantics, the DataflowStream

 class is not thread-safe and should only be used from within aDataflowStreamReadAdapter
single thread. If multiple threads need to read from a DataflowStream, they should each
create their own wrapping .DataflowStreamReadAdapter

Thanks to the adapters can be used for communication between operators or selectors,DataflowStream
which expect .Dataflow(Read/Write)Channels

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.stream.DataflowStreamimport
 groovyx.gpars.dataflow.stream.DataflowStreamReadAdapterimport
 groovyx.gpars.dataflow.stream.DataflowStreamWriteAdapterimport
 groovyx.gpars.dataflow.Dataflow.selectorimport static
 groovyx.gpars.dataflow.Dataflow.import static operator

/**
 * Demonstrates the use of DataflowStreamAdapters to allow dataflow operators to use DataflowStreams
 */

 DataflowStream a = DataflowStream()final new
 DataflowStream b = DataflowStream()final new

def aw = DataflowStreamWriteAdapter(a)new
def bw = DataflowStreamWriteAdapter(b)new
def ar = DataflowStreamReadAdapter(a)new
def br = DataflowStreamReadAdapter(b)new
def result = DataflowQueue()new
def op1 = (ar, bw) {operator
 bindOutput it
}
def op2 = selector([br], [result]) {
 result << it
}
aw << 1
aw << 2
aw << 3
assert([1, 2, 3] == [result.val, result.val, result.val])
op1.stop()
op2.stop()
op1.join()
op2.join()

Also the ability to select a value from multiple can only be used through an adapterDataflowChannels
around a :DataflowStream

import groovyx.gpars.dataflow.Select
 groovyx.gpars.dataflow.stream.DataflowStreamimport
 groovyx.gpars.dataflow.stream.DataflowStreamReadAdapterimport
 groovyx.gpars.dataflow.stream.DataflowStreamWriteAdapterimport
 groovyx.gpars.dataflow.Dataflow.selectimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates the use of DataflowStreamAdapters to allow dataflow select to select on DataflowStreams
 */

 DataflowStream a = DataflowStream()final new
 DataflowStream b = DataflowStream()final new

def aw = DataflowStreamWriteAdapter(a)new
def bw = DataflowStreamWriteAdapter(b)new
def ar = DataflowStreamReadAdapter(a)new
def br = DataflowStreamReadAdapter(b)new

 Select<?> select = select(ar, br)final
task {
 aw << 1
 aw << 2
 aw << 3

}
assert 1 == select().value
assert 2 == select().value
assert 3 == select().value
task {
 bw << 4
 aw << 5
 bw << 6
}
def result = (1..3).collect{select()}.sort{it.value}
assert result*.value == [4, 5, 6]
assert result*.index == [1, 0, 1]

If you don't need any of the functional queue functionality, likeDataflowStream-special
generation, filtering or mapping, you may consider using the classDataflowBroadcast
instead, which offers the communication model through the publish-subscribe

 interface.DataflowChannel

Bind handlers
def a = DataflowVariable()new
a >> {println }"The variable has just been bound to $it"
a.whenBound {println }"Just to confirm that the variable has been really set to $it"
...

A bound handlers can be registered on all dataflow channels (variables, queues or broadcasts) either using
the >> operator or the method. They will be run once a value is bound to the variable.whenBound()
Dataflow queues and broadcasts also support a method to register a closure or a messagewheneverBound
handler to run each time a value is bound to them.

def queue = DataflowQueue()new
queue.wheneverBound {println }"A value $it arrived to the queue"

Dataflow variables and broadcasts are one of several possible ways to implement Parallel
 . For details, please check out in the Speculations Parallel Speculations Parallel Collections

section of the User Guide.

Further reading

 by Jonas BonérScala Dataflow library
 by Jonas BonérJVM concurrency presentation slides

Dataflow Concurrency library for Ruby

7.1 Tasks

The give you an easy-to-grasp abstraction of mutually-independent logical tasks orDataflow tasks
threads, which can run concurrently and exchange data solely through Dataflow Variables, Queues,
Broadcasts and Streams. Dataflow tasks with their easy-to-express mutual dependencies and inherently
sequential body could also be used as a practical implementation of UML .Activity Diagrams
Check out the examples.

A simple mashup example
In the example we're downloading the front pages of three popular web sites, each in their own task, while
in a separate task we're filtering out sites talking about Groovy today and forming the output. The output
task synchronizes automatically with the three download tasks on the three Dataflow variables through
which the content of each website is passed to the output task.

import groovyx.gpars.GParsPool.*static
 groovyx.gpars.dataflow.DataflowVariableimport
 groovyx.gpars.dataflow.Dataflow.taskimport static

http://github.com/jboner/scala-dataflow/tree/f9a38992f5abed4df0b12f6a5293f703aa04dc33/src
http://jonasboner.com/talks/state_youre_doing_it_wrong/html/all.html
http://github.com/larrytheliquid/dataflow/tree/master

/**
 * A simple mashup sample, downloads content of three websites
 * and checks how many of them refer to Groovy.
 */
def dzone = DataflowVariable()new
def jroller = DataflowVariable()new
def theserverside = DataflowVariable()new
task {
 println 'Started downloading from DZone'
 dzone << 'http://www.dzone.com'.toURL().text
 println 'Done downloading from DZone'
}
task {
 println 'Started downloading from JRoller'
 jroller << 'http://www.jroller.com'.toURL().text
 println 'Done downloading from JRoller'
}
task {
 println 'Started downloading from TheServerSide'
 theserverside << 'http://www.theserverside.com'.toURL().text
 println 'Done downloading from TheServerSide'
}
task {
 withPool {
 println +" of Groovy sites today: "Number
 ([dzone, jroller, theserverside].findAllParallel {
 it.val.toUpperCase().contains 'GROOVY'
 }).size()
 }
}.join()

Grouping tasks
Dataflow tasks can be organized into groups to allow for performance fine-tuning. Groups provide a
handy factory method to create tasks attached to the groups. Using groups allows you to organizetask()
tasks or operators around different thread pools (wrapped inside the group). While the Dataflow.task()
command schedules the task on a default thread pool (java.util.concurrent.Executor, fixed size=#cpu+1,
daemon threads), you may prefer being able to define your own thread pool(s) to run your tasks.

import groovyx.gpars.group.DefaultPGroup
def group = DefaultPGroup()new
group.with {
 task {
 …
 }
 task {
 …
 }
}

The default thread pool for dataflow tasks contains daemon threads, which means your
application will exit as soon as the main thread finishes and won't wait for all tasks to
complete. When grouping tasks, make sure that your custom thread pools either use daemon
threads, too, which can be achieved by using DefaultPGroup or by providing your own thread
factory to a thread pool constructor, or in case your thread pools use non-daemon threads,
such as when using the NonDaemonPGroup group class, make sure you shutdown the group
or the thread pool explicitly by calling its shutdown() method, otherwise your applications
will not exit.

A mashup variant with methods
To avoid giving you wrong impression about structuring the Dataflow code, here's a rewrite of the
mashup example, with a method performing the actual download in a separate task anddownloadPage()
returning a DataflowVariable instance, so that the main application thread could eventually get hold of the
downloaded content. Dataflow variables can obviously be passed around as parameters or return values.

package groovyx.gpars.samples.dataflow
 groovyx.gpars.GParsExecutorsPool.*import static
 groovyx.gpars.dataflow.DataflowVariableimport
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * A simple mashup sample, downloads content of three websites and checks how many of them refer to Groovy.
 */

 List urls = ['http://www.dzone.com', 'http://www.jroller.com', 'http://www.theserverside.com']final
task {
 def pages = urls.collect { downloadPage(it) }
 withPool {
 println +" of Groovy sites today: "Number
 (pages.findAllParallel {
 it.val.toUpperCase().contains 'GROOVY'
 }).size()
 }
}.join()
def downloadPage(def url) {
 def page = DataflowVariable()new
 task {
 println "Started downloading from $url"
 page << url.toURL().text
 println "Done downloading from $url"
 }
 pagereturn
}

A physical calculation example
Dataflow programs naturally scale with the number of processors. Up to a certain level, the more
processors you have the faster the program runs. Check out, for example, the following script, which
calculates parameters of a simple physical experiment and prints out the results. Each task performs its
part of the calculation and may depend on values calculated by some other tasks as well as its result might
be needed by some of the other tasks. With Dataflow Concurrency you can split the work between tasks
or reorder the tasks themselves as you like and the dataflow mechanics will ensure the calculation will be
accomplished correctly.

import groovyx.gpars.dataflow.DataflowVariable
 groovyx.gpars.dataflow.Dataflow.taskimport static
 def mass = DataflowVariable()final new
 def radius = DataflowVariable()final new
 def volume = DataflowVariable()final new
 def density = DataflowVariable()final new
 def acceleration = DataflowVariable()final new
 def time = DataflowVariable()final new
 def velocity = DataflowVariable()final new
 def decelerationForce = DataflowVariable()final new
 def deceleration = DataflowVariable()final new
 def distance = DataflowVariable()final new

def t = task {
 println """
Calculating distance required to stop a moving ball.
==
The ball has a radius of ${radius.val} meters and is made of a material with ${density.val} kg/m3 density,
which means that the ball has a volume of ${volume.val} m3 and a mass of ${mass.val} kg.
The ball has been accelerating with ${acceleration.val} m/s2 from 0 ${time.val} seconds and so reached a velocity of ${velocity.val} m/s.for
Given our ability to push the ball backwards with a force of ${decelerationForce.val} N (Newton), we can cause a deceleration
of ${deceleration.val} m/s2 and so stop the ball at a distance of ${distance.val} m.
===
This example has been calculated asynchronously in multiple tasks using GPars Dataflow concurrency in Groovy.
Author: ${author.val}
"""
 .exit 0System
}
task {
 mass << volume.val * density.val
}
task {
 volume << .PI * (radius.val ** 3)Math

}
task {
 radius << 2.5
 density << 998.2071 //water
 acceleration << 9.80665 //free fall
 decelerationForce << 900
}
task {
 println 'Enter your name:'
 def name = InputStreamReader(.in).readLine()new System
 author << (name?.trim()?.size()>0 ? name : 'anonymous')
}
task {
 time << 10
 velocity << acceleration.val * time.val
}
task {
 deceleration << decelerationForce.val / mass.val
}
task {
 distance << deceleration.val * ((velocity.val/deceleration.val) ** 2) * 0.5
}
t.join()

Note: I did my best to make all the physical calculations right. Feel free to change the values and see how
long distance you need to stop the rolling ball.

Deterministic deadlocks

If you happen to introduce a deadlock in your dependencies, the deadlock will occur each time you run
the code. No randomness allowed. That's one of the benefits of Dataflow concurrency. Irrespective of the
actual thread scheduling scheme, if you don't get a deadlock in tests, you won't get them in production.

task {
 println a.val
 b << 'Hi there'
}
task {
 println b.val
 a << 'Hello man'
}

Dataflows map

As a handy shortcut the class can help you reduce the amount of code you have to write toDataflows
leverage Dataflow variables.

def df = Dataflows()new
df.x = 'value1'
assert df.x == 'value1'
Dataflow.task {df.y = 'value2}
assert df.y == 'value2'

Think of Dataflows as a map with Dataflow Variables as keys storing their bound values as appropriate
map values. The semantics of reading a value (e.g. df.x) and binding a value (e.g. df.x = 'value') remain
identical to the semantics of plain Dataflow Variables (x.val and x << 'value' respectively).

Mixing and Groovy blocksDataflows with
When inside a block of a Dataflows instance, the dataflow variables stored inside the Dataflowswith
instance can be accessed directly without the need to prefix them with the Dataflows instance identifier.

new Dataflows().with {
 x = 'value1'
 assert x == 'value1'

 Dataflow.task {y = 'value2}
 assert y == 'value2'
}

Returning a value from a task

Typically dataflow tasks communicate through dataflow variables. On top of that, tasks can also return
values, again through a dataflow variable. When you invoke the factory method, you get back antask()
instance of DataflowVariable, on which you can listen for the task's return value, just like when using any
other DataflowVariable.

final DataflowVariable t1 = task {
 10return
 }
 DataflowVariable t2 = task {final
 20return
 }
 def results = [t1, t2]*.val
 println 'Both sub-tasks finished and returned values: ' + results

Obviously the value can also be obtained without blocking the caller using the method.whenBound()

def task = task {
 println 'The task is running and calculating the value'return
 30
}
task >> {value -> println }"The task finished and returned $value"

h2. Joining tasks
Using the operation on the result dataflow variable of a task you can block until the task finishes.join()

task {
 DataflowVariable t1 = task {final
 println 'First sub-task running.'
 }
 DataflowVariable t2 = task {final
 println 'Second sub-task running'
 }
 [t1, t2]*.join()
 println 'Both sub-tasks finished'
 }.join()

7.2 Selects

Frequently a value needs to be obtained from one of several dataflow channels (variables, queues,
broadcasts or streams). The class is suitable for such scenarios. can scan multiple dataflowSelect Select
channels and pick one channel from all the input channels, which currently have a value available for
read. The value from that channels is read and returned to the caller together with the index of the
originating channel. Picking the channel is either random, or based on channel priority, in which case
channels with lower position index in the constructor have higher priority.Select

Selecting a value from multiple channels
import groovyx.gpars.dataflow.DataflowQueue

 groovyx.gpars.dataflow.DataflowVariableimport
 groovyx.gpars.dataflow.Dataflow.selectimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Shows a basic use of Select, which monitors a set of input channels values and makes these valuesfor
 * available on its output irrespective of their original input channel.
 * Note that dataflow variables and queues can be combined Select.for
 *
 * You might also consider checking out the prioritySelect method, which prioritizes values by the index of their input channel
 */
def a = DataflowVariable()new

def b = DataflowVariable()new
def c = DataflowQueue()new
task {
 sleep 3000
 a << 10
}
task {
 sleep 1000
 b << 20
}
task {
 sleep 5000
 c << 30
}
def select = select([a, b, c])
println "The fastest result is ${select().value}"

Note that the return type from is , holding the value as well as theselect() SelectResult
originating channel index.

There are multiple ways to read values from a Select:

def sel = select(a, b, c, d)
def result = sel.select() //Random selection
def result = sel() //Random selection (a -hand variant)short
def result = sel.select([, , ,]) //Random selection with guards specifiedtrue true false true
def result = sel([, , ,]) //Random selection with guards specified (a -hand variant)true true false true short
def result = sel.prioritySelect() //Priority selection
def result = sel.prioritySelect([, , ,]) //Priority selection with guards specifiestrue true false true

By default the blocks the caller until a value to read is available. Alternatively, allows toSelect Select
have the value sent to a provided (e.g. an actor) without blocking the caller.MessageStream

def handler = actor {...}
def sel = select(a, b, c, d)
sel.select(handler) //Random selection
sel(handler) //Random selection (a -hand variant)short
sel.select(handler, [, , ,]) //Random selection with guards specifiedtrue true false true
sel(handler, [, , ,]) //Random selection with guards specified (a -hand variant)true true false true short
sel.prioritySelect(handler) //Priority selection
sel.prioritySelect(handler, [, , ,]) //Priority selection with guards specifiestrue true false true

Guards
Guards allow the caller to omit some input channels from the selection. Guards are specified as a List of
boolean flags passed to the or methods.select() prioritySelect()

def sel = select(leaders, seniors, experts, juniors)
def teamLead = sel([, , ,]).value //Only 'leaders' and 'seniors' qualify becoming a teamLead heretrue true false false for

A typical use for guards is to make Selects flexible to adopt to the changes in the user state.

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.selectimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates the ability to enable/disable channels during a value selection on a select by providing guards.boolean
 */

 DataflowQueue operations = DataflowQueue()final new
 DataflowQueue numbers = DataflowQueue()final new

def t = task {
 def select = select(operations, numbers)final
 3.times {
 def instruction = select([,]).valuetrue false
 def num1 = select([,]).valuefalse true
 def num2 = select([,]).valuefalse true
 def formula = final "$num1 $instruction $num2"
 println "$formula = ${ GroovyShell().evaluate(formula)}"new
 }
}
task {

 operations << '+'
 operations << '+'
 operations << '*'
}
task {
 numbers << 10
 numbers << 20
 numbers << 30
 numbers << 40
 numbers << 50
 numbers << 60
}
t.join()

Priority Select
When certain channels should have precedence over others when selecting, the prioritySelect methods
should be used instead.

/**
 * Shows a basic use of Priority Select, which monitors a set of input channels values and makes these valuesfor
 * available on its output irrespective of their original input channel.
 * Note that dataflow variables, queues and broadcasts can be combined Select.for
 * Unlike plain select method call, the prioritySelect call gives precedence to input channels with lower index.
 * Available messages from high priority channels will be served before messages from lower-priority channels.
 * Messages received through a single input channel will have their mutual order preserved.
 *
 */
def critical = DataflowVariable()new
def ordinary = DataflowQueue()new
def whoCares = DataflowQueue()new
task {
 ordinary << 'All working fine'
 whoCares << 'I feel a bit tired'
 ordinary << 'We are on target'
}
task {
 ordinary << 'I have just started my work. Busy. Will come back later...'
 sleep 5000
 ordinary << 'I am done now'for
}
task {
 whoCares << 'Huh, what is that noise'
 ordinary << 'Here I am to some clean-up work'do
 whoCares << 'I wonder whether unplugging cable will eliminate that nasty sound.'this
 critical << 'The server room goes on UPS!'
 whoCares << 'The sound has disappeared'
}
def select = select([critical, ordinary, whoCares])
println 'Starting to monitor our IT department'
sleep 3000
10.times {println }"Received: ${select.prioritySelect().value}"

7.3 Operators

Dataflow Operators and Selectors provide a full Dataflow implementation with all the usual ceremony.

Concepts
Full dataflow concurrency builds on the concept of channels connecting operators and selectors, which
consume values coming through input channels, transform them into new values and output the new
values into their output channels. While wait for input channels to have a value availableOperators all
for read before they start process them, are triggered by a value available on of the inputSelectors any
channels.

operator(inputs: [a, b, c], outputs: [d]) {x, y, z ->
 …
 bindOutput 0, x + y + z

}

/**
 * CACHE
 *
 * Caches sites' contents. Accepts requests url content, outputs the content. Outputs requests downloadfor for
 * the site is not in cache yet.if
 */

(inputs: [urlRequests], outputs: [downloadRequests, sites]) {request ->operator
 (!request.content) {if
 println "[Cache] Retrieving ${request.site}"
 def content = cache[request.site]
 (content) {if
 println "[Cache] Found in cache"
 bindOutput 1, [site: request.site, word:request.word, content: content]
 } {else
 def downloads = pendingDownloads[request.site]
 (downloads !=) {if null
 println "[Cache] Awaiting download"
 downloads << request
 } {else
 pendingDownloads[request.site] = []
 println "[Cache] Asking download"for
 bindOutput 0, request
 }
 }
 } {else
 println "[Cache] Caching ${request.site}"
 cache[request.site] = request.content
 bindOutput 1, request
 def downloads = pendingDownloads[request.site]
 (downloads !=) {if null
 (downloadRequest in downloads) {for
 println "[Cache] Waking up"
 bindOutput 1, [site: downloadRequest.site, word:downloadRequest.word, content: request.content]
 }
 pendingDownloads.remove(request.site)
 }
 }
}

The standard error handling will print out an error message to standard error output and stop the operator
in case an uncaught exception is thrown from withing the operator's body. To alter the behavior, you can
redefine the method on the operator:reportError()

op.metaClass.reportError = {Throwable e ->
 //handle the exception
 stop() //You can also stop the operator
 }

Types of operators
There are specialized versions of operators serving specific purposes:

operator - the basic general-purpose operator
selector - operator that is triggered by a value being available in any of its input channels
prioritySelector - a selector that prefers delivering messages from lower-indexed input channels
over higher-indexed ones
splitter - a single-input operator copying its input values to all of its output channels

Chaining operators
Operators are typically combined into networks, when some operators consume output by other operators.

operator(inputs:[a, b], outputs:[c, d]) {...}
splitter(c, [e, f])
selector(inputs:[e, d]: outputs:[]) {...}

You may alternatively refer to output channels through operators themselves:

def op1 = (inputs:[a, b], outputs:[c, d]) {...}operator
def sp1 = splitter(op1.outputs[0], [e, f]) //takes the first output of op1
selector(inputs:[sp1.outputs[0], op1.outputs[1]]: outputs:[]) {...} //takes the first output of sp1 and the second output of op1

Parallelize operators
By default an operator's body is processed by a single thread at a time. While this is a safe setting
allowing the operator's body to be written in a non-thread-safe manner, once an operator becomes "hot"
and data start to accumulate in the operator's input queues, you might consider allowing multiple threads
to run the operator's body concurrently. Bear in mind that in such a case you need to avoid or protect
shared resources from multi-threaded access. To enable multiple threads to run the operator's body
concurrently, pass an extra parameter when creating an operator:maxForks

def op = (inputs: [a, b, c], outputs: [d, e], maxForks: 2) {x, y, z ->operator
 bindOutput 0, x + y + z
 bindOutput 1, x * y * z
}

The value of the parameter indicates the maximum of threads running the operatormaxForks
concurrently. Only positive numbers are allowed with value 1 being the default.

Please always make sure the serving the operator holds enough threads to support allgroup
requested forks. Using groups allows you to organize tasks or operators around different
thread pools (wrapped inside the group). While the Dataflow.task() command schedules the
task on a default thread pool (java.util.concurrent.Executor, fixed size=#cpu+1, daemon
threads), you may prefer being able to define your own thread pool(s) to run your tasks.

def group = DefaultPGroup(10)new
group. ((inputs: [a, b, c], outputs: [d, e], maxForks: 5) {x, y, z -> ...}operator

The default group uses a resizeable thread pool as so will never run out of threads.

Synchronizing the output
When enabling internal parallelization of an operator by setting the value for to a value greatermaxForks
than 1 it is important to remember that without explicit or implicit synchronization in the operators' body
race-conditions may occur. Especially bear in mind that values written to multiple output channels are not
guarantied to be written atomically in the same order to all the channels

operator(inputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->
 bindOutput 0, msg
 bindOutput 1, msg
}
inputChannel << 1
inputChannel << 2
inputChannel << 3
inputChannel << 4
inputChannel << 5

May result in output channels having the values mixed-up something like:

a -> 1, 3, 2, 4, 5
b -> 2, 1, 3, 5, 4

Explicit synchronization is one way to get correctly bound all output channels and protect operator
not-thread local state:

def lock = ()new Object
(inputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->operator

 doStuffThatIsThreadSafe()
 (lock) {synchronized
 doSomethingThatMustNotBeAccessedByMultipleThreadsAtTheSameTime()
 bindOutput 0, msg
 bindOutput 1, 2*msg
 }
}

Obviously you need to weight the pros and cons here, since synchronization may defeat the purpose of
setting to a value greater than 1.maxForks
To set values of all the operator's output channels in one atomic step, you may also consider calling either

1.
2.

the method, passing in a single value to write to all output channels or the bindAllOutputsAtomically
 method, which takes a multiple values, each of which will be written to thebindAllOutputsAtomically

output channel with the same position index.

operator(inputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->
 doStuffThatIsThreadSafe()
 bindAllOutputValuesAtomically msg, 2*msg
 }
}

Using the or the methods will not guarantee atomicitybindAllOutputs bindAllOutputValues
of writes across al the output channels when using internal parallelism. If preserving the order
of messages in multiple output channels is not an issue, as well as bindAllOutputs

 will provide better performance over the atomic variants.bindAllOutputValues

Stopping operators
Dataflow operators and selectors can be stopped in two ways:

by calling the stop() method on all operators that need to be stopped
by sending a poisson message.

Using the stop() method:

def op1 = (inputs: [a, b, c], outputs: [d, e]) {x, y, z -> }operator
def op2 = selector(inputs: [d], outputs: [f, out]) { }
def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }
[op1, op2, op3]*.stop() //Stop all operators by calling the stop() method on them
op1.join()
op2.join()
op3.join()

Using the poisson message:

def op1 = (inputs: [a, b, c], outputs: [d, e]) {x, y, z -> }operator
def op2 = selector(inputs: [d], outputs: [f, out]) { }
def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }
a << PoisonPill.instance //Send the poisson
op1.join()
op2.join()
op3.join()

After receiving a poisson an operator stops. It only makes sure the poisson is first sent to all its output
channels, so that the poisson can spread to the connected operators.

Grouping operators
Dataflow operators can be organized into groups to allow for performance fine-tuning. Groups provide a
handy factory method to create tasks attached to the groups.operator()

import groovyx.gpars.group.DefaultPGroup
def group = DefaultPGroup()new
group.with {
 (inputs: [a, b, c], outputs: [d]) {x, y, z ->operator
 …
 bindOutput 0, x + y + z
 }
}

The default thread pool for dataflow operators contains daemon threads, which means your
application will exit as soon as the main thread finishes and won't wait for all tasks to
complete. When grouping operators, make sure that your custom thread pools either use
daemon threads, too, which can be achieved by using DefaultPGroup or by providing your
own thread factory to a thread pool constructor, or in case your thread pools use non-daemon
threads, such as when using the NonDaemonPGroup group class, make sure you shutdown
the group or the thread pool explicitly by calling its shutdown() method, otherwise your
applications will not exit.

Selectors

Selector's body should be a closure consuming either one or two arguments.

selector (inputs : [a, b, c], outputs : [d, e]) {value ->

}

The two-argument closure will get a value plus an index of the input channel, the value of which is
currently being processed. This allows the selector to distinguish between values coming through
different input channels.

selector (inputs : [a, b, c], outputs : [d, e]) {value, index ->

}

Priority Selector
When priorities need to be preserved among input channels, a should be used.DataflowPrioritySelector

prioritySelector(inputs : [a, b, c], outputs : [d, e]) {value, index ->
 …
}

The priority selector will always prefer values from channels with lower position index over values
coming through the channels with higher position index.

Join selector
A selector without a body closure specified will copy all incoming values to all of its output channels.

def join = selector (inputs : [programmers, analysis, managers], outputs : [employees, colleagues])

Internal parallelism
The attribute allowing for internal selectors parallelism is also available.maxForks

selector (inputs : [a, b, c], outputs : [d, e], maxForks : 5) {value ->

}

Guards
Just like , also allow the users to temporarily include/exclude individual input channelsSelects Selectors
from selection. The input property can be used to set the initial mask on all input channels and the guards

 and methods are then available in the selector's body.setGuards setGuard

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.selectorimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates the ability to enable/disable channels during a value selection on a select by providing guards.boolean
 */

 DataflowQueue operations = DataflowQueue()final new
 DataflowQueue numbers = DataflowQueue()final new

def instruction
def nums = []
selector(inputs: [operations, numbers], outputs: [], guards: [,]) {value, index -> //initial guards is set heretrue false
 (index == 0) {if
 instruction = value
 setGuard(0,) //setGuard() used herefalse
 setGuard(1,)true
 }
 nums << valueelse
 (nums.size() == 2) {if
 setGuards([,]) //setGuards() used heretrue false
 def formula = final "${nums[0]} $instruction ${nums[1]}"
 println "$formula = ${ GroovyShell().evaluate(formula)}"new
 nums.clear()

 }
}
task {
 operations << '+'
 operations << '+'
 operations << '*'
}
task {
 numbers << 10
 numbers << 20
 numbers << 30
 numbers << 40
 numbers << 50
 numbers << 60
}

Avoid combining and greater than 1. Although the is thread-safeguards maxForks Selector
and won't be damaged in any way, the guards are likely not to be set the way you expect. The
multiple threads running selector's body concurrently will tend to over-write each-other's
settings to the property.guards

7.4 Dataflow implementation

The Dataflow Concurrency in GPars builds on top of its actor support. All of the dataflow tasks share a
thread pool and so the number threads created through factory method don't need toDataflow.task()
correspond to the number of physical threads required from the system. The factoryPGroup.task()
method can be used to attach the created task to a group. Since each group defines its own thread pool,
you can easily organize tasks around different thread pools just like you do with actors.

Combining actors and Dataflow Concurrency
The good news is that you can combine actors and Dataflow Concurrency in any way you feel fit for your
particular problem at hands. You can freely you use Dataflow Variables from actors.

final DataflowVariable a = DataflowVariable()new
 Actor doubler = Actors.actor {final

 react {message->
 a << 2 * message
 }
}

 Actor fakingDoubler = actor {final
 react {
 doubler.send it //send a number to the doubler
 println //wait the result to be bound to 'a'"Result ${a.val}" for
 }
}
fakingDoubler << 10

In the example you see the "fakingDoubler" using both messages and a toDataflowVariable
communicate with the actor.doubler

Using plain java threads
The as well as the classes can obviously be used from any thread ofDataflowVariable DataflowQueue
your application, not only from the tasks created by . Consider the following example:Dataflow.task()

import groovyx.gpars.dataflow.DataflowVariable
 DataflowVariable a = DataflowVariable< >()final new String
 DataflowVariable b = DataflowVariable< >()final new String
.start {Thread

 println "Received: $a.val"
 .sleep 2000Thread
 b << 'Thank you'
}

.start {Thread
 .sleep 2000Thread
 a << 'An important message from the second thread'

 println "Reply: $b.val"
}

We're creating two plain instances, which exchange data using the two data flowjava.lang.Thread
variables. Obviously, neither the actor lifecycle methods, nor the send/react functionality or thread
pooling take effect in such scenarios.

7.5 Classic examples

The Sieve of Eratosthenes implementation using dataflow tasks

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using dataflow tasks
 */

 requestedPrimeNumberCount = 1000final int
 DataflowQueue initialChannel = DataflowQueue()final new

/**
 * Generating candidate numbers
 */
task {
 (2..10000).each {
 initialChannel << it
 }
}
/**
 * Chain a filter a particular prime number to the end of the Sievenew for
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide prime candidates withfuture
 * @ A channel ending the whole chainreturn new
 */
def filter(inChannel, prime) {int
 def outChannel = DataflowQueue()new
 task {
 () {while true
 def number = inChannel.val
 (number % prime != 0) {if
 outChannel << number
 }
 }
 }
 outChannelreturn
}
/**
 * Consume Sieve output and add additional filters all found primesfor
 */
def currentOutput = initialChannel
requestedPrimeNumberCount.times {
 prime = currentOutput.valint
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
}

The Sieve of Eratosthenes implementation using a combination of dataflow tasks and
operators

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.import static operator
 groovyx.gpars.dataflow.Dataflow.taskimport static
 /**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using dataflow tasks and operators
 */
 requestedPrimeNumberCount = 100final int
 DataflowQueue initialChannel = DataflowQueue()final new
 /**
 * Generating candidate numbers

 */
 task {
 (2..1000).each {
 initialChannel << it
 }
 }
 /**
 * Chain a filter a particular prime number to the end of the Sievenew for
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide prime candidates withfuture
 * @ A channel ending the whole chainreturn new
 */
 def filter(inChannel, prime) {int
 def outChannel = DataflowQueue()new
 ([inputs: [inChannel], outputs: [outChannel]]) {operator
 (it % prime != 0) {if
 bindOutput it
 }
 }
 outChannelreturn
 }
 /**
 * Consume Sieve output and add additional filters all found primesfor
 */
 def currentOutput = initialChannel
 requestedPrimeNumberCount.times {
 prime = currentOutput.valint
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
 }

8. Stm
Software Transactional Memory (STM) gives developers transactional semantics for accessing
in-memory data. When multiple threads share data in memory, by marking blocks of code as transactional
(atomic) the developer delegates the responsibility for data consistency to the Stm engine. GPars
leverages the Multiverse Stm engine. Check out more details on the transactional engine at the Multiverse
site

Running a piece of code atomically
When using Stm, developers organize their code into transactions. A transaction is a piece of code, which
is executed - either all the code is run or none at all. The data used by the transactional codeatomically
remains irrespective of whether the transaction finishes normally or abruptly. While runningconsistent
inside a transaction the code is given an illusion of being from the other concurrently runisolated
transactions so that changes to data in one transaction are not visible in the other ones until the
transactions commit. This gives us the part of the characteristics of database transactions. TheACI ACID

 transactional aspect so typical for databases, is not typically mandated for Stm.durability
GPars allows developers to specify transaction boundaries by using the closures.atomic

import groovyx.gpars.stm.GParsStm
 org.multiverse.api.references.IntRefimport
 org.multiverse.api.StmUtils.newIntRefimport static
 class Account {public

 IntRef amount = newIntRef(0);private final
 void transfer(a) {public final int
 GParsStm.atomic {
 amount.increment(a);
 }
 }
 getCurrentAmount() {public int
 GParsStm.atomicWithInt {
 amount.get();

http://multiverse.codehaus.org/overview.html
http://multiverse.codehaus.org/overview.html

 }
 }
}

There are several types of closures, each for different type of return value:atomic

 - returning atomic Object
 - returning atomicWithInt int

 - returning atomicWithLong long
 - returning atomicWithBoolean boolean

 - returning atomicWithDouble double
 - no return valueatomicWithVoid

Multiverse by default uses optimistic locking strategy and automatically rolls back and retries colliding
transactions. Developers should thus restrain from irreversible actions (e.g. writing to the console, sending
and e-mail, launching a missile, etc.) in their transactional code. To increase flexibility, the default
Multiverse settings can be customized through custom .atomic blocks

Customizing the transactional properties
Frequently it may be desired to specify different values for some of the transaction properties (e.g.
read-only transactions, locking strategy, isolation level, etc.). The method will create acreateAtomicBlock
new configured with the supplied values:AtomicBlock

import groovyx.gpars.stm.GParsStm
 org.multiverse.api.AtomicBlockimport
 org.multiverse.api.PropagationLevelimport
 AtomicBlock block = GParsStm.createAtomicBlock(maxRetries: 3000, familyName: 'Custom', PropagationLevel: PropagationLevel.Requires, interruptible:)final false

assert GParsStm.atomicWithBoolean(block) {
 true
}

The customized can then be used to create transactions following the specified settings. AtomicBlock
 instances are thread-safe and can be freely reused among threads and transactions.AtomicBlock

Using the objectTransaction
The atomic closures are provided the current as a parameter. The objects canTransaction Transaction
then be used to manually control the transaction. This is illustrated in the example below, where we use
the method to block the current transaction until the counter reaches the desired value:retry()

import groovyx.gpars.stm.GParsStm
 org.multiverse.api.AtomicBlockimport
 org.multiverse.api.PropagationLevelimport
 org.multiverse.api.StmUtils.newIntRefimport static
 AtomicBlock block = GParsStm.createAtomicBlock(maxRetries: 3000, familyName: 'Custom', PropagationLevel: PropagationLevel.Requires, interruptible:)final false

def counter = newIntRef(0)
 max = 100final int
.start {Thread

 (counter.atomicGet() < max) {while
 counter.atomicIncrementAndGet(1)
 sleep 10
 }
}
assert max + 1 == GParsStm.atomicWithInt(block) {tx ->
 (counter.get() == max) counter.get() + 1if return
 tx.retry()
}

Data structures
You might have noticed in the code examples above that we use dedicated data structures to hold values.
The fact is that normal Java classes do not support transactions and thus cannot be used directly, since
Multiverse would not be able to share them safely among concurrent transactions, commit them nor roll
them back. We need to use data that know about transactions:

IntRef
LongRef

BooleanRef
DoubleRef
Ref

You typically create these through the factory methods of the class.org.multiverse.api.StmUtils

More information
We decided not to duplicate the information that is already available on the Multiverse website. Please
visit the and use it as a reference for your further Stm adventures with GPars.Multiverse site

9. Tips

General GPars Tips

Grouping
High-level concurrency concepts, like Agents, Actors or Dataflow tasks and operators can be grouped
around shared thread pools. The class and its sub-classes represent convenient GPars wrappersPGroup
around thread pools. Objects created using the group's factory methods will share the group's thread pool.

def group1 = DefaultPGroup()new
def group2 = NonDaemonPGroup()new
group1.with {
 task {...}
 task {...}
 def op = (...) {...}operator
 def actor = actor{...}
 def anotherActor = group2.actor{...} //will belong to group2
 def agent = safe(0)
}

When customizing the thread pools for groups, consider using the existing GPars
implementations - the or classes. Or you may create your ownDefaultPool ResizeablePool
implementation of the interface to pass to the groovyx.gpars.scheduler.Pool DefaultPGroup
or constructors.NonDaemonPGroup

Java API
Most of GPars functionality can be used from Java just as well as from Groovy. Checkout the 2.6 Java

 section of the User Guide and experiment with the maven-basedAPI - Using GPars from Java
stand-alone Java . Take GPars with you wherever you go!demo application

9.1. Performance

Your code in Groovy can be just as fast as code written in Java, Scala or any other programing language.
This should not be surprising, since GPars is technically a solid tasty Java-made cake with a Groovy DSL
cream on it.
Unlike in Java, however, with GPars, as well as with other DSL-friendly languages, you are very likely to
experience a useful kind of code speed-up for free, a speed-up coming from a better and cleaner design of
your application. Coding with a concurrency DSL will give you smaller code-base with code using the
concurrency primitives as language constructs. So it is much easier to build robust concurrent
applications, identify potential bottle-necks or errors and eliminate them.
While this whole User Guide is describing how to use Groovy and GPars to create beautiful and robust
concurrent code, let's use this chapter to highlight a few places, where some code tuning or minor design
compromises could give you interesting performance gains.

Parallel Collections

Methods for parallel collection processing, like , and such use eachParallel() collectParallel() Parallel

http://multiverse.codehaus.org/overview.html
http://gpars.codehaus.org/Demos

 , an efficient tree-like data structure behind the scenes. This data structure has to be built from theArray
original collection each time you call any of the parallel collection methods. Thus when chaining parallel
method calls you might consider using the API instead or resort to using the map/reduce ParallelArray
API directly, to avoid the creation overhead.Parallel Array

GParsPool.withPool {
 people.findAllParallel{it.isMale()}.collectParallel{it.name}.any{it == 'Joe'}
 people.parallel.filter{it.isMale()}.map{it.name}.filter{it == 'Joe'}.size() > 0
 people.parallelArray.withFilter({it.isMale()} as Predicate).withMapping({it.name} as Mapper).any{it == 'Joe'} != null
}

In many scenarios changing the pool size from the default value may give you performance benefits.
Especially if your tasks perform IO operations, like file or database access, networking and such,
increasing the number of threads in the pool is likely to help performance.

GParsPool.withPool(50) {
 …
}

Since the closures you provide to the parallel collection processing methods will get executed frequently
and concurrently, you may further slightly benefit from turning them into Java.

Actors
GPars actors are fast. and are about twice as fast as the DynamicDispatchActors ReactiveActors

 , since they don't have to maintain an implicit state between subsequent message arrivals.DefaultActors
The are in fact on par in performance with actors in , which you can hardly hear of asDefaultActors Scala
being slow.
If top performance is what you're looking for, a good start is to identify the following patterns in your
actor code:

actor {
 loop {
 react {msg ->
 (msg) {switch
 :…case String
 :…case Integer
 }
 }
 }
}

and replace them with :DynamicDispatchActor

messageHandler {
 when{ msg -> ...}String
 when{ msg -> ...}Integer
}

The and methods are rather costly to call.loop react
Defining a or as classes instead of using the and DynamicDispatchActor ReactiveActor messageHandler

 factory methods will also give you some more speed:reactor

class MyHandler DynamicDispatchActor {extends
 void handleMessage(msg) {public String
 …
 }
 void handleMessage(msg) {public Integer
 …
 }
}

Now, moving the class into Java will squeeze the last bit of performance from GPars.MyHandler

Pool adjustment
GPars allows you to group actors around thread pools, giving you the freedom to organize actors any way
you like. It is always worthwhile to experiment with the actor pool size and type. usually givesFJPool

better characteristics that , but seems to be more sensitive to the number of threads in theDefaultPool
pool. Sometimes using a or could help performance by automaticResizeablePool ResizeableFJPool
eliminating unneeded threads.

def attackerGroup = DefaultPGroup(ResizeableFJPool(10))new new
def defenderGroup = DefaultPGroup(DefaultPool(5))new new
def attacker = attackerGroup.actor {...}
def defender = defenderGroup.messageHandler {...}
...

Agents
GPars are even a bit faster in processing messages than actors. The advice to group agents wiselyAgents
around thread pools and tune the pool sizes and types applies to agents as well as to actors. With agents,
you may also benefit from submitting Java-written closures as messages.

Share your experience
The more we hear about GPars uses in the wild the better we can adapt it for the future. Let us know how
you use GPars and how it performs. Send us your benchmarks, performance comparisons or profiling
reports to help us tune GPars for you.

10. Conclusion
This was quite a wild ride, wasn't it? Now, after going through the User Guide, you're certainly ready to
build fast, robust and reliable concurrent applications. You've seen that there are many concepts you can
choose from and each has its own areas of applicability. The ability to pick the right concept to apply to a
given problem and combine it with the rest of the system is key to being a successful developer. If you
feel you can do this with GPars, the mission of the User Guide has been accomplished.
Now, go ahead, use GPars and have fun!
Tackling the complexity of concurrent programming with Groovy.

