
1

Groovy Parallel Systems

Table of contents

2

The GPars Framework - Reference Documentation
Authors: The Whole GPars Gang

Version: 1.0.0

Table of Contents

1 Introduction

1.1 Enter GPars

1.2 Credits

2 Getting Started

2.1 Downloading and Installing

2.2 A Hello World Example

2.3 Code conventions

2.4 Getting Set Up in an IDE

2.5 Applicability of Concepts

2.6 What's New

2.7 Java API - Using GPars from Java

3 Data Parallelism

3.1 Parallel Collections

3.1.1 GParsPool

3.1.2 GParsExecutorsPool

3.1.3 Memoize

3.2 Map-Reduce

3.3 Parallel Arrays

3.4 Asynchronous Invocation

3.5 Composable Asynchronous Functions

3.6 Fork-Join

3.7 Parallel Speculations

4 Groovy CSP

5 Actors

5.1 Actors Principles

5.2 Stateless Actors

5.3 Tips and Tricks

5.4 Active Objects

5.5 Classic Examples

6 Agents

7 Dataflow

7.1 Tasks

3

7.2 Selects

7.3 Operators

7.4 Shutting Down Dataflow Networks

7.5 Application Frameworks

7.6 Pipeline DSL

7.7 Implementation

7.8 Synchronous Variables and Channels

7.9 Kanban Flow

7.10 Classic Examples

8 STM

9 Google App Engine Integration

10 Tips

10.1 Performance

10.2 Integration into hosted environment

11 Conclusion

4

1 Introduction
The world of mainstream computing is changing rapidly these days. If you open the hood and
look under the covers of your computer, you'll most likely see a dual-core processor there. Or
a quad-core one, if you have a high-end computer. We all now run our software on
multi-processor systems. The code we write today and tomorrow will probably never run on a
single processor system: parallel hardware has become standard. Not so with the software
though, at least not yet. People still create single-threaded code, even though it will not be
able to leverage the full power of current and future hardware. Some developers experiment
with low-level concurrency primitives, like threads, and locks or synchronized blocks.
However, it has become obvious that the shared-memory multi-threading approach used at
the application level causes more trouble than it solves. Low-level concurrency handling is
usually hard to get right, and it's not much fun either. With such a radical change in hardware,
software inevitably has to change dramatically too. Higher-level concurrency and parallelism
concepts like map/reduce, fork/join, actors and dataflow provide natural abstractions for
different types of problem domains while leveraging the multi-core hardware.

1.1 Enter GPars
Meet - an open-source concurrency and parallelism library for Java and Groovy thatGPars
gives you a number of high-level abstractions for writing concurrent and parallel code in
Groovy (map/reduce, fork/join, asynchronous closures, actors, agents, dataflow concurrency
and other concepts), which can make your Java and Groovy code concurrent and/or parallel
with little effort. With GPars your Java and/or Groovy code can easily utilize all the available
processors on the target system. You can run multiple calculations at the same time, request
network resources in parallel, safely solve hierarchical divide-and-conquer problems, perform
functional style map/reduce or data parallel collection processing or build your applications
around the actor or dataflow model.

The project is open sourced under the . If you're working on a commercial,Apache 2 License
open-source, educational or any other type of software project in Groovy, download the
binaries or integrate them from the Maven repository and get going. The way to writing highly
concurrent and/or parallel Java and Groovy code is wide open. Enjoy!

1.2 Credits
This project could not have reached the point where it stands currently without all the great
help and contribution of many individuals, who have devoted their time, energy and expertise
to make GPars a solid product. First, it is the people in the core team who should be
mentioned:

Václav Pech

Dierk Koenig

Alex Tkachman

Russel Winder

Paul King

Jon Kerridge

http://gpars.codehaus.org
http://gpars.codehaus.org/License

5

Over time, many people have contributed their ideas, provided useful feedback or helped
GPars in one way or another. There are many people in this group, too many to name them
all, but let's list at least the most active:

Hamlet d'Arcy

Hans Dockter

Guillaume Laforge

Robert Fischer

Johannes Link

Graeme Rocher

Alex Miller

Jeff Gortatowsky

Jií Kropáek

Many thanks to everyone!

6

1.

2.

3.

4.

5.

2 Getting Started
Let's set out a few assumptions before we get started:

You know and use Groovy and Java: otherwise you'd not be investing your valuable time
studying a concurrency and parallelism library for Groovy and Java.

You definitely want to write your codes employing concurrency and parallelism using
Groovy and Java.

If you are not using Groovy for your code, you are prepared to pay the inevitable
verbosity tax of using Java.

You target multi-core hardware with your code.

You appreciate that in concurrent and parallel code things can happen at any time, in any
order, and more likely with than one thing happening at once.

With those assumptions in place, we get started.

It's becoming more and more obvious that dealing with concurrency and parallelism at the
thread/synchronized/lock level, as provided by the JVM, is far too low a level to be safe and
comfortable. Many high-level concepts, such as actors and dataflow have been around for
quite some time: parallel computers have been in use, at least in data centres if not on the
desktop, long before multi-core chips hit the hardware mainstream. Now then is the time to
adopt these higher-level abstractions in the mainstream software industry. This is what GPars
enables for the Groovy and Java languages, allowing Groovy and Java programmers to use
higher-level abstractions and therefore make developing concurrent and parallel software
easier and less error prone.

The concepts available in can be categorized into three groups:GPars

7

1.

1.

2.

3.

2.

1.

2.

3.

4.

3.

1.

2.

 Constructs that can be applied to small parts of the code-base suchCode-level helpers
as individual algorithms or data structures without any major changes in the overall
project architecture

Parallel Collections

Asynchronous Processing

Fork/Join (Divide/Conquer)

 Constructs that need to be taken into account whenArchitecture-level concepts
designing the project structure

Actors

Communicating Sequential Processes (CSP)

Dataflow

Data Parallelism

 Although about 95% of current use of shared mutableShared Mutable State Protection
state can be avoided using proper abstractions, good abstractions are still necessary for
the remaining 5% use cases, when shared mutable state cannot be avoided

Agents

Software Transactional Memory (not fully implemented in GPars as yet)

2.1 Downloading and Installing
GPars is now distributed as standard with Groovy. So if you have a Groovy installation, you
should have GPars already. The exact version of GPars you have will, of course, depend of
which version of Groovy. If you don't already have GPars, and you do have Groovy, then
perhaps you should upgrade your Groovy!

If you do not have a Groovy installation, but get Groovy by using dependencies or just having
the groovy-all artifact, then you will need to get GPars. Also if you want to use a version of
GPars different from the one with Groovy, or have an old GPars-less Groovy you cannot
upgrade, you will need to get GPars. The ways of getting GPars are:

Download the artifact from a repository and add it and all the transitive dependencies
manually.

Specify a dependency in Gradle, Maven, or Ivy (or Gant, or Ant) build files.

Use Grapes (especially useful for Groovy scripts).

If you're building a Grails or a Griffon application, you can use the appropriate plugins to fetch
the jar files for you.

The GPars Artifact

8

As noted above GPars is now distributed as standard with Groovy. If however, you have to
manage this dependency manually, the GPars artifact is in the main Maven repository and in
the Codehaus main and snapshots repositories. The released versions are in the Maven and
Codehaus main repositories, the current development version (SNAPSHOT) is in the
Codehaus snapshots repository. To use from Gradle or Grapes use the specification:

"org.codehaus.gpars:gpars:1.0.0"

for the release version, and:

"org.codehaus.gpars:gpars:1.1-SNAPSHOT"

for the development version. You will likely need to add the Codehaus snapshots repository
manually to the search list in this latter case. Using Maven the dependency is:

<dependency>
 <groupId>org.codehaus.gpars</groupId>
 <artifactId>gpars</artifactId>
 <version>1.0.0</version>
</dependency>

or version 1.1-SNAPSHOT if using the latest snapshot.

Transitive Dependencies

GPars as a library depends on Groovy version equal or greater than 1.8. Also, the Fork/Join
concurrency library namely (an artifact from the) must be on thejsr166y JSR-166 Project
classpath the programs, which use GPars, to compile and execute. Released versions of this
artifact are in the main Maven and Codehaus repositories. Development versions of the
artifact are available in the Codehaus snapshots repository. Using Gradle or Grapes you
would use the following dependency specification:

"org.codehaus.jsr166-mirror:jsr166y:1.7.0"

For Maven, the specification would be:

<dependency>
 <groupId>org.codehaus.jsr166-mirror</groupId>
 <artifactId>jsr166y</artifactId>
 <version>1.7.0</version>
</dependency>

The development versions have version number 1.7.0.1-SNAPSHOT.

GPars defines this dependency in its own descriptor, so ideally all dependency management
should be taken care of automatically, if you use Gradle, Grails, Griffon, Maven, Ivy or other
type of automatic dependency resolution tool.

Please visit the page on the GPars website for more details.Integration

2.2 A Hello World Example
Once you are setup, try the following Groovy script to test that your setup is functioning as it
should.

http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166y.jar
http://g.oswego.edu/dl/concurrency-interest/
http://gpars.codehaus.org/Integration

9

import groovyx.gpars.actor.Actors.actorstatic

/**
 * A demo showing two cooperating actors. The decryptor decrypts received messages
 * and replies them back. The console actor sends a message to decrypt, prints out
 * the reply and terminates both actors. The main thread waits on both actors to
 * finish using the join() method to prevent premature exit, since both actors use
 * the actor group, which uses a daemon thread pool.default
 * @author Dierk Koenig, Vaclav Pech
 */

def decryptor = actor {
 loop {
 react { message ->
 (message) reply message.reverse()if instanceof String
 stop()else
 }
 }
}

def console = actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 println 'Decrypted message: ' + it
 decryptor.send false
 }
}

[decryptor, console]*.join()

You should get a message "Decrypted message: Groovy is parallel" printed out on the
console when you run the code.

GPars has been designed primarily for use with the Groovy programming
language. Of course all Java and Groovy programs are just bytecodes
running on the JVM, so GPars can be used with Java source. Despite
being aimed at Groovy code use, the solid technical foundation, plus the
good performance characteristics, of GPars make it an excellent library for
Java programs. In fact most of GPars is written in Java, so there is no
performance penalty for Java applications using GPars.

For details please refer to the Java API section.

To quick-test using GPars via the Java API, you can compile and run the following Java code:

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.actor.DynamicDispatchActor;import

 class StatelessActorDemo {public
 void main([] args) InterruptedException {public static String throws
 MyStatelessActor actor = MyStatelessActor();final new
 actor.start();
 actor.send();"Hello"
 actor.sendAndWait(10);
 actor.sendAndContinue(10.0, MessagingRunnable< >() {new String
 @Override void doRun(s) {protected final String
 .out.println(+ s);System "Received a reply "
 }
 });
 }
}

class MyStatelessActor DynamicDispatchActor {extends
 void onMessage(msg) {public final String
 .out.println(+ msg);System "Received "
 replyIfExists();"Thank you"
 }

 void onMessage(msg) {public final Integer
 .out.println(+ msg);System "Received a number "
 replyIfExists();"Thank you"
 }

 void onMessage(msg) {public final Object
 .out.println(+ msg);System "Received an object "
 replyIfExists();"Thank you"
 }
}

10

Remember though that you will almost certainly have to add the Groovy artifact to the build as
well as the GPars artifact. GPars may well work at Java speeds with Java applications, but it
still has some compilation dependencies on Groovy.

2.3 Code conventions
We follow certain conventions in the code samples. Understanding these may help you read
and comprehend GPars code samples better.

The operator has been overloaded on actors, agents and dataflowleftShift <<
expressions (both variables and streams) to mean a message or a value.send assign

myActor << 'message'

myAgent << {account -> account.add('5 USD')}

myDataflowVariable << 120332

On actors and agents the default method has been also overloaded to mean .call() send
So sending a message to an actor or agent may look like a regular method call.

myActor "message"

myAgent {house -> house.repair()}

The operator in GPars has the meaning. SorightShift >> when bound

myDataflowVariable >> {value -> doSomethingWith(value)}

will schedule the closure to run only after is bound to a value, with themyDataflowVariable
value as a parameter.

In samples we tend to statically import frequently used factory methods:

GParsPool.withPool()

GParsPool.withExistingPool()

GParsExecutorsPool.withPool()

GParsExecutorsPool.withExistingPool()

Actors.actor()

Actors.reactor()

Actors.fairReactor()

Actors.messageHandler()

Actors.fairMessageHandler()

Agent.agent()

Agent.fairAgent()

Dataflow.task()

Dataflow.operator()

11

It is more a matter of style preferences and personal taste, but we think static imports make
the code more compact and readable.

2.4 Getting Set Up in an IDE
Adding the GPars jar files to your project or defining the appropriate dependencies in pom.xml
should be enough to get you started with GPars in your IDE.

GPars DSL recognition

 in both the free and the commercial willIntelliJ IDEA Community Edition Ultimate Edition
recognize the GPars domain specific languages, complete methods like , eachParallel()

 or and validate them. GPars uses the mechanism, whichreduce() callAsync() GroovyDSL
teaches IntelliJ IDEA the DSLs as soon as the GPars jar file is added to the project.

2.5 Applicability of Concepts
GPars provides a lot of concepts to pick from. We're continuously building and updating a
page that tries to help user choose the right abstraction for their tasks at hands. Please, refer
to the page for details.Concepts compared

To briefly summarize the suggestions, below you can find the basic guide-lines:

http://www.jetbrains.net/confluence/display/GRVY/Scripting+IDE+for+DSL+awareness
http://gpars.codehaus.org/Concepts+compared

12

1.

2.

3.

4.

5.

1.

2.

3.

You're looking at a collection, which needs to be or processed using one of theiterated
many beautiful Groovy collections method, like , , and such.each() collect() find()
Proposing that processing each element of the collection is independent of the other
items, using GPars can be recommended.parallel collections

If you have a , which may safely run in the background, use thelong-lasting calculation
 in GPars. Since the GPars asynchronous functionsasynchronous invocation support

can be composed, you can quickly parallelize complex functional calculations without
having to mark independent calculations explicitly.

You need to an algorithm at hand. You can identify a set of with theirparallelize tasks
mutual dependencies. The tasks typically do not need to share data, but instead some
tasks may need to wait for other tasks to finish before starting. You're ready to express
these dependencies explicitly in code. With GPars you create internallydataflow tasks
sequential tasks, each of which can run concurrently with the others. Dataflow variables
and channels provide the tasks with the capability to express their dependencies and to
exchange data safely.

You can't avoid using in your algorithm. Multiple threads will beshared mutable state
accessing shared data and (some of them) modifying it. Traditional locking and
synchronized approach feels too risky or unfamiliar. Go for , which will wrap youragents
data and serialize all access to it.

You're building a system with high concurrency demands. Tweaking a data structure here
or task there won't cut it. You need to build the architecture from the ground up with
concurrency in mind. might be the way to go.Message-passing

Groovy CSP will give you highly deterministic and composable model for concurrent
processes. The model is organized around the concept of or calculations

, which run concurrently and communicate through synchronousprocesses
channels.

If you're trying to solve a complex data-processing problem, consider GPars
 to build a data flow network. The concept is organized arounddataflow operators

event-driven transformations wired into pipelines using asynchronous channels.

Actors and will shine if you need to build a general-purpose, highlyActive Objects
concurrent and scalable architecture following the object-oriented paradigm.

Now you may have a better idea of what concepts to use on your current project. Go and
check out more details on them in the User Guide.

2.6 What's New
The new GPars 1.0.0 release introduces a lot of gradual enhancements and improvements on
top of the previous release, mainly in the dataflow area.

Check out the JIRA release notes

Project changes

See for the list of breaking changes.the Breaking Changes listing

http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=12030&version=17007
http://gpars.codehaus.org/Breaking+Changes

13

Asynchronous functions

Allowed for delayed and explicit thread pool assignment strategies for asynchronous
functions

Performance tuning to the asynchronous closure invocation mechanism

Parallel collections

Added a couple of new parallel collection processing methods to keep up with the
innovation pace in Groovy

Merged the extra166y library into GPars

Fork / Join

Actors

StaticDispatchActor has been added to provide easier to create and better performing
alternative to DynamicDispatchActor

A new method has been added to actors to send a message and get asendAndPromise
promise for the future actor's reply

Dataflow

Operator and selector speed-up

Kanban-style dataflow operator management has been added

Chaining of Promises using the new methodthen()

Exception propagation and handling for Promises

Added a DSL for easy operator pipe-lining

Lifecycle events for operators and selectors were added

Added support for custom error handlers

A generic way to shutdown dataflow networks

An shutdown poison pill with immediate or delayed effect was added

Polished the way operators can be stopped

Added synchronous dataflow variables and channels

Read channels can report their length

Agent

Stm

14

Other

Removed deprecated classes and methods

Added numerous code examples and demos

Enhanced project documentation

Re-styled the user guide

Renaming hints

The method that forces concurrent semantics to iteration methodsmakeTransparent()
(each, collect, find, etc.) has been removed

The stop() method on dataflow operators and selectors has been renamed to terminate()
to match naming used for actor

The method on dataflow operators and selectors has been replaced with thereportError()
 methodaddErrorHandler()

The RightShift (>>) operator of DataflowVariables and channels now calls insteadthen()
of and so can be chainedwhenBound()

2.7 Java API - Using GPars from Java
Using GPars is very addictive, I guarantee. Once you get hooked you won't be able to code
without it. May the world force you to write code in Java, you will still be able to benefit from
most of GPars features.

Java API specifics

Some parts of GPars are irrelevant in Java and it is better to use the underlying Java libraries
directly:

Parallel Collection - use jsr-166y library's Parallel Array directly

Fork/Join - use jsr-166y library's Fork/Join support directly

Asynchronous functions - use Java executor services directly

The other parts of GPars can be used from Java just like from Groovy, although most will
miss the Groovy DSL capabilities.

GPars Closures in Java API

To overcome the lack of closures as a language element in Java and to avoid forcing users to
use Groovy closures directly through the Java API, a few handy wrapper classes have been
provided to help you define callbacks, actor body or dataflow tasks.

15

groovyx.gpars.MessagingRunnable - used for single-argument callbacks or actor body

groovyx.gpars.ReactorMessagingRunnable - used for ReactiveActor body

groovyx.gpars.DataflowMessagingRunnable - used for dataflow operators' body

These classes can be used in all places GPars API expects a Groovy closure.

Actors

The as well as the classes can be used just like inDynamicDispatchActor ReactiveActor
Groovy:

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.actor.DynamicDispatchActor;import

 class StatelessActorDemo {public
 void main([] args) InterruptedException {public static String throws
 MyStatelessActor actor = MyStatelessActor();final new
 actor.start();
 actor.send();"Hello"
 actor.sendAndWait(10);
 actor.sendAndContinue(10.0, MessagingRunnable< >() {new String
 @Override void doRun(s) {protected final String
 .out.println(+ s);System "Received a reply "
 }
 });
 }
 }

class MyStatelessActor DynamicDispatchActor {extends
 void onMessage(msg) {public final String
 .out.println(+ msg);System "Received "
 replyIfExists();"Thank you"
 }

 void onMessage(msg) {public final Integer
 .out.println(+ msg);System "Received a number "
 replyIfExists();"Thank you"
 }

 void onMessage(msg) {public final Object
 .out.println(+ msg);System "Received an object "
 replyIfExists();"Thank you"
 }
 }

Although there are not many differences between Groovy and Java GPars use, notice, the
callbacks instantiating the MessagingRunnable class in place for a groovy closure.

import groovy.lang.Closure;
 groovyx.gpars.ReactorMessagingRunnable;import
 groovyx.gpars.actor.Actor;import
 groovyx.gpars.actor.ReactiveActor;import

 class ReactorDemo {public
 void main([] args) InterruptedException {public static final String throws
 Closure handler = ReactorMessagingRunnable< , >() {final new Integer Integer
 @Override doRun(integer) {protected Integer final Integer
 integer * 2;return
 }
 };
 Actor actor = ReactiveActor(handler);final new
 actor.start();

.out.println(+ actor.sendAndWait(1));System "Result: "
 .out.println(+ actor.sendAndWait(2));System "Result: "
 .out.println(+ actor.sendAndWait(3));System "Result: "
 }
}

Convenience factory methods

16

Obviously, all the essential factory methods to build actors quickly are available where you'd
expect them.

import groovy.lang.Closure;
 groovyx.gpars.ReactorMessagingRunnable;import
 groovyx.gpars.actor.Actor;import
 groovyx.gpars.actor.Actors;import

 class ReactorDemo {public
 void main([] args) InterruptedException {public static final String throws
 Closure handler = ReactorMessagingRunnable< , >() {final new Integer Integer
 @Override doRun(integer) {protected Integer final Integer
 integer * 2;return
 }
 };
 Actor actor = Actors.reactor(handler);final

.out.println(+ actor.sendAndWait(1));System "Result: "
 .out.println(+ actor.sendAndWait(2));System "Result: "
 .out.println(+ actor.sendAndWait(3));System "Result: "
 }
}

Agents

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.agent.Agent;import

 class AgentDemo {public
 void main([] args) InterruptedException {public static final String throws
 Agent counter = Agent< >(0);final new Integer
 counter.send(10);
 .out.println(+ counter.getVal());System "Current value: "
 counter.send(MessagingRunnable< >() {new Integer
 @Override void doRun(integer) {protected final Integer
 counter.updateValue(integer + 1);
 }
 });
 .out.println(+ counter.getVal());System "Current value: "
 }
 }

Dataflow Concurrency

Both and can be used from Java without any hiccups.DataflowVariables DataflowQueues
Just avoid the handy overloaded operators and go straight to the methods, like , bind

 , and other. You may also continue using dataflow passing to themwhenBound getVal tasks
instances of or just like groovy .Runnable Callable Closure

17

1.

2.

3.

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.dataflow.DataflowVariable;import
 groovyx.gpars.group.DefaultPGroup;import

 java.util.concurrent.Callable;import

 class DataflowTaskDemo {public
 void main([] args) InterruptedException {public static final String throws
 DefaultPGroup group = DefaultPGroup(10);final new

 DataflowVariable a = DataflowVariable();final new

group.task(() {new Runnable
 void run() {public
 a.bind(10);
 }
 });

 DataflowVariable result = group.task(Callable() {final new
 call() Exception {public Object throws
 ()a.getVal() + 10;return Integer
 }
 });

result.whenBound(MessagingRunnable< >() {new Integer
 @Override void doRun(integer) {protected final Integer
 .out.println(+ integer);System "arguments = "
 }
 });

.out.println(+ result.getVal());System "result = "
 }
}

Dataflow operators

The sample below should illustrate the main differences between Groovy and Java API for
dataflow operators.

Use the convenience factory methods accepting list of channels to create operators or
selectors

Use to specify the operator bodyDataflowMessagingRunnable

Call to get hold of the operator from within the body in order togetOwningProcessor()
e.g. bind output values

18

import groovyx.gpars.DataflowMessagingRunnable;
 groovyx.gpars.dataflow.Dataflow;import
 groovyx.gpars.dataflow.DataflowQueue;import
 groovyx.gpars.dataflow. .DataflowProcessor;import operator

 java.util.Arrays;import
 java.util.List;import

 class DataflowOperatorDemo {public
 void main([] args) InterruptedException {public static final String throws
 DataflowQueue stream1 = DataflowQueue();final new
 DataflowQueue stream2 = DataflowQueue();final new
 DataflowQueue stream3 = DataflowQueue();final new
 DataflowQueue stream4 = DataflowQueue();final new

 DataflowProcessor op1 = Dataflow.selector(Arrays.asList(stream1), Arrays.asList(stream2), final new
DataflowMessagingRunnable(1) {
 @Override void doRun(… objects) {protected final Object
 getOwningProcessor().bindOutput(2*()objects[0]);Integer
 }
 });

 List secondOperatorInput = Arrays.asList(stream2, stream3);final

 DataflowProcessor op2 = Dataflow. (secondOperatorInput, Arrays.asList(stream4), final operator new
DataflowMessagingRunnable(2) {
 @Override void doRun(… objects) {protected final Object
 getOwningProcessor().bindOutput(() objects[0] + () objects[1]);Integer Integer
 }
 });

stream1.bind(1);
 stream1.bind(2);
 stream1.bind(3);
 stream3.bind(100);
 stream3.bind(100);
 stream3.bind(100);
 .out.println(+ stream4.getVal());System "Result: "
 .out.println(+ stream4.getVal());System "Result: "
 .out.println(+ stream4.getVal());System "Result: "
 op1.stop();
 op2.stop();
 }
}

Performance

In general, GPars overhead is identical irrespective of whether you use it from Groovy or Java
and tends to be very low. GPars actors, for example, can compete head-to-head with other
JVM actor options, like Scala actors.

Since Groovy code in general runs slower than Java code, mainly due to dynamic method
invocation, you might consider writing your code in Java to improve performance. Typically
numeric operations or frequent fine-grained method calls within a task or actor body may
benefit from a rewrite into Java.

Prerequisites

All the GPars integration rules apply to Java projects just like they do to Groovy projects. You
only need to include the groovy distribution jar file in your project and all is clear to march
ahead. You may also want to check out the sample Java Maven project to get tips on how to
integrate GPars into a maven-based pure Java application - Sample Java Maven Project

http://gpars.codehaus.org/Demos

19

1.

2.

3.

3 Data Parallelism
Focusing on data instead of processes helps a great deal to create robust concurrent
programs. You as a programmer define your data together with functions that should be
applied to it and then let the underlying machinery to process the data. Typically a set of
concurrent tasks will be created and then they will be submitted to a thread pool for
processing.

In the and classes give you access to low-level dataGPars GParsPool GParsExecutorsPool
parallelism techniques. While the class relies on the jsr-166y Fork/Join frameworkGParsPool
and so offers greater functionality and better performance, the usesGParsExecutorsPool
good old Java executors and so is easier to setup in a managed or restricted environment.

There are three fundamental domains covered by the GPars low-level data parallelism:

Processing collections concurrently

Running functions (closures) asynchronously

Performing Fork/Join (Divide/Conquer) algorithms

3.1 Parallel Collections
Dealing with data frequently involves manipulating collections. Lists, arrays, sets, maps,
iterators, strings and lot of other data types can be viewed as collections of items. The
common pattern to process such collections is to take elements sequentially, one-by-one, and
make an action for each of the items in row.

Take, for example, the function, which is supposed to return the smallest element of amin()
collection. When you call the method on a collection of numbers, the caller thread willmin()
create an or initialized to the minimum value of theaccumulator so-far-the-smallest-value
given type, let say to zero. And then the thread will iterate through the elements of the
collection and compare them with the value in the . Once all elements have beenaccumulator
processed, the minimum value is stored in the .accumulator

This algorithm, however simple, is on multi-core hardware. Running the totally wrong min()
function on a dual-core chip can leverage of the computing power of the chip.at most 50%
On a quad-core it would be only 25%. Correct, this algorithm effectively wastes 75% of the

 of the chip.computing power

Tree-like structures proved to be more appropriate for parallel processing. The functionmin()
in our example doesn't need to iterate through all the elements in row and compare their
values with the . What it can do instead is relying on the multi-core nature of youraccumulator
hardware. A function could, for example, compare pairs (or tuples of certainparallel_min()
size) of neighboring values in the collection and promote the smallest value from the tuple into
a next round of comparison. Searching for minimum in different tuples can safely happen in
parallel and so tuples in the same round can be processed by different cores at the same time
without races or contention among threads.

Meet Parallel Arrays

20

The jsr-166y library brings a very convenient abstraction called . GParsParallel Arrays
leverages the Parallel Arrays implementation in several ways. The and GParsPool

 classes provide parallel variants of the common Groovy iterationGParsExecutorsPool
methods like , , and such.each() collect() findAll()

def selfPortraits = images.findAllParallel{it.contains me}.collectParallel {it.resize()}

It also allows for a more functional style map/reduce collection processing.

def smallestSelfPortrait = images.parallel.filter{it.contains me}.map{it.resize()}.min{it.sizeInMB}

3.1.1 GParsPool
Use of - the JSR-166y based concurrent collection processorGParsPool

Usage of GParsPool

The class enables a ParallelArray-based (from JSR-166y) concurrency DSL forGParsPool
collections and objects.

Examples of use:

//summarize numbers concurrently
 GParsPool.withPool {
 AtomicInteger result = AtomicInteger(0)final new
 [1, 2, 3, 4, 5].eachParallel {result.addAndGet(it)}
 assert 15 == result
 }

//multiply numbers asynchronously
 GParsPool.withPool {
 List result = [1, 2, 3, 4, 5].collectParallel {it * 2}final
 assert ([2, 4, 6, 8, 10].equals(result))
 }

The passed-in closure takes an instance of a ForkJoinPool as a parameter, which can be then
used freely inside the closure.

//check whether all elements within a collection meet certain criteria
 GParsPool.withPool(5) {ForkJoinPool pool ->
 assert [1, 2, 3, 4, 5].everyParallel {it > 0}
 assert ![1, 2, 3, 4, 5].everyParallel {it > 1}
 }

The method takes optional parameters for number of threads in theGParsPool.withPool()
created pool and an unhandled exception handler.

withPool(10) {...}
withPool(20, exceptionHandler) {...}

The takes an already existing ForkJoinPool instance to reuse.GParsPool.withExistingPool()
The DSL is valid only within the associated block of code and only for the thread that has
called the or methods. The method returns only afterwithPool() withExistingPool() withPool()
all the worker threads have finished their tasks and the pool has been destroyed, returning
back the return value of the associated block of code. The method doesn'twithExistingPool()
wait for the pool threads to finish.

Alternatively, the class can be statically imported GParsPool import static
 , which will allow omitting the class name.groovyx.gpars.GParsPool.`*` GParsPool

http://groovy.dzone.com/articles/parallelize-your-arrays-with-j

21

withPool {
 assert [1, 2, 3, 4, 5].everyParallel {it > 0}
 assert ![1, 2, 3, 4, 5].everyParallel {it > 1}
 }

The following methods are currently supported on all objects in Groovy:

eachParallel()

eachWithIndexParallel()

collectParallel()

collectManyParallel()

findAllParallel()

findAnyParallel

findParallel()

everyParallel()

anyParallel()

grepParallel()

groupByParallel()

foldParallel()

minParallel()

maxParallel()

sumParallel()

splitParallel()

countParallel()

foldParallel()

Meta-class enhancer

As an alternative you can use the class to enhance meta-classes of anyParallelEnhancer
classes or individual instances with the parallel methods.

import groovyx.gpars.ParallelEnhancer

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
ParallelEnhancer.enhanceInstance(list)
println list.collectParallel {it * 2 }

def animals = ['dog', 'ant', 'cat', 'whale']
ParallelEnhancer.enhanceInstance animals
println (animals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')
println (animals.everyParallel {it.contains('a')} ? 'All animals contain a' : 'Some animals can live
without an a')

When using the class, you're not restricted to a block with theParallelEnhancer withPool()
use of the GParsPool DSLs. The enhanced classed or instances remain enhanced till they get
garbage collected.

22

Exception handling

If an exception is thrown while processing any of the passed-in closures, the first exception
gets re-thrown from the xxxParallel methods and the algorithm stops as soon as possible.

The exception handling mechanism of GParsPool builds on the one built
into the Fork/Join framework. Since Fork/Join algorithms are by nature
hierarchical, once any part of the algorithm fails, there's usually little benefit
from continuing the computation, since some branches of the algorithm will
never return a result.

Bear in mind that the GParsPool implementation doesn't give any
guarantees about its behavior after a first unhandled exception occurs,
beyond stopping the algorithm and re-throwing the first detected exception
to the caller. This behavior, after all, is consistent with what the traditional
sequential iteration methods do.

Transparently parallel collections

On top of adding new xxxParallel() methods, can also let you change the semantics ofGPars
the original iteration methods. For example, you may be passing a collection into a library
method, which will process your collection in a sequential way, let say using the collect()
method. By changing the semantics of the method on your collection you cancollect()
effectively parallelize the library sequential code.

GParsPool.withPool {

//The selectImportantNames() will process the name collections concurrently
 assert ['ALICE', 'JASON'] == selectImportantNames(['Joe', 'Alice', 'Dave', 'Jason'].makeConcurrent())
}

/**
 * A function implemented using standard sequential collect() and findAll() methods.
 */
def selectImportantNames(names) {
 names.collect {it.toUpperCase()}.findAll{it.size() > 4}
}

The method will reset the collection back to the original sequentialmakeSequential()
semantics.

23

import groovyx.gpars.GParsPool.withPoolstatic

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]

println 'Sequential: '
list.each { print it + ',' }
println()

withPool {

println 'Sequential: '
 list.each { print it + ',' }
 println()

list.makeConcurrent()

println 'Concurrent: '
 list.each { print it + ',' }
 println()

list.makeSequential()

println 'Sequential: '
 list.each { print it + ',' }
 println()
}

println 'Sequential: '
list.each { print it + ',' }
println()

The convenience method will allow you to specify code blocks, in which theasConcurrent()
collection maintains concurrent semantics.

import groovyx.gpars.GParsPool.withPoolstatic

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]

println 'Sequential: '
list.each { print it + ',' }
println()

withPool {

println 'Sequential: '
 list.each { print it + ',' }
 println()

list.asConcurrent {
 println 'Concurrent: '
 list.each { print it + ',' }
 println()
 }

println 'Sequential: '
 list.each { print it + ',' }
 println()
}

println 'Sequential: '
list.each { print it + ',' }
println()

Transparent parallelizm, including the , and makeConcurrent() makeSequential()
 methods, is also available in combination with .asConcurrent() ParallelEnhancer

/**
 * A function implemented using standard sequential collect() and findAll() methods.
 */
def selectImportantNames(names) {
 names.collect {it.toUpperCase()}.findAll{it.size() > 4}
}

def names = ['Joe', 'Alice', 'Dave', 'Jason']
ParallelEnhancer.enhanceInstance(names)
//The selectImportantNames() will process the name collections concurrently
assert ['ALICE', 'JASON'] == selectImportantNames(names.makeConcurrent())

24

import groovyx.gpars.ParallelEnhancer

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]

println 'Sequential: '
list.each { print it + ',' }
println()

ParallelEnhancer.enhanceInstance(list)

println 'Sequential: '
list.each { print it + ',' }
println()

list.asConcurrent {
 println 'Concurrent: '
 list.each { print it + ',' }
 println()

}
list.makeSequential()

println 'Sequential: '
list.each { print it + ',' }
println()

Avoid side-effects in functions

We have to warn you. Since the closures that are provided to the parallel methods like
 or may be run in parallel, you have to make sure that each ofeachParallel() collectParallel()

the closures is written in a thread-safe manner. The closures must hold no internal state,
share data nor have side-effects beyond the boundaries the single element that they've been
invoked on. Violations of these rules will open the door for race conditions and deadlocks, the
most severe enemies of a modern multi-core programmer.

Don't do this:

def thumbnails = []
images.eachParallel {thumbnails << it.thumbnail} //Concurrently accessing a not-thread-safe collection
of thumbnails, don't !do this

At least, you've been warned.

3.1.2 GParsExecutorsPool
Use of GParsExecutorsPool - the Java Executors' based concurrent collection processor

Usage of GParsExecutorsPool

The class enables a Java Executors-based concurrency DSL for collections andGParsPool
objects.

The class can be used as a pure-JDK-based collection parallelGParsExecutorsPool
processor. Unlike the class, doesn't require jsr-166y jar file,GParsPool GParsExecutorsPool
but leverages the standard JDK executor services to parallelize closures processing a
collections or an object iteratively. It needs to be states, however, that performsGParsPool
typically much better than does.GParsExecutorsPool

Examples of use:

25

//multiply numbers asynchronously
 GParsExecutorsPool.withPool {
 Collection<Future> result = [1, 2, 3, 4, 5].collectParallel{it * 10}
 assert HashSet([10, 20, 30, 40, 50]) == HashSet((Collection)result*.get())new new
 }

//multiply numbers asynchronously using an asynchronous closure
 GParsExecutorsPool.withPool {
 def closure={it * 10}
 def asyncClosure=closure.async()
 Collection<Future> result = [1, 2, 3, 4, 5].collect(asyncClosure)
 assert HashSet([10, 20, 30, 40, 50]) == HashSet((Collection)result*.get())new new
 }

The passed-in closure takes an instance of a ExecutorService as a parameter, which can be
then used freely inside the closure.

//find an element meeting specified criteria
 GParsExecutorsPool.withPool(5) {ExecutorService service ->
 service.submit({performLongCalculation()} as)Runnable
 }

The method takes optional parameters for number of threadsGParsExecutorsPool.withPool()
in the created pool and a thread factory.

withPool(10) {...}
withPool(20, threadFactory) {...}

The takes an already existing executor serviceGParsExecutorsPool.withExistingPool()
instance to reuse. The DSL is valid only within the associated block of code and only for the
thread that has called the or method. The methodwithPool() withExistingPool() withPool()
returns only after all the worker threads have finished their tasks and the executor service has
been destroyed, returning back the return value of the associated block of code. The

 method doesn't wait for the executor service threads to finish.withExistingPool()

Alternatively, the class can be statically imported GParsExecutorsPool import static
 , which will allow omitting the groovyx.gpars.GParsExecutorsPool.`*` GParsExecutorsPool

class name.

withPool {
 def result = [1, 2, 3, 4, 5].findParallel{ number -> number > 2}Number
 assert result in [3, 4, 5]
 }

The following methods on all objects, which support iterations in Groovy, are currently
supported:

eachParallel()

eachWithIndexParallel()

collectParallel()

findAllParallel()

findParallel()

allParallel()

anyParallel()

grepParallel()

groupByParallel()

26

Meta-class enhancer

As an alternative you can use the class to enhanceGParsExecutorsPoolEnhancer
meta-classes for any classes or individual instances with asynchronous methods.

import groovyx.gpars.GParsExecutorsPoolEnhancer

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
GParsExecutorsPoolEnhancer.enhanceInstance(list)
println list.collectParallel {it * 2 }

def animals = ['dog', 'ant', 'cat', 'whale']
GParsExecutorsPoolEnhancer.enhanceInstance animals
println (animals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')
println (animals.allParallel {it.contains('a')} ? 'All animals contain a' : 'Some animals can live
without an a')

When using the class, you're not restricted to a GParsExecutorsPoolEnhancer withPool()
block with the use of the GParsExecutorsPool DSLs. The enhanced classed or instances
remain enhanced till they get garbage collected.

Exception handling

If exceptions are thrown while processing any of the passed-in closures, an instance of
 wrapping all the original exceptions gets re-thrown from the xxxParallelAsyncException

methods.

Avoid side-effects in functions

Once again we need to warn you about using closures with side-effects effecting objects
beyond the scope of the single currently processed element or closures which keep state.
Don't do that! It is dangerous to pass them to any of the methods.xxxParallel()

3.1.3 Memoize
The function enables caching of function's return values. Repeated calls to thememoize
memoized function with the same argument values will, instead of invoking the calculation
encoded in the original function, retrieve the result value from an internal transparent cache.
Provided the calculation is considerably slower than retrieving a cached value from the cache,
this allows users to trade-off memory for performance. Checkout out the example, where we
attempt to scan multiple websites for particular content:

The memoize functionality of GPars has been contributed to Groovy in version 1.8 and if you
run on Groovy 1.8 or later, it is recommended to use the Groovy functionality. Memoize in
GPars is almost identical, except that it searches the memoize caches concurrently using the
surrounding thread pool and so may give performance benefits in some scenarios.

The GPars memoize functionality has been renamed to avoid future
conflicts with the memoize functionality in Groovy. GPars now calls the
methods with a preceding letter , such as gmemoize().g

Examples of use

27

GParsPool.withPool {
 def urls = ['http://www.dzone.com', 'http://www.theserverside.com', 'http://www.infoq.com']
 Closure download = {url ->
 println "Downloading $url"
 url.toURL().text.toUpperCase()
 }
 Closure cachingDownload = download.gmemoize()

println 'Groovy sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GROOVY')}
 println 'Grails sites today: ' + urls.findAllParallel {url ->
cachingDownload(url).contains('GRAILS')}
 println 'Griffon sites today: ' + urls.findAllParallel {url ->
cachingDownload(url).contains('GRIFFON')}
 println 'Gradle sites today: ' + urls.findAllParallel {url ->
cachingDownload(url).contains('GRADLE')}
 println 'Concurrency sites today: ' + urls.findAllParallel {url ->
cachingDownload(url).contains('CONCURRENCY')}
 println 'GPars sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GPARS')}
}

Notice closures are enhanced inside the blocks with a GParsPool.withPool() memoize()
function, which returns a new closure wrapping the original closure with a cache. In the
example we're calling the function in several places in the code, however,cachingDownload
each unique url gets downloaded only once - the first time it is needed. The values are then
cached and available for subsequent calls. And also to all threads, no matter which thread
originally came first with a download request for the particular url and had to handle the actual
calculation/download.

So, to wrap up, memoize shields a function by a cache of past return values. However,
 can do even more. In some algorithms adding a little memory may have dramaticmemoize

impact on the computational complexity of the calculation. Let's look at a classical example of
Fibonacci numbers.

Fibonacci example

A purely functional, recursive implementation, following closely the definition of Fibonacci
numbers is exponentially complex:

Closure fib = {n -> n > 1 ? call(n - 1) + call(n - 2) : n}

Try calling the function with numbers around 30 and you'll see how slow it is.fib

Now with a little twist and added memoize cache the algorithm magically turns into a linearly
complex one:

Closure fib
fib = {n -> n > 1 ? fib(n - 1) + fib(n - 2) : n}.gmemoize()

The extra memory we added cut off all but one recursive branches of the calculation. And all
subsequent calls to the same function will also benefit from the cached values.fib

Also, see below, how the variant can reduce memory consumption in ourmemoizeAtMost
example, yet preserve the linear complexity of the algorithm.

Available variants

memoize

28

1.

2.

The basic variant, which keeps values in the internal cache for the whole lifetime of the
memoized function. Provides the best performance characteristics of all the variants.

memoizeAtMost

Allows the user to set a hard limit on number of items cached. Once the limit has been
reached, all subsequently added values will eliminate the oldest value from the cache using
the LRU (Last Recently Used) strategy.

So for our Fibonacci number example, we could safely reduce the cache size to two items:

Closure fib
fib = {n -> n > 1 ? fib(n - 1) + fib(n - 2) : n}.memoizeAtMost(2)

Setting an upper limit on the cache size may have two purposes:

Keep the memory footprint of the cache within defined boundaries

Preserve desired performance characteristics of the function. Too large caches may take
longer to retrieve the cached value than it would have taken to calculate the result
directly.

memoizeAtLeast

Allows unlimited growth of the internal cache until the JVM's garbage collector decides to step
in and evict SoftReferences, used by our implementation, from the memory. The single
parameter value to the method specifies the minimum number of cachedmemoizeAtLeast()
items that should be protected from gc eviction. The cache will never shrink below the
specified number of entries. The cache ensures it only protects the most recently used items
from eviction using the LRU (Last Recently Used) strategy.

memoizeBetween

Combines memoizeAtLeast and memoizeAtMost and so allowing the cache to grow and
shrink in the range between the two parameter values depending on available memory and
the gc activity, yet the cache size will never exceed the upper size limit to preserve desired
performance characteristics of the cache.

3.2 Map-Reduce
The Parallel Collection Map/Reduce DSL gives GPars a more functional flavor. In general, the
Map/Reduce DSL may be used for the same purpose as the family methods andxxxParallel()
has very similar semantics. On the other hand, Map/Reduce can perform considerably faster,
if you need to chain multiple methods to process a single collection in multiple steps:

println ' of occurrences of the word GROOVY today: ' + urls.parallelNumber
 .map {it.toURL().text.toUpperCase()}
 .filter {it.contains('GROOVY')}
 .map{it.split()}
 .map{it.findAll{word -> word.contains 'GROOVY'}.size()}
 .sum()

29

The methods have to follow the contract of their non-parallel peers. So a xxxParallel()
 method must return a legal collection of items, which you can again treat as acollectParallel()

Groovy collection. Internally the parallel collect method builds an efficient parallel structure,
called parallel array, performs the required operation concurrently and before returning
destroys the Parallel Array building the collection of results to return to you. A potential call to
let say on the resulting collection would repeat the whole process offindAllParallel()
construction and destruction of a Parallel Array instance under the covers.

With Map/Reduce you turn your collection into a Parallel Array and back only once. The
Map/Reduce family of methods do not return Groovy collections, but are free to pass along
the internal Parallel Arrays directly. Invoking the property on a collection will build aparallel
Parallel Array for the collection and return a thin wrapper around the Parallel Array instance.
Then you can chain all required methods like:

map()

reduce()

filter()

size()

sum()

min()

max()

sort()

groupBy()

combine()

Returning back to a plain Groovy collection instance is always just a matter of retrieving the
 property.collection

def myNumbers = (1..1000).parallel.filter{it % 2 == 0}.map{ .sqrt it}.collectionMath

Avoid side-effects in functions

Once again we need to warn you. To avoid nasty surprises, please, keep your closures, which
you pass to the Map/Reduce functions, stateless and clean from side-effects.

Availability

This feature is only available when using in the Fork/Join-based , not in GParsPool
 .GParsExecutorsPool

Classical Example

A classical example, inspired by http://github.com/thevery, counting occurrences of words in a
string:

30

import groovyx.gpars.GParsPool.withPoolstatic

def words = "This is just a plain text to count words in"
print count(words)

def count(arg) {
 withPool {
 arg.parallelreturn
 .map{[it, 1]}
 .groupBy{it[0]}.getParallel()
 .map {it.value=it.value.size();it}
 .sort{-it.value}.collection
 }
}

The same example, now implemented the more general operation:combine

def words = "This is just a plain text to count words in"
print count(words)

def count(arg) {
 withPool {
 arg.parallelreturn
 .map{[it, 1]}
 .combine(0) {sum, value -> sum + value}.getParallel()
 .sort{-it.value}.collection
 }
}

Combine

The operation expects on its input a list of tuples (two-element lists) considered to becombine
key-value pairs (such as [key1, value1, key2, value2, key1, value3, key3, value4 …]) with
potentially repeating keys. When invoked, merges the values for identical keys usingcombine
the provided accumulator function and produces a map mapping the original (unique) keys to
their accumulated values. E.g. [a, b, c, d, a, e, c, f] will be combined into a : b+e, c : d+f, while
the '+' operation on the values needs to be provided by the user as the accumulation closure.

The argument needs to specify a function to use for combiningaccumulation function
(accumulating) the values belonging to the same key. An needs to beinitial accumulator value
provided as well. Since the method processes items in parallel, the combine initial

 will be reused multiple times. Thus the provided value must allow foraccumulator value
reuse. It should be either a or value or a returning a freshcloneable immutable closure
initial accumulator each time requested. Good combinations of accumulator functions and
reusable initial values include:

accumulator = {List acc, value -> acc << value} initialValue = []
accumulator = {List acc, value -> acc << value} initialValue = {-> []}
accumulator = { sum, value -> acc + value} initialValue = 0int int
accumulator = { sum, value -> sum + value} initialValue = {-> 0}int int
accumulator = {ShoppingCart cart, Item value -> cart.addItem(value)} initialValue = {-> new
ShoppingCart()}

The return type is a map. E.g. ['he', 1, 'she', 2, 'he', 2, 'me', 1, 'she, 5, 'he', 1 with the initial
value provided a 0 will be combined into 'he' : 4, 'she' : 7, 'he', : 2, 'me' : 1

The keys will be mutually compared using their equals and hashCode
methods. Consider using or to@Canonical @EqualsAndHashCode
annotate classes that you use as keys. Just like with all hash maps in
Groovy, be sure you're using a String not a GString as a key!

31

For more involved scenarios when you complex objects, a good strategy here is tocombine()
have a class that can be used as a key for the common use cases and apply different keys for
uncommon cases.

import groovy.transform.ToString
 groovy.transform.TupleConstructorimport

 groovyx.gpars.GParsPool.withPoolimport static

ToStringTupleConstructor
class PricedCar {implements Cloneable
 modelString
 colorString
 priceDouble

 equals(o) {boolean final
 (.is(o)) if this return true
 (getClass() != o.class) if return false

 PricedCar pricedCar = (PricedCar) ofinal

 (color != pricedCar.color) if return false
 (model != pricedCar.model) if return false

 return true
 }

 hashCode() {int
 resultint
 result = (model != ? model.hashCode() : 0)null
 result = 31 * result + (color != ? color.hashCode() : 0)null
 resultreturn
 }

@Override
 clone() {protected Object
 .clone()return super
 }
}

def cars = [PricedCar('F550', 'blue', 2342.223),new
 PricedCar('F550', 'red', 234.234),new
 PricedCar('Da', 'white', 2222.2),new
 PricedCar('Da', 'white', 1111.1)]new

withPool {
 //Combine by model
 def result =
 cars.parallel.map {
 [it.model, it]
 }.combine(PricedCar('', 'N/A', 0.0)) {sum, value ->new
 sum.model = value.model
 sum.price += value.price
 sum
 }.values()

println result

 //Combine by model and color (the PricedCar's equals and hashCode))
 result =
 cars.parallel.map {
 [it, it]
 }.combine(PricedCar('', 'N/A', 0.0)) {sum, value ->new
 sum.model = value.model
 sum.color = value.color
 sum.price += value.price
 sum
 }.values()

println result
}

3.3 Parallel Arrays
As an alternative, the efficient tree-based data structures defines in JSR-166y can be used
directly. The property on any collection or object will return a parallelArray

 instance holding the elements of the original collection, whichjsr166y.forkjoin.ParallelArray
then can be manipulated through the jsr166y API. Please refer to the jsr166y documentation
for the API details.

32

import groovyx.gpars.extra166y.Ops

groovyx.gpars.GParsPool.withPool {
 assert 15 == [1, 2, 3, 4, 5].parallelArray.reduce({a, b -> a + b} as Ops.Reducer, 0)
//summarize
 assert 55 == [1, 2, 3, 4, 5].parallelArray.withMapping({it ** 2} as Ops.Op).reduce({a, b -> a + b} as
Ops.Reducer, 0) //summarize squares
 assert 20 == [1, 2, 3, 4, 5].parallelArray.withFilter({it % 2 == 0} as Ops.Predicate)
//summarize squares of even numbers
 .withMapping({it ** 2} as Ops.Op)
 .reduce({a, b -> a + b} as Ops.Reducer, 0)

assert 'aa:bb:cc:dd:ee' == 'abcde'.parallelArray
//concatenate duplicated characters with separator
 .withMapping({it * 2} as Ops.Op)
 .reduce({a, b -> } as Ops.Reducer,)"$a:$b" ""

3.4 Asynchronous Invocation
Running long-lasting tasks in the background belongs to the activities, the need for which
arises quite frequently. Your main thread of execution wants to initialize a few calculations,
downloads, searches or such, however, the results may not be needed immediately. GPars
gives the developers the tools to schedule the asynchronous activities for processing in the
background and collect the results once they're needed.

Usage of GParsPool and GParsExecutorsPool asynchronous
processing facilities

Both and provide almost identical services in this domain,GParsPool GParsExecutorsPool
although they leverage different underlying machinery, based on which of the two classes the
user chooses.

Closures enhancements

The following methods are added to closures inside the GPars(Executors)Pool.withPool()
blocks:

async() - Creates an asynchronous variant of the supplied closure, which when invoked
returns a future for the potential return value

callAsync() - Calls a closure in a separate thread supplying the given arguments,
returning a future for the potential return value,

Examples:

GParsPool.withPool() {
 Closure longLastingCalculation = {calculate()}
 Closure fastCalculation = longLastingCalculation.async() //create a closure, which starts thenew
original closure on a thread pool
 Future result=fastCalculation() //returns almost immediately
 // stuff calculation performs …do while
 println result.get()
}

GParsPool.withPool() {
 /**
 * The callAsync() method is an asynchronous variant of the call() method to invoke adefault
closure.
 * It will a Future the result value.return for
 */
 assert 6 == {it * 2}.call(3)
 assert 6 == {it * 2}.callAsync(3).get()
}

33

Timeouts

The methods, taking either a long value or a Duration instance, allow thecallTimeoutAsync()
user to have the calculation cancelled after a given time interval.

{->
 () {while true
 .sleep 1000 //Simulate a bit of interesting calculationThread
 (.currentThread().isInterrupted()) ; //We've been cancelledif Thread break
 }
}.callTimeoutAsync(2000)

In order to allow cancellation, the asynchronously running code must keep checking the
 flag of its own thread and cease the calculation once the flag is set to true.interrupted

Executor Service enhancements

The ExecutorService and jsr166y.forkjoin.ForkJoinPool class is enhanced with the <<
(leftShift) operator to submit tasks to the pool and return a for the result.Future

Example:

GParsExecutorsPool.withPool {ExecutorService executorService ->
 executorService << {println 'Inside parallel task'}
}

Running functions (closures) in parallel

The and classes also provide handy methods GParsPool GParsExecutorsPool
 and to easily run multiple closures asynchronously.executeAsync() executeAsyncAndWait()

Example:

GParsPool.withPool {
 assert [10, 20] == GParsPool.executeAsyncAndWait({calculateA()}, {calculateB()} //waits for
results
 assert [10, 20] == GParsPool.executeAsync({calculateA()}, {calculateB()})*.get() //returns Futures
instead and doesn't wait results to be calculatedfor
}

3.5 Composable Asynchronous Functions
Functions are to be composed. In fact, composing side-effect-free functions is very easy.
Much easier and reliable than composing objects, for example. Given the same input,
functions always return the same result, they never change their behavior unexpectedly nor
they break when multiple threads call them at the same time.

Functions in Groovy
We can treat Groovy closures as functions. They take arguments, do their calculation and
return a value. Provided you don't let your closures touch anything outside their scope, your
closures are well-behaved pure functions. Functions that you can combine for a better good.

def sum = (0..100000).inject(0, {a, b -> a + b})

34

For example, by combining a function adding two numbers with the function, whichinject
iterates through the whole collection, you can quickly summarize all items. Then, replacing the

 function with a function will immediately give you a combined functionadding comparison
calculating maximum.

def max = myNumbers.inject(0, {a, b -> a>b?a:b})

You see, functional programming is popular for a reason.

Are we concurrent yet?
This all works just fine until you realize you're not utilizing the full power of your expensive
hardware. The functions are plain sequential. No parallelism in here. All but one processor
core do nothing, they're idle, totally wasted.

Those paying attention would suggest to use the Parallel Collection
techniques described earlier and they would certainly be correct. For our
scenario described here, where we process a collection, using those

 methods would be the best choice. However, we're now looking forparallel
a , whichgeneric way to create and combine asynchronous functions
would help us not only for collection processing but mostly in other more
generic cases, like the one right below.

To make things more obvious, here's an example of combining four functions, which are
supposed to check whether a particular web page matches the contents of a local file. We
need to download the page, load the file, calculate hashes of both and finally compare the
resulting numbers.

Closure download = { url ->String
 url.toURL().text
}

Closure loadFile = { fileName ->String
 … //load the file here
}

Closure hash = {s -> s.hashCode()}

Closure compare = { first, second ->int int
 first == second
}

def result = compare(hash(download('http://www.gpars.org')),
hash(loadFile('/coolStuff/gpars/website/index.html')))
println + result"The result of comparison: "

We need to download the page, load up the file, calculate hashes of both and finally compare
the resulting numbers. Each of the functions is responsible for one particular job. One
downloads the content, second loads the file, third calculates the hashes and finally the fourth
one will do the comparison. Combining the functions is as simple as nesting their calls.

Making it all asynchronous

The downside of our code is that we don't leverage the independence of the anddownload()
the functions. Neither we allow the two hashes to be run concurrently. They couldloadFile()
well run in parallel, but our way to combine functions restricts any parallelism.

35

Obviously not all of the functions can run concurrently. Some functions depend on results of
others. They cannot start before the other function finishes. We need to block them till their
parameters are available. The functions needs a string to work on. The hash() compare()
function needs two numbers to compare.

So we can only parallelize some functions, while blocking parallelism of others. Seems like a
challenging task.

Things are bright in the functional world

Luckily, the dependencies between functions are already expressed implicitly in the code.
There's no need for us to duplicate the dependency information. If one functions takes
parameters and the parameters need first to be calculated by another function, we implicitly
have a dependency here. The function depends on the as well as on the hash() loadFile()

 functions in our example. The function in our earlier example depends ondownload() inject
the results of the functions invoked gradually on all the elements of the collection.addition

However difficult it may seem at first, our task is in fact very simple. We
only need to teach our functions to return of their future results.promises
And we need to teach the other functions to accept those aspromises
parameters so that they wait for the real values before they start their work.
And if we convince the functions to release the threads they hold while
waiting for the values, we get directly to where the magic can happen.

In the good tradition of we've made it very straightforward for you to convince anyGPars
function to believe in other functions' promises. Call the function on a closure andasyncFun()
you're asynchronous.

withPool {
 def maxPromise = numbers.inject(0, {a, b -> a>b?a:b}.asyncFun())
 println "Look Ma, I can talk to the user the math is being done me!"while for
 println maxPromise.get()
}

The function doesn't really care what objects are being returned from the inject addition
function, maybe it is just a little surprised that each call to the function returns so fast,addition
but doesn't moan much, keeps iterating and finally returns the overall result to you.

Now, this is the time you should stand behind what you say and do what you want others to
do. Don't frown at the result and just accepts that you got back just a promise. A topromise
get the result delivered as soon as the calculation is done. The extra heat coming out of your
laptop is an indication the calculation exploits natural parallelism in your functions and makes
its best effort to deliver the result to you quickly.

The is a good old , so you may query its status,promise DataflowVariable
register notification hooks or make it an input to a Dataflow algorithm.

withPool {
 def sumPromise = (0..100000).inject(0, {a, b -> a + b}.asyncFun())
 println + sumPromise.bound"Are we done yet? "
 sumPromise.whenBound {sum -> println sum}
}

36

The method has also a variant with a timeout parameter, if you wantget()
to avoid the risk of waiting indefinitely.

Can things go wrong?

Sure. But you'll get an exception thrown from the result promise method.get()

try {
 sumPromise.get()
} (MyCalculationException e) {catch
 println "Guess, things are not ideal today."
}

This is all fine, but what functions can be really combined?

There are no limits. Take any sequential functions you need to combine and you should be
able to combine their asynchronous variants as well.

Back to our initial example comparing content of a file with a web page, we simply make all
the functions asynchronous by calling the method on them and we are ready toasyncFun()
set off.

Closure download = { url ->String
 url.toURL().text
 }.asyncFun()

Closure loadFile = { fileName ->String
 … //load the file here
 }.asyncFun()

Closure hash = {s -> s.hashCode()}.asyncFun()

Closure compare = { first, second ->int int
 first == second
 }.asyncFun()

def result = compare(hash(download('http://www.gpars.org')),
hash(loadFile('/coolStuff/gpars/website/index.html')))
 println 'Allowed to something now'do else
 println + result.get()"The result of comparison: "

Calling asynchronous functions from within asynchronous functions

Another very valuable characteristics of asynchronous functions is that their result promises
can also be composed.

37

import groovyx.gpars.GParsPool.withPoolstatic

withPool {
 Closure plus = { a, b ->Integer Integer
 sleep 3000
 println 'Adding numbers'
 a + b
 }.asyncFun()

Closure multiply = { a, b ->Integer Integer
 sleep 2000
 a * b
 }.asyncFun()

Closure measureTime = {->
 sleep 3000
 4
 }.asyncFun()

Closure distance = { initialDistance, velocity, time ->Integer Integer Integer
 plus(initialDistance, multiply(velocity, time))
 }.asyncFun()

Closure chattyDistance = { initialDistance, velocity, time ->Integer Integer Integer
 println 'All parameters are now ready - starting'
 println 'About to call another asynchronous function'
 def innerResultPromise = plus(initialDistance, multiply(velocity, time))
 println 'Returning the promise the calculation as my own result'for inner
 innerResultPromisereturn
 }.asyncFun()

println + distance(100, 20, measureTime()).get() + ' m'"Distance = "
 println + chattyDistance(100, 20, measureTime()).get() + ' m'"ChattyDistance = "
 }

If an asynchronous function (e.f. the function in the example) in its body calls anotherdistance
asynchronous function (e.g.) and returns the the promise of the invoked function, theplus
inner function's () result promise will compose with the outer function's () resultplus distance
promise. The inner function () will now bind its result to the outer function's ()plus distance
promise, once the inner function (plus) finishes its calculation. This ability of promises to
compose allows functions to cease their calculation without blocking a thread not only when
waiting for parameters, but also whenever they call another asynchronous function anywhere
in their body.

Methods as asynchronous functions

Methods can be referred to as closures using the operator. These closures can then be.&
transformed using into composable asynchronous functions just like ordinaryasyncFun
closures.

class DownloadHelper {
 download(url) {String String
 url.toURL().text
 }

 scanFor(word, text) {int String String
 text.findAll(word).size()
 }

 lower(s) {String
 s.toLowerCase()
 }
}
//now we'll make the methods asynchronous
withPool {
 DownloadHelper d = DownloadHelper()final new
 Closure download = d.&download.asyncFun()
 Closure scanFor = d.&scanFor.asyncFun()
 Closure lower = d.&lower.asyncFun()

//asynchronous processing
 def result = scanFor('groovy', lower(download('http://www.infoq.com')))
 println 'Allowed to something now'do else
 println result.get()
}

38

1.

2.

Using annotation to create asynchronous functions

Instead of calling the function, the annotation can be used toasyncFun() @AsyncFun
annotate Closure-typed fields. The fields have to be initialized in-place and the containing
class needs to be instantiated withing a block.withPool

import groovyx.gpars.GParsPool.withPoolstatic
 groovyx.gpars.AsyncFunimport

class DownloadingSearch {
 @AsyncFun Closure download = { url ->String
 url.toURL().text
 }

@AsyncFun Closure scanFor = { word, text ->String String
 text.findAll(word).size()
 }

@AsyncFun Closure lower = {s -> s.toLowerCase()}

void scan() {
 def result = scanFor('groovy', lower(download('http://www.infoq.com'))) //synchronous processing
 println 'Allowed to something now'do else
 println result.get()
 }
}

withPool {
 DownloadingSearch().scan()new
}

Alternative pools

The annotation by default uses an instance of from the wrappingAsyncFun GParsPool
withPool block. You may, however, specify the type of pool explicitly:

@AsyncFun(GParsExecutorsPoolUtil) def sum6 = {a, b -> a + b }

Blocking functions through annotations

The also allows the user to specify, whether the resulting function should haveAsyncFun
blocking (true) or non-blocking (false - default) semantics.

@AsyncFun(blocking =)true
def sum = {a, b -> a + b }

Explicit and delayed pool assignment

When using the function directly to create anGPars(Executors)PoolUtil.asyncFun()
asynchronous function you have two additional options to assign a thread pool to the function.

The thread pool to use by the function can be specified explicitly as an additional
argument at creation time

The implicit thread pool can be obtained from the surrounding scope at invocation rather
at creation time

When specifying the thread pool explicitly, the call doesn't need to be wrapped in an
 block:withPool()

39

Closure sPlus = { a, b ->Integer Integer
 a + b
}

Closure sMultiply = { a, b ->Integer Integer
 sleep 2000
 a * b
}

println + sMultiply(sPlus(10, 30), 100)"Synchronous result: "

 pool = FJPool()final new

Closure aPlus = GParsPoolUtil.asyncFun(sPlus, pool)
Closure aMultiply = GParsPoolUtil.asyncFun(sMultiply, pool)

def result = aMultiply(aPlus(10, 30), 100)

println "Time to something the calculation is running"do else while
println + result.get()"Asynchronous result: "

With delayed pool assignment only the function invocation must be surrounded with a
 block:withPool()

Closure aPlus = GParsPoolUtil.asyncFun(sPlus)
Closure aMultiply = GParsPoolUtil.asyncFun(sMultiply)

withPool {
 def result = aMultiply(aPlus(10, 30), 100)

println "Time to something the calculation is running"do else while
 println + result.get()"Asynchronous result: "
}

On our side this is a very interesting domain to explore, so any comments, questions or
suggestions on combining asynchronous functions or hints about its limits are welcome.

3.6 Fork-Join
Fork/Join or Divide and Conquer is a very powerful abstraction to solve hierarchical problems.

The abstraction

When talking about hierarchical problems, think about quick sort, merge sort, file system or
general tree navigation and such.

Fork / Join algorithms essentially split a problem at hands into several smaller
sub-problems and recursively apply the same algorithm to each of the sub-problems.

Once the sub-problem is small enough, it is solved directly.

The solutions of all sub-problems are combined to solve their parent problem, which in
turn helps solve its own parent problem.

Check out the fancy , which willinteractive Fork/Join visualization demo
show you how threads cooperate to solve a common divide-and-conquer
algorithm.

The mighty library solves Fork / Join orchestration pretty nicely for us, but leaves aJSR-166y
couple of rough edges, which can hurt you, if you don't pay attention enough. You still deal
with threads, pools or synchronization barriers.

http://blog.krecan.net/2011/03/27/visualizing-forkjoin/

40

The GPars abstraction convenience layer

GPars can hide the complexities of dealing with threads, pools and recursive tasks from you,
yet let you leverage the powerful Fork/Join implementation in jsr166y.

import groovyx.gpars.GParsPool.runForkJoinstatic
 groovyx.gpars.GParsPool.withPoolimport static

withPool() {
 println """ of files: ${Number

./src runForkJoin(File("new ")) {file ->
 count = 0long
 file.eachFile {
 (it.isDirectory()) {if

Forking a child task $it println " for "
 forkOffChild(it) //fork a child task
 } {else
 count++
 }
 }
 count + (childrenResults.sum(0))return
 //use results of children tasks to calculate and store own result
 }
 }"""
}

The factory method will use the supplied recursive code together with therunForkJoin()
provided values and build a hierarchical Fork/Join calculation. The number of values passed
to the method must match the number of expected parameters of the closure asrunForkJoin()
well as the number of arguments passed into the or methods.forkOffChild() runChildDirectly()

def quicksort(numbers) {
 withPool {
 runForkJoin(0, numbers) {index, list ->
 def groups = list.groupBy {it <=> list[list.size().intdiv(2)]}
 ((list.size() < 2) || (groups.size() == 1)) {if
 [index: index, list: list.clone()]return
 }
 (-1..1).each {forkOffChild(it, groups[it] ?: [])}
 [index: index, list: childrenResults.sort {it.index}.sum {it.list}]return
 }.list
 }
}

The important piece of the puzzle that needs to be mentioned here is that
 doesn't wait for the child to run. It merely schedules it forforkOffChild()

execution some time in the future. If a child fails by throwing an exception,
you should not expect the exception to be fired from the forkOffChild()
method itself. The exception ise likely to happen long after the parent has
returned from the call to the method.forkOffChild()

It is the method that will re-throw exceptions thatgetChildrenResults()
happened in the child sub-tasks back to the parent task.

Alternative approach

Alternatively, the underlying mechanism of nested Fork/Join worker tasks can be used
directly. Custom-tailored workers can eliminate the performance overhead associated with
parameter spreading imposed when using the generic workers. Also, custom workers can be
implemented in Java and so further increase the performance of the algorithm.

41

public class FileCounter AbstractForkJoinWorker< > {final extends Long
 File file;private final

def FileCounter(File file) {final
 .file = filethis
 }

@Override
 computeTask() {protected Long
 count = 0;long
 file.eachFile {
 (it.isDirectory()) {if
 println "Forking a thread $it"for
 forkOffChild(FileCounter(it)) //fork a child tasknew
 } {else
 count++
 }
 }
 count + ((childrenResults)?.sum() ?: 0) //use results of children tasks to calculate andreturn
store own result
 }
}

withPool(1) {pool -> //feel free to experiment with the number of fork/join threads in the pool
 println .." of files: ${runForkJoin(FileCounter(File("Number new new ")))}"
}

The AbstractForkJoinWorker subclasses may be written both in Java or Groovy, giving you
the option to easily optimize for execution speed, if row performance of the worker becomes a
bottleneck.

Fork / Join saves your resources

Fork/Join operations can be safely run with small number of threads thanks to internally using
the TaskBarrier class to synchronize the threads. While a thread is blocked inside an
algorithm waiting for its sub-problems to be calculated, the thread is silently returned to the
pool to take on any of the available sub-problems from the task queue and process them.
Although the algorithm creates as many tasks as there are sub-directories and tasks wait for
the sub-directory tasks to complete, as few as one thread is enough to keep the computation
going and eventually calculate a valid result.

Mergesort example

42

import groovyx.gpars.GParsPool.runForkJoinstatic
 groovyx.gpars.GParsPool.withPoolimport static

/**
 * Splits a list of numbers in half
 */
def split(List< > list) {Integer
 listSize = list.size()int
 middleIndex = listSize / 2int
 def list1 = list[0..<middleIndex]
 def list2 = list[middleIndex..listSize - 1]
 [list1, list2]return
}

/**
 * Merges two sorted lists into one
 */
List< > merge(List< > a, List< > b) {Integer Integer Integer
 i = 0, j = 0int
 newSize = a.size() + b.size()final int
 List< > result = ArrayList< >(newSize)Integer new Integer

 ((i < a.size()) && (j < b.size())) {while
 (a[i] <= b[j]) result << a[i++]if
 result << b[j++]else
 }

 (i < a.size()) result.addAll(a[i..-1])if
 result.addAll(b[j..-1])else
 resultreturn
}

 def numbers = [1, 5, 2, 4, 3, 8, 6, 7, 3, 4, 5, 2, 2, 9, 8, 7, 6, 7, 8, 1, 4, 1, 7, 5, 8, 2, 3, 9,final
5, 7, 4, 3]

withPool(3) { //feel free to experiment with the number of fork/join threads in the pool
 println """Sorted numbers: ${
 runForkJoin(numbers) {nums ->

 ${ .currentThread().name[-1]}: Sorting $nums println "Thread Thread "
 (nums.size()) {switch
 0..1:case
 nums //store own resultreturn
 2:case
 (nums[0] <= nums[1]) nums //store own resultif return
 nums[-1..0] //store own resultelse return
 :default
 def splitList = split(nums)
 [splitList[0], splitList[1]].each {forkOffChild it} //fork a child task
 merge(* childrenResults) //use results of children tasks to calculate andreturn
store own result
 }
 }
 }"""
}

Mergesort example using a custom-tailored worker class

43

public class SortWorker AbstractForkJoinWorker<List< >> {final extends Integer
 List numbersprivate final

def SortWorker(List< > numbers) {final Integer
 .numbers = numbers.asImmutable()this
 }

/**
 * Splits a list of numbers in half
 */
 def split(List< > list) {Integer
 listSize = list.size()int
 middleIndex = listSize / 2int
 def list1 = list[0..<middleIndex]
 def list2 = list[middleIndex..listSize - 1]
 [list1, list2]return
 }

/**
 * Merges two sorted lists into one
 */
 List< > merge(List< > a, List< > b) {Integer Integer Integer
 i = 0, j = 0int
 newSize = a.size() + b.size()final int
 List< > result = ArrayList< >(newSize)Integer new Integer

 ((i < a.size()) && (j < b.size())) {while
 (a[i] <= b[j]) result << a[i++]if
 result << b[j++]else
 }

 (i < a.size()) result.addAll(a[i..-1])if
 result.addAll(b[j..-1])else
 resultreturn
 }

/**
 * Sorts a small list or delegates to two children, the list contains more than two elements.if
 */
 @Override
 List< > computeTask() {protected Integer
 println " ${ .currentThread().name[-1]}: Sorting $numbers"Thread Thread
 (numbers.size()) {switch
 0..1:case
 numbers //store own resultreturn
 2:case
 (numbers[0] <= numbers[1]) numbers //store own resultif return
 numbers[-1..0] //store own resultelse return
 :default
 def splitList = split(numbers)
 [SortWorker(splitList[0]), SortWorker(splitList[1])].each{forkOffChild it} new new
//fork a child task
 merge(* childrenResults) //use results of children tasks to calculate andreturn
store own result
 }
 }
}

 def numbers = [1, 5, 2, 4, 3, 8, 6, 7, 3, 4, 5, 2, 2, 9, 8, 7, 6, 7, 8, 1, 4, 1, 7, 5, 8, 2, 3, 9,final
5, 7, 4, 3]

withPool(1) { //feel free to experiment with the number of fork/join threads in the pool
 println "Sorted numbers: ${runForkJoin(SortWorker(numbers))}"new
}

Running child tasks directly

The method has a sibling - the method, which will run theforkOffChild() runChildDirectly()
child task directly and immediately within the current thread instead of scheduling the child
task for asynchronous processing on the thread pool. Typically you'll call _forkOffChild() on all
sub-tasks but the last, which you invoke directly without the scheduling overhead.

Closure fib = {number ->
 (number <= 2) {if
 1return
 }
 forkOffChild(number - 1) // This task will run asynchronously,
probably in a different thread
 def result = runChildDirectly(number - 2) // This task is run directly within thefinal
current thread
 () getChildrenResults().sum() + resultreturn Integer
 }

withPool {
 assert 55 == runForkJoin(10, fib)
 }

44

Availability

This feature is only available when using in the Fork/Join-based , not in GParsPool
 .GParsExecutorsPool

3.7 Parallel Speculations
With processor cores having become plentiful, some algorithms might benefit from
brutal-force parallel duplication. Instead of deciding up-front about how to solve a problem,
what algorithm to use or which location to connect to, you run all potential solutions in parallel.

Parallel speculations

Imagine you need to perform a task like e.g. calculate an expensive function or read data from
a file, database or internet. Luckily, you know of several good ways (e.g. functions or urls) to
achieve your goal. However, they are not all equal. Although they return back the same (as
far as your needs are concerned) result, they may all take different amount of time to
complete and some of them may even fail (e.g. network issues). What's worse, no-one is
going to tell you which path gives you the solution first nor which paths lead to no solution at
all. Shall I run or on my list? Which url will work best? Is this servicequick sort merge sort
available at its primary location or should I use the backup one?

GPars speculations give you the option to try all the available alternatives in parallel and so
get the result from the fastest functional path, silently ignoring the slow or broken ones.

This is what the methods on and can do.speculate() GParsPool GParsExecutorsPool()

def numbers = …
def quickSort = …
def mergeSort = …
def sortedNumbers = speculate(quickSort, mergeSort)

Here we're performing both and , while getting the resultquick sort merge sort concurrently
of the faster one. Given the parallel resources available these days on mainstream hardware,
running the two functions in parallel will not have dramatic impact on speed of calculation of
either one, and so we get the result in about the same time as if we ran solely the faster of the
two calculations. And we get the result sooner than when running the slower one. Yet we
didn't have to know up-front, which of the two sorting algorithms would perform better on our
data. Thus we speculated.

Similarly, downloading a document from multiple sources of different speed and reliability
would look like this:

45

import groovyx.gpars.GParsPool.speculatestatic
 groovyx.gpars.GParsPool.withPoolimport static

def alternative1 = {
 'http://www.dzone.com/links/index.html'.toURL().text
}

def alternative2 = {
 'http://www.dzone.com/'.toURL().text
}

def alternative3 = {
 'http://www.dzzzzzone.com/'.toURL().text //wrong url
}

def alternative4 = {
 'http://dzone.com/'.toURL().text
}

withPool(4) {
 println speculate([alternative1, alternative2, alternative3, alternative4]).contains('groovy')
}

Make sure the surrounding thread pool has enough threads to process all
alternatives in parallel. The size of the pool should match the number of
closures supplied.

Alternatives using dataflow variables and streams

In cases, when stopping unsuccessful alternatives is not needed, dataflow variables or
streams may be used to obtain the result value from the winning speculation.

Please refer to the Dataflow Concurrency section of the User Guide for
details on Dataflow variables and streams.

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.taskimport static

def alternative1 = {
 'http://www.dzone.com/links/index.html'.toURL().text
}

def alternative2 = {
 'http://www.dzone.com/'.toURL().text
}

def alternative3 = {
 'http://www.dzzzzzone.com/'.toURL().text //will fail due to wrong url
}

def alternative4 = {
 'http://dzone.com/'.toURL().text
}

//Pick either one of the following, both will work:
 def result = DataflowQueue()final new

// def result = DataflowVariable()final new

[alternative1, alternative2, alternative3, alternative4].each {code ->
 task {
 {try
 result << code()
 } (ignore) { } //We deliberately ignore unsuccessful urlscatch
 }
}

println result.val.contains('groovy')

46

4 Groovy CSP
The CSP (Communicating Sequential Processes) abstraction builds on independent
composable processes, which exchange messages in a synchronous manner. GPars
leverages developed at the University of Kent, UK.the JCSP library

Jon Kerridge, the author of the CSP implementation in GPars, provides exhaustive examples
on of GroovyCSP use at his website:

The GroovyCSP implementation leverages JCSP, a Java-based CSP
library, which is licensed under LGPL. There are some differences
between the Apache 2 license, which GPars uses, and LGPL. Please
make sure your application conforms to the LGPL rules before enabling the
use of JCSP in your code.

If the LGPL license is not adequate for your use, you might consider checking out the
Dataflow Concurrency chapter of this User Guide to learn about , and tasks selectors

 , which may help you resolve concurrency issues in ways similar to the CSPoperators
approach. In fact the dataflow and CSP concepts, as implemented in GPars, stand very close
to each other.

By default, without actively adding an explicit dependency on JCSP in your
build file or downloading and including the JCSP jar file in your project, the
standard commercial-software-friendly Apache 2 License terms apply to
your project. GPars directly only depends on software licensed under
licenses compatible with the Apache 2 License.

The CSP model principles

In essence, the CSP model builds on independent concurrent processes, which mutually
communicate through channels using synchronous (i.e. rendezvous) message passing.
Unlike actors or dataflow operators, which revolve around the event-processing pattern, CSP
processes place focus the their activities (aka sequences of steps) and use communication to
stay mutually in sync along the way.

Since the addressing is indirect through channels, the processes do not need to know about
one another. They typically consist of a set of input and output channels and a body. Once a
CSP process is started, it obtains a thread from a thread pool and starts processing its body,
pausing only when reading from a channel or writing into a channel. Some implementations
(e.g. GoLang) can also detach the thread from the CSP process when blocked on a channel.

CSP programs are deterministic. The same data on the program's input will always generate
the same output, irrespective of the actual thread-scheduling scheme used. This helps a lot
when debugging CSP programs as well as analyzing deadlocks.

Determinism combined with indirect addressing result in a great level of composability of CSP
processes. You can combine small CSP processes into bigger ones just by connecting their
input and output channels and then wrapping them by another, bigger containing process.

http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://www.soc.napier.ac.uk/~cs10/#_Toc271192596

47

The CSP model introduces non-determinism using . A process can attempt toAlternatives
read a value from multiple channels at the same time through a construct called orAlternative

 . The first value that becomes available in any of the channels involved in the Select Select
will be read and consumed by the process. Since the order of messages received through a

 depends on unpredictable conditions during program run-time, the value that will getSelect
read is non-deterministic.

CSP with GPars dataflow

GPars provides all the necessary building blocks to create CSP processes.

CSP Processes can be modelled through GPars tasks using a , a or aClosure Runnable
 to hold the actual implementation of the processCallable

CSP Channels should be modelled with and SyncDataflowQueue
 classesSyncDataflowBroadcast

CSP Alternative is provided through the class with its and Select select prioritySelect
methods

Processes

To start a process simply use the factory method.task

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.scheduler.ResizeablePoolimport

group = DefaultPGroup(ResizeablePool())new new true

def t = group.task {
 println "I am a process"
}

t.join()

Since each process consumes a thread for its lifetime, it is advisable to use
resizeable thread pools as in the example above.

A process can also be created from a Runnable or Callable object:

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.scheduler.ResizeablePoolimport

group = DefaultPGroup(ResizeablePool())new new true

class MyProcess {implements Runnable

@Override
 void run() {
 println "I am a process"
 }
}
def t = group.task MyProcess()new

t.join()

Using Callable allows for values to be returned through the method:get()

48

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.scheduler.ResizeablePoolimport

 java.util.concurrent.Callableimport

group = DefaultPGroup(ResizeablePool())new new true

class MyProcess Callable< > {implements String

@Override
 call() {String
 println "I am a process"
 return "CSP is great!"
 }
}
def t = group.task MyProcess()new

println t.get()

Channels

Processes typically need channels to communicate with the other processes as well as with
the outside world:

import groovy.transform.TupleConstructor
 groovyx.gpars.dataflow.DataflowReadChannelimport
 groovyx.gpars.dataflow.DataflowWriteChannelimport
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.scheduler.ResizeablePoolimport

 java.util.concurrent.Callableimport
 groovyx.gpars.dataflow.SyncDataflowQueueimport

group = DefaultPGroup(ResizeablePool())new new true

@TupleConstructor
class Greeter Callable< > {implements String
 DataflowReadChannel names
 DataflowWriteChannel greetings

@Override
 call() {String
 (! .currentThread().isInterrupted()) {while Thread
 name = names.valString
 greetings << + name"Hello "
 }
 return "CSP is great!"
 }
}

def a = SyncDataflowQueue()new
def b = SyncDataflowQueue()new

group.task Greeter(a, b)new

a << "Joe"
a << "Dave"
println b.val
println b.val

The CSP model uses synchronous messaging, however, in GPars you
may consider using asynchronous channels as well as synchronous ones.
You can also combine these two types of channels within the same
process.

Composition

Grouping processes is then just a matter of connecting them with channels:

49

group = DefaultPGroup(ResizeablePool())new new true

@TupleConstructor
class Formatter Callable< > {implements String
 DataflowReadChannel rawNames
 DataflowWriteChannel formattedNames

@Override
 call() {String
 (! .currentThread().isInterrupted()) {while Thread
 name = rawNames.valString
 formattedNames << name.toUpperCase()
 }
 }
}

@TupleConstructor
class Greeter Callable< > {implements String
 DataflowReadChannel names
 DataflowWriteChannel greetings

@Override
 call() {String
 (! .currentThread().isInterrupted()) {while Thread
 name = names.valString
 greetings << + name"Hello "
 }
 }
}

def a = SyncDataflowQueue()new
def b = SyncDataflowQueue()new
def c = SyncDataflowQueue()new

group.task Formatter(a, b)new
group.task Greeter(b, c)new

a << "Joe"
a << "Dave"
println c.val
println c.val

Alternatives

To introduce non-determinist GPars offers the class with its and Select select prioritySelect
methods:

50

import groovy.transform.TupleConstructor
 groovyx.gpars.dataflow.SyncDataflowQueueimport
 groovyx.gpars.dataflow.DataflowReadChannelimport
 groovyx.gpars.dataflow.DataflowWriteChannelimport
 groovyx.gpars.dataflow.Selectimport
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.scheduler.ResizeablePoolimport

 groovyx.gpars.dataflow.Dataflow.selectimport static

group = DefaultPGroup(ResizeablePool())new new true

@TupleConstructor
class Receptionist {implements Runnable
 DataflowReadChannel emails
 DataflowReadChannel phoneCalls
 DataflowReadChannel tweets
 DataflowWriteChannel forwardedMessages

 Select incomingRequests = select([phoneCalls, emails, tweets]) //prioritySelect() wouldprivate final
give highest precedence to phone calls

@Override
 void run() {
 (! .currentThread().isInterrupted()) {while Thread
 msg = incomingRequests.select()String
 forwardedMessages << msg.toUpperCase()
 }
 }
}

def a = SyncDataflowQueue()new
def b = SyncDataflowQueue()new
def c = SyncDataflowQueue()new
def d = SyncDataflowQueue()new

group.task Receptionist(a, b, c, d)new

a << "my email"
b << "my phone call"
c << "my tweet"

//The values come in random order since the process uses a Select to read its input
3.times{
 println d.val.value
}

Components

CSP processes can be composed into larger entities. Suppose you already have a set of CSP
processes (aka Runnable/Callable classes), you can compose them into a larger process:

final class Prefix Callable {implements
 DataflowChannel inChannelprivate final
 DataflowChannel outChannelprivate final
 def prefixprivate final

def Prefix(inChannel, outChannel, prefix) {final final final
 .inChannel = inChannel;this
 .outChannel = outChannel;this
 .prefix = prefixthis
 }

 def call() {public
 outChannel << prefix
 () {while true
 sleep 200
 outChannel << inChannel.val
 }
 }
}

51

final class Copy Callable {implements
 DataflowChannel inChannelprivate final
 DataflowChannel outChannel1private final
 DataflowChannel outChannel2private final

def Copy(inChannel, outChannel1, outChannel2) {final final final
 .inChannel = inChannel;this
 .outChannel1 = outChannel1;this
 .outChannel2 = outChannel2;this
 }

 def call() {public
 PGroup group = Dataflow.retrieveCurrentDFPGroup()final
 () {while true
 def i = inChannel.val
 group.task {
 outChannel1 << i
 outChannel2 << i
 }.join()
 }
 }
}

import groovyx.gpars.dataflow.DataflowChannel
 groovyx.gpars.dataflow.SyncDataflowQueueimport
 groovyx.gpars.group.DefaultPGroupimport

group = DefaultPGroup(6)new

def fib(DataflowChannel out) {
 group.task {
 def a = SyncDataflowQueue()new
 def b = SyncDataflowQueue()new
 def c = SyncDataflowQueue()new
 def d = SyncDataflowQueue()new
 [Prefix(d, a, 0L), Prefix(c, d, 1L), Copy(a, b, out), StatePairs(b, c)].each {new new new new
group.task it}
 }
}

 SyncDataflowQueue ch = SyncDataflowQueue()final new
group.task Print('Fibonacci numbers', ch)new
fib(ch)

sleep 10000

52

5 Actors
The actor support in GPars was originally inspired by the Actors library in Scala, but has since
gone well beyond what Scala offers as standard.

Actors allow for a message passing-based concurrency model: programs are collections of
independent active objects that exchange messages and have no mutable shared state.
Actors can help developers avoid issues such as deadlock, live-lock and starvation, which are
common problems for shared memory based approaches. Actors are a way of leveraging the
multi-core nature of today's hardware without all the problems traditionally associated with
shared-memory multi-threading, which is why programming languages such as Erlang and
Scala have taken up this model.

A nice article summarizing the key was written recently by Rubenconcepts behind actors
Vermeersch. Actors always guarantee that at most one thread processes the actor's body
at any one time and also, under the covers, that the memory gets synchronized each time a
thread gets assigned to an actor so the actor's state by code in thecan be safely modified
body . Ideally actor's codewithout any other extra (synchronization or locking) effort
should directly from outside so all the code of the actor class can only benever be invoked
executed by the thread handling the last received message and so all the actor's code is

 . If any of the actor's methods is allowed to be called by other objectsimplicitly thread-safe
directly, the thread-safety guarantee for the actor's code and state are .no longer valid

Types of actors

In general, you can find two types of actors in the wild - ones that hold andimplicit state
those, who don't. GPars gives you both options. actors, represented in byStateless GPars
the and the classes, keep no track of what messagesDynamicDispatchActor ReactiveActor
have arrived previously. You may thing of these as flat message handlers, which process
messages as they come. Any state-based behavior has to be implemented by the user.

The actors, represented in GPars by the class (and previously also bystateful DefaultActor
the class), allow the user to handle implicit state directly. After receivingAbstractPooledActor
a message the actor moves into a new state with different ways to handle future messages.
To give you an example, a freshly started actor may only accept some types of messages,
e.g. encrypted messages for decryption, only after it has received the encryption keys. The
stateful actors allow to encode such dependencies directly in the structure of the
message-handling code. Implicit state management, however, comes at a slight performance
cost, mainly due to the lack of continuations support on JVM.

Actor threading model

Since actors are detached from the system threads, a great number of actors can share a
relatively small thread pool. This can go as far as having many concurrent actors that share a
single pooled thread. This architecture allows to avoid some of the threading limitations of the
JVM. In general, while the JVM can only give you a limited number of threads (typically
around a couple of thousands), the number of actors is only limited by the available memory.
If an actor has no work to do, it doesn't consume threads.

http://ruben.savanne.be/articles/concurrency-in-erlang-scala

53

Actor code is processed in chunks separated by quiet periods of waiting for new events
(messages). This can be naturally modeled through . As JVM doesn't supportcontinuations
continuations directly, they have to be simulated in the actors frameworks, which has slight
impact on organization of the actors' code. However, the benefits in most cases outweigh the
difficulties.

import groovyx.gpars.actor.Actor
 groovyx.gpars.actor.DefaultActorimport

class GameMaster DefaultActor {extends
 secretNumint

void afterStart() {
 secretNum = Random().nextInt(10)new
 }

void act() {
 loop {
 react { num ->int
 (num > secretNum)if
 reply 'too large'
 (num < secretNum)else if
 reply 'too small'
 {else
 reply 'you win'
 terminate()
 }
 }
 }
 }
}

class Player DefaultActor {extends
 nameString
 Actor server
 myNumint

void act() {
 loop {
 myNum = Random().nextInt(10)new
 server.send myNum
 react {
 (it) {switch
 'too large': println ; case "$name: $myNum was too large" break
 'too small': println ; case "$name: $myNum was too small" break
 'you win': println ; terminate(); case "$name: I won $myNum" break
 }
 }
 }
 }
}

def master = GameMaster().start()new
def player = Player(name: 'Player', server: master).start()new

// forces main thread to live until both actors stopthis
[master, player]*.join()

example by Jordi Campos i Miralles, Departament de Matem tica Aplicada i An lisi, MAiA
Facultat de Matem tiques, Universitat de Barcelona

54

Usage of Actors

Gpars provides consistent Actor APIs and DSLs. Actors in principal perform three specific
operations - send messages, receive messages and create new actors. Although not
specifically enforced by messages should be immutable or at least follow the GPars

 policy when the sender never touches the messages after the message has beenhands-off
sent off.

Sending messages

Messages can be sent to actors using the method.send()

def passiveActor = Actors.actor{
 loop {
 react { msg -> println ; }"Received: $msg"
 }
}
passiveActor.send 'Message 1'
passiveActor << 'Message 2' //using the << operator
passiveActor 'Message 3' //using the implicit call() method

Alternatively, the operator or the implicit method can be used. A family of << call()
 methods is available to block the caller until a reply from the actor is available.sendAndWait()

The is returned from the method as a return value. The reply sendAndWait() sendAndWait()
methods may also return after a timeout expires or in case of termination of the called actor.

def replyingActor = Actors.actor{
 loop {
 react { msg ->
 println ;"Received: $msg"
 reply "I've got $msg"
 }
 }
}
def reply1 = replyingActor.sendAndWait('Message 4')
def reply2 = replyingActor.sendAndWait('Message 5', 10, TimeUnit.SECONDS)
use (TimeCategory) {
 def reply3 = replyingActor.sendAndWait('Message 6', 10.seconds)
}

The method allows the caller to continue its processing while the suppliedsendAndContinue()
closure is waiting for a reply from the actor.

friend.sendAndContinue 'I need money!', {money -> pocket money}
println 'I can my friend is collecting money me'continue while for

The method returns a (aka Future) to the final reply and so allowssendAndPromise() Promise
the caller to continue its processing while the actor is handling the submitted message.

Promise loan = friend.sendAndPromise 'I need money!'
println 'I can my friend is collecting money me'continue while for
loan.whenBound {money -> pocket money} //asynchronous waiting a replyfor
println //synchronous waiting a reply"Received ${loan.get()}" for

All , or methods will throw an exception if invokedsend() sendAndWait() sendAndContinue()
on a non-active actor.

55

Receiving messages

Non-blocking message retrieval

Calling the method, optionally with a timeout parameter, from within the actor's codereact()
will consume the next message from the actor's inbox, potentially waiting, if there is no
message to be processed immediately.

println 'Waiting a gift'for
react {gift ->
 (myWife.likes gift) reply 'Thank you!'if
}

Under the covers the supplied closure is not invoked directly, but scheduled for processing by
any thread in the thread pool once a message is available. After scheduling the current thread
will then be detached from the actor and freed to process any other actor, which has received
a message already.

To allow detaching actors from the threads the method demands the code to be writtenreact()
in a special .Continuation-style

Actors.actor {
 loop {
 println 'Waiting a gift'for
 react {gift ->
 (myWife.likes gift) reply 'Thank you!'if
 {else
 reply 'Try again, please'
 react {anotherGift ->
 (myChildren.like gift) reply 'Thank you!'if
 }
 println 'Never reached'
 }
 }
 println 'Never reached'
 }
 println 'Never reached'
}

The method has a special semantics to allow actors to be detached from threads whenreact()
no messages are available in their mailbox. Essentially, schedules the supplied codereact()
(closure) to be executed upon next message arrival and returns. The closure supplied to the

 methods is the code where the computation should . Thus react() continue continuation
 .style

Since actor has to preserve the guarantee of at most one thread active within the actor's
body, the next message cannot be handled before the current message processing finishes.
Typically, there shouldn't be a need to put code after calls to . Some actorreact()
implementations even enforce this, however, GPars does not for performance reasons. The

 method allows iteration within the actor body. Unlike typical looping constructs, like loop() for
or loops, cooperates with nested blocks and will ensure looping acrosswhile loop() react()
subsequent message retrievals.

Sending replies

56

The methods are not only defined on the actors themselves, but for reply/replyIfExists
 (not available in , nor AbstractPooledActor DefaultActor DynamicDispatchActor ReactiveActor

classes) also on the processed messages themselves upon their reception, which is
particularly handy when handling multiple messages in a single call. In such cases reply()
invoked on the actor sends a reply to authors of all the currently processed message (the last
one), whereas called on messages sends a reply to the author of the particularreply()
message only.

See demo here

The sender property

Messages upon retrieval offer the sender property to identify the originator of the message.
The property is available inside the Actor's closure:

react {tweet ->
 (isSpam(tweet)) ignoreTweetsFrom senderif
 sender.send 'Never write me again!'
}

Forwarding

When sending a message, a different actor can be specified as the sender so that potential
replies to the message will be forwarded to the specified actor and not to the actual originator.

def decryptor = Actors.actor {
 react {message ->
 reply message.reverse()
// sender.send message.reverse() //An alternative way to send replies
 }
}

def console = Actors.actor { //This actor will print out decrypted messages, since the replies are
forwarded to it
 react {
 println 'Decrypted message: ' + it
 }
}

decryptor.send 'lellarap si yvoorG', console //Specify an actor to send replies to
console.join()

Creating Actors

Actors share a of threads, which are dynamically assigned to actors when the actorspool
need to to messages sent to them. The threads are returned to back the pool once areact
message has been processed and the actor is idle waiting for some more messages to arrive.

For example, this is how you create an actor that prints out all messages that it receives.

def console = Actors.actor {
 loop {
 react {
 println it
 }
 }
}

Notice the method call, which ensures that the actor doesn't stop after havingloop()
processed the first message.

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=blob_plain;f=src/test/groovy/groovyx/gpars/samples/actors/stateful/DemoMultiMessage.groovy;hb=HEAD

57

Here's an example with a decryptor service, which can decrypt submitted messages and send
the decrypted messages back to the originators.

final def decryptor = Actors.actor {
 loop {
 react { message ->String
 ('stopService' == message) {if
 println 'Stopping decryptor'
 stop()
 }
 reply message.reverse()else
 }
 }
}

Actors.actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 println 'Decrypted message: ' + it
 decryptor.send 'stopService'
 }
}.join()

Here's an example of an actor that waits for up to 30 seconds to receive a reply to its
message.

def friend = Actors.actor {
 react {
 // doesn't reply -> caller won't receive any answer in timethis
 println it
 //reply 'Hello' //uncomment to answer conversationthis
 react {
 println it
 }
 }
}

def me = Actors.actor {
 friend.send('Hi')
 //wait answer 1secfor
 react(1000) {msg ->
 (msg == Actor.TIMEOUT) {if
 friend.send('I see, busy as usual. Never mind.')
 stop()
 } {else
 // conversationcontinue
 println "Thank you $msg"for
 }
 }
}

me.join()

Undelivered messages

Sometimes messages cannot be delivered to the target actor. When special action needs to
be taken for undelivered messages, at actor termination all unprocessed messages from its
queue have their method called. The method or closureonDeliveryError() onDeliveryError()
defined on the message can, for example, send a notification back to the original sender of
the message.

58

final DefaultActor me
me = Actors.actor {
 def message = 1

message.metaClass.onDeliveryError = {->
 //send message back to the caller
 me << "Could not deliver $delegate"
 }

def actor = Actors.actor {
 react {
 //wait 2sec in order next call in demo can be emitted
 .sleep(2000)Thread
 //stop actor after first message
 stop()
 }
 }

actor << message
 actor << message

react {
 //print whatever comes back
 println it
 }

}

me.join()

Alternatively the method can be specified on the sender itself. The methodonDeliveryError()
can be added both dynamically

final DefaultActor me
me = Actors.actor {
 def message1 = 1
 def message2 = 2

def actor = Actors.actor {
 react {
 //wait 2sec in order next call in demo can be emitted
 .sleep(2000)Thread
 //stop actor after first message
 stop()
 }
 }

me.metaClass.onDeliveryError = {msg ->
 //callback on actor inaccessibility
 println "Could not deliver message $msg"
 }

actor << message1
 actor << message2

actor.join()

}

me.join()

and statically in actor definition:

class MyActor DefaultActor {extends
 void onDeliveryError(msg) {public
 println "Could not deliver message $msg"
 }
 …
}

Joining actors

Actors provide a method to allow callers to wait for the actor to terminate. A variantjoin()
accepting a timeout is also available. The Groovy operator comes in handy whenspread-dot
joining multiple actors at a time.

59

def master = GameMaster().start()new
def player = Player(name: 'Player', server: master).start()new

[master, player]*.join()

Conditional and counting loops

The method allows for either a condition or a number of iterations to be specified,loop()
optionally accompanied with a closure to invoke once the loop finishes - After Loop

 .Termination Code Handler

The following actor will loop three times to receive 3 messages and then prints out the
maximum of the received messages.

final Actor actor = Actors.actor {
 def candidates = []
 def printResult = {-> println }"The best offer is ${candidates.max()}"

loop(3, printResult) {
 react {
 candidates << it
 }
 }
}

actor 10
actor 30
actor 20
actor.join()

The following actor will receive messages until a value greater then 30 arrives.

final Actor actor = Actors.actor {
 def candidates = []
 Closure printResult = {-> println }final "Reached best offer - ${candidates.max()}"

loop({-> candidates.max() < 30}, printResult) {
 react {
 candidates << it
 }
 }
}

actor 10
actor 20
actor 25
actor 31
actor 20
actor.join()

The can use actor's but not After Loop Termination Code Handler react{}
 .loop()

 can be set to behave in a fair on non-fair (default) manner.DefaultActor
Depending on the strategy chosen, the actor either makes the thread
available to other actors sharing the same parallel group (fair), or keeps
the thread fot itself until the message queue gets empty (non-fair).
Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the factory method or the actor's makeFair() method.fairActor()

60

Custom schedulers

Actors leverage the standard JDK concurrency library by default. To provide a custom thread
scheduler use the appropriate constructor parameter when creating a parallel group (PGroup
class). The supplied scheduler will orchestrate threads in the group's thread pool.

Please also see the numerous .Actor Demos

5.1 Actors Principles
Actors share a of threads, which are dynamically assigned to actors when the actorspool
need to to messages sent to them. The threads are returned back to the pool once areact
message has been processed and the actor is idle waiting for some more messages to arrive.
Actors become detached from the underlying threads and so a relatively small thread pool
can serve potentially unlimited number of actors. Virtually unlimited scalability in number of
actors is the main advantage of , which are detached from the underlyingevent-based actors
physical threads.

Here are some examples of how to use actors. This is how you create an actor that prints out
all messages that it receives.

import groovyx.gpars.actor.Actors.*static

def console = actor {
 loop {
 react {
 println it
 }
 }

Notice the method call, which ensures that the actor doesn't stop after havingloop()
processed the first message.

As an alternative you can extend the class and override the method. OnceDefaultActor act()
you instantiate the actor, you need to start it so that it attaches itself to the thread pool and
can start accepting messages. The factory method will take care of starting the actor.actor()

class CustomActor DefaultActor {extends
 @Override
 void act() {protected
 loop {
 react {
 println it
 }
 }
 }
}

def console= CustomActor()new
console.start()

Messages can be sent to the actor using multiple methods

console.send('Message')
console 'Message'
console.sendAndWait 'Message' //Wait a replyfor
console.sendAndContinue 'Message', {reply -> println } //Forward the reply to"I received reply: $reply"
a function

Creating an asynchronous service

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=tree;f=src/test/groovy/groovyx/gpars/samples;h=f9a751689a034a1d3de13c4874f4f4e839cb1026;hb=HEAD

61

import groovyx.gpars.actor.Actors.*static

 def decryptor = actor {final
 loop {
 react { message->String
 reply message.reverse()
 }
 }
}

def console = actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 println 'Decrypted message: ' + it
 }
}

console.join()

As you can see, you create new actors with the method passing in the actor's body asactor()
a closure parameter. Inside the actor's body you can use to iterate, to receiveloop() react()
messages and to send a message to the actor, which has sent the currently processedreply()
message. The sender of the current message is also available through the actor's sender
property. When the decryptor actor doesn't find a message in its message queue at the time
when is called, the method gives up the thread and returns it back to the threadreact() react()
pool for other actors to pick it up. Only after a new message arrives to the actor's message
queue, the closure of the method gets scheduled for processing with the pool.react()
Event-based actors internally simulate continuations - actor's work is split into sequentially run
chunks, which get invoked once a message is available in the inbox. Each chunk for a single
actor can be performed by a different thread from the thread pool.

Groovy flexible syntax with closures allows our library to offer multiple ways to define actors.
For instance, here's an example of an actor that waits for up to 30 seconds to receive a reply
to its message. Actors allow time DSL defined by org.codehaus.groovy.runtime.TimeCategory
class to be used for timeout specification to the method, provided the user wraps thereact()
call within a use block.TimeCategory

def friend = Actors.actor {
 react {
 // doesn't reply -> caller won't receive any answer in timethis
 println it
 //reply 'Hello' //uncomment to answer conversationthis
 react {
 println it
 }
 }
}

def me = Actors.actor {
 friend.send('Hi')
 //wait answer 1secfor
 react(1000) {msg ->
 (msg == Actor.TIMEOUT) {if
 friend.send('I see, busy as usual. Never mind.')
 stop()
 } {else
 // conversationcontinue
 println "Thank you $msg"for
 }
 }
}

me.join()

When a timeout expires when waiting for a message, the Actor.TIMEOUT message arrives
instead. Also the handler is invoked, if present on the actor:onTimeout()

62

def friend = Actors.actor {
 react {
 // doesn't reply -> caller won't receive any answer in timethis
 println it
 //reply 'Hello' //uncomment to answer conversationthis
 react {
 println it
 }
 }
}

def me = Actors.actor {
 friend.send('Hi')

delegate.metaClass.onTimeout = {->
 friend.send('I see, busy as usual. Never mind.')
 stop()
 }

//wait answer 1secfor
 react(1000) {msg ->
 (msg != Actor.TIMEOUT) {if
 // conversationcontinue
 println "Thank you $msg"for
 }
 }
}

me.join()

Notice the possibility to use Groovy meta-programming to define actor's lifecycle notification
methods (e.g.) dynamically. Obviously, the lifecycle methods can be defined theonTimeout()
usual way when you decide to define a new class for your actor.

class MyActor DefaultActor {extends
 void onTimeout() {public
 …
 }

 void act() {protected
 …
 }
}

Actors guarantee thread-safety for non-thread-safe code

Actors guarantee that always at most one thread processes the actor's body at a time and
also under the covers the memory gets synchronized each time a thread gets assigned to an
actor so the actor's state by code in the body can be safely modified without any other

 .extra (synchronization or locking) effort

class MyCounterActor DefaultActor {extends
 counter = 0private Integer

 void act() {protected
 loop {
 react {
 counter++
 }
 }
 }
}

Ideally actor's code should directly from outside so all the code of the actornever be invoked
class can only be executed by the thread handling the last received message and so all the
actor's code is . If any of the actor's methods is allowed to be called byimplicitly thread-safe
other objects directly, the thread-safety guarantee for the actor's code and state are no

 .longer valid

Simple calculator

63

A little bit more realistic example of an event-driven actor that receives two numeric
messages, sums them up and sends the result to the console actor.

import groovyx.gpars.group.DefaultPGroup

//not necessary, just showing that a single-threaded pool can still handle multiple actors
def group = DefaultPGroup(1);new

 def console = group.actor {final
 loop {
 react {
 println 'Result: ' + it
 }
 }
}

 def calculator = group.actor {final
 react {a ->
 react {b ->
 console.send(a + b)
 }
 }
}

calculator.send 2
calculator.send 3

calculator.join()
group.shutdown()

Notice that event-driven actors require special care regarding the method. Since react()
 need to split the code into independent chunks assignable to differentevent_driven actors

threads sequentially and are not natively supported on JVM, the chunks arecontinuations
created artificially. The method creates the next message handler. As soon as thereact()
current message handler finishes, the next message handler (continuation) gets scheduled.

Concurrent Merge Sort Example

For comparison I'm also including a more involved example performing a concurrent merge
sort of a list of integers using actors. You can see that thanks to flexibility of Groovy we came
pretty close to the Scala model, although I still miss Scala pattern matching for message
handling.

64

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.actor.Actors.actorimport static

Closure createMessageHandler(def parentActor) {
 {return
 react {List< > message ->Integer
 assert message != null
 (message.size()) {switch
 0..1:case
 parentActor.send(message)
 break
 2:case
 (message[0] <= message[1]) parentActor.send(message)if
 parentActor.send(message[-1..0])else
 break
 :default
 def splitList = split(message)

def child1 = actor(createMessageHandler(delegate))
 def child2 = actor(createMessageHandler(delegate))
 child1.send(splitList[0])
 child2.send(splitList[1])

react {message1 ->
 react {message2 ->
 parentActor.send merge(message1, message2)
 }
 }
 }
 }
 }
}

def console = DefaultPGroup(1).actor {new
 react {
 println "Sorted array:t${it}"
 .exit 0System
 }
}

def sorter = actor(createMessageHandler(console))
sorter.send([1, 5, 2, 4, 3, 8, 6, 7, 3, 9, 5, 3])
console.join()

def split(List< > list) {Integer
 listSize = list.size()int
 middleIndex = listSize / 2int
 def list1 = list[0..<middleIndex]
 def list2 = list[middleIndex..listSize - 1]
 [list1, list2]return
}

List< > merge(List< > a, List< > b) {Integer Integer Integer
 i = 0, j = 0int
 newSize = a.size() + b.size()final int
 List< > result = ArrayList< >(newSize)Integer new Integer

 ((i < a.size()) && (j < b.size())) {while
 (a[i] <= b[j]) result << a[i++]if
 result << b[j++]else
 }

 (i < a.size()) result.addAll(a[i..-1])if
 result.addAll(b[j..-1])else
 resultreturn
}

Since reuse threads from a pool, the script will work with virtually actors any size of a thread
, no matter how many actors are created along the way.pool

Actor lifecycle methods
Each Actor can define lifecycle observing methods, which will be called whenever a certain
lifecycle event occurs.

65

afterStart() - called right after the actor has been started.

afterStop(List undeliveredMessages) - called right after the actor is stopped, passing in
all the unprocessed messages from the queue.

onInterrupt(InterruptedException e) - called when the actor's thread gets interrupted.
Thread interruption will result in the stopping the actor in any case.

onTimeout() - called when no messages are sent to the actor within the timeout specified
for the currently blocking react method.

onException(Throwable e) - called when an exception occurs in the actor's event handler.
Actor will stop after return from this method.

You can either define the methods statically in your Actor class or add them dynamically to
the actor's metaclass:

class MyActor DefaultActor {extends
 void afterStart() {public
 …
 }
 void onTimeout() {public
 …
 }

 void act() {protected
 …
 }
}

def myActor = actor {
 delegate.metaClass.onException = {
 log.error('Exception occurred', it)
 }

…
}

To help performance, you may consider using the methodsilentStart()
instead of when starting a or a start() DynamicDispatchActor ReactiveActor
. Calling will by-pass some of the start-up machinery and as asilentStart()
result will also avoid calling the method. Due to its statefulafterStart()
nature, cannot be started silently.DefaultActor

Pool management

 can be organized into groups and as a default there's always an application-wideActors
pooled actor group available. And just like the abstract factory can be used to createActors
actors in the default group, custom groups can be used as abstract factories to create new
actors instances belonging to these groups.

def myGroup = DefaultPGroup()new

def actor1 = myGroup.actor {
…
}

def actor2 = myGroup.actor {
…
}

66

The property of an actor points to the group it belongs to. It by default points toparallelGroup
the default actor group, which is , and can only be changed beforeActors.defaultActorPGroup
the actor is started.

class MyActor StaticDispatchActor< > {extends Integer
 PGroup group = DefaultPGroup(100)private static new

MyActor(...) {
 .parallelGroup = groupthis
 …
 }
}

The actors belonging to the same group share the of that group. Theunderlying thread pool
pool by default contains , where stands for the number of detected byn + 1 threads n CPUs
the JVM. The can be set either by setting the systempool size explicitly gpars.poolsize
property or individually for each actor group by specifying the appropriate constructor
parameter.

def myGroup = DefaultPGroup(10) //the pool will contain 10 threadsnew

The thread pool can be manipulated through the appropriate class, which DefaultPGroup
 to the interface of the thread pool. For example, the method allowsdelegates Pool resize()

you to change the pool size any time and the sets it back to the defaultresetDefaultSize()
value. The method can be called when you need to safely finish all tasks, destroyshutdown()
the pool and stop all the threads in order to exit JVM in an organized manner.

… (n+1 threads in the pool after startup)default

Actors.defaultActorPGroup.resize 1 //use one-thread pool

… (1 thread in the pool)

Actors.defaultActorPGroup.resetDefaultSize()

… (n+1 threads in the pool)

Actors.defaultActorPGroup.shutdown()

As an alternative to the , which creates a pool of daemon threads, the DefaultPGroup
 class can be used when non-daemon threads are required.NonDaemonPGroup

def daemonGroup = DefaultPGroup()new

def actor1 = daemonGroup.actor {
…
}

def nonDaemonGroup = NonDaemonPGroup()new

def actor2 = nonDaemonGroup.actor {
…
}

class MyActor {
 def MyActor() {
 .parallelGroup = nonDaemonGroupthis
 }

void act() {...}
}

Actors belonging to the same group share the . With pooled actorunderlying thread pool
groups you can split your actors to leverage multiple thread pools of different sizes and so
assign resources to different components of your system and tune their performance.

67

def coreActors = NonDaemonPGroup(5) //5 non-daemon threads poolnew
def helperActors = DefaultPGroup(1) //1 daemon thread poolnew

def priceCalculator = coreActors.actor {
…
}

def paymentProcessor = coreActors.actor {
…
}

def emailNotifier = helperActors.actor {
…
}

def cleanupActor = helperActors.actor {
…
}

//increase size of the core actor group
coreActors.resize 6

//shutdown the group's pool once you no longer need the group to release resources
helperActors.shutdown()

Do not forget to shutdown custom pooled actor groups, once you no longer need them and
their actors, to preserve system resources.

The default actor group

Actors that didn't have their parallelGroup property changed or that were created through any
of the factory methods on the class share a common group Actors Actors.defaultActorPGroup
. This group uses a with an upper limit of . This givesresizeable thread pool 1000 threads
you the comfort of having the pool automatically adjust to the demand of the actors. On the
other hand, with a growing number of actors the pool may become too big an inefficient. It is
advisable to group your actors into your own PGroups with fixed size thread pools for all but
trivial applications.

Common trap: App terminates while actors do not receive messages

Most likely you're using daemon threads and pools, which is the default setting, and your
main thread finishes. Calling on any, some or all of your actors would block theactor.join()
main thread until the actor terminates and thus keep all your actors running. Alternatively use
instances of and assign some of your actors to these groups.NonDaemonPGroup

def nonDaemonGroup = NonDaemonPGroup()new
def myActor = nonDaemonGroup.actor {...}

alternatively

def nonDaemonGroup = NonDaemonPGroup()new

class MyActor DefaultActor {extends
 def MyActor() {
 .parallelGroup = nonDaemonGroupthis
 }

void act() {...}
}

def myActor = MyActor()new

Blocking Actors

68

Instead of event-driven continuation-styled actors, you may in some scenarios prefer using
blocking actors. Blocking actors hold a single pooled thread for their whole life-time including
the time when waiting for messages. They avoid some of the thread management overhead,
since they never fight for threads after start, and also they let you write straight code without
the necessity of continuation style, since they only do blocking message reads via the receive
method. Obviously the number of blocking actors running concurrently is limited by the
number of threads available in the shared pool. On the other hand, blocking actors typically
provide better performance compared to continuation-style actors, especially when the actor's
message queue rarely gets empty.

def decryptor = blockingActor {
 () {while true
 receive {message ->
 (message) reply message.reverse()if instanceof String
 stop()else
 }
 }
}

def console = blockingActor {
 decryptor.send 'lellarap si yvoorG'
 println 'Decrypted message: ' + receive()
 decryptor.send false
}

[decryptor, console]*.join()

Blocking actors increase the number of options to tune performance of your applications.
They may in particular be good candidates for high-traffic positions in your actor network.

5.2 Stateless Actors

Dynamic Dispatch Actor

The class is an actor allowing for an alternative structure of theDynamicDispatchActor
message handling code. In general repeatedly scans for messagesDynamicDispatchActor
and dispatches arrived messages to one of the methods defined ononMessage(message)
the actor. The leverages the Groovy dynamic method dispatchDynamicDispatchActor
mechanism under the covers. Since, unlike descendants, a DefaultActor

 not (discussed below) do not need to implicitlyDynamicDispatchActor ReactiveActor
remember actor's state between subsequent message receptions, they provide much better
performance characteristics, generally comparable to other actor frameworks, like e.g. Scala
Actors.

69

import groovyx.gpars.actor.Actors
 groovyx.gpars.actor.DynamicDispatchActorimport

 class MyActor DynamicDispatchActor {final extends

void onMessage(message) {String
 println 'Received string'
 }

void onMessage(message) {Integer
 println 'Received integer'
 reply 'Thanks!'
 }

void onMessage(message) {Object
 println 'Received object'
 sender.send 'Thanks!'
 }

void onMessage(List message) {
 println 'Received list'
 stop()
 }
}

 def myActor = MyActor().start()final new

Actors.actor {
 myActor 1
 myActor ''
 myActor 1.0
 myActor(ArrayList())new
 myActor.join()
}.join()

In some scenarios, typically when no implicit conversation-history-dependent state needs to
be preserved for the actor, the dynamic dispatch code structure may be more intuitive than
the traditional one using nested and statements.loop react

The class also provides a handy facility to add message handlersDynamicDispatchActor
dynamically at actor construction time or any time later using the handlers, optionallywhen
wrapped inside a method:become

final Actor myActor = DynamicDispatchActor().become {new
 when { msg -> println 'A '; reply 'Thanks'}String String
 when { msg -> println 'A '; reply 'Thanks'}Double Double
 when {msg -> println 'A something ...'; reply 'What was that?';stop()}
}
myActor.start()
Actors.actor {
 myActor 'Hello'
 myActor 1.0d
 myActor 10 as BigDecimal
 myActor.join()
}.join()

Obviously the two approaches can be combined:

70

final class MyDDA DynamicDispatchActor {extends

void onMessage(message) {String
 println 'Received string'
 }

void onMessage(message) {Integer
 println 'Received integer'
 }

void onMessage(message) {Object
 println 'Received object'
 }

void onMessage(List message) {
 println 'Received list'
 stop()
 }
}

 def myActor = MyDDA().become {final new
 when {BigDecimal num -> println 'Received BigDecimal'}
 when { num -> println 'Got a '}Float float
}.start()
Actors.actor {
 myActor 'Hello'
 myActor 1.0f
 myActor 10 as BigDecimal
 myActor.send([])
 myActor.join()
}.join()

The dynamic message handlers registered via take precedence over the static when
 handlers.onMessage

 can be set to behave in a fair on non-fair (default)DynamicDispatchActor
manner. Depending on the strategy chosen, the actor either makes the
thread available to other actors sharing the same parallel group (fair), or
keeps the thread fot itself until the message queue gets empty (non-fair).
Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the factory method or the actor'sfairMessageHandler()
makeFair() method.

def fairActor = Actors.fairMessageHandler {...}

Static Dispatch Actor

While dispatches messages based on their run-time type and so paysDynamicDispatchActor
extra performance penalty for each message, avoids run-time messageStaticDispatchActor
checks and dispatches the message solely based on the compile-time information.

final class MyActor StaticDispatchActor< > {extends String
 void onMessage(message) {String
 println 'Received string ' + message

 (message) {switch
 'hello':case
 reply 'Hi!'
 break
 'stop':case
 stop()
 }
 }
}

71

Instances of have to override the method appropriate for theStaticDispatchActor onMessage
actor's declared type parameter. The method is then invoked withonMessage(T message)
every received message.

A shorter route towards both fair and non-fair static dispatch actors is available through the
helper factory methods:

final actor = staticMessageHandler { message ->String
 println 'Received string ' + message

 (message) {switch
 'hello':case
 reply 'Hi!'
 break
 'stop':case
 stop()
 }
}

println 'Reply: ' + actor.sendAndWait('hello')
actor 'bye'
actor 'stop'
actor.join()

Although when compared to the class is limited toDynamicDispatchActor StaticDispatchActor
a single handler method, the simplified creation without any handlers plus thewhen
considerable performance benefits should make your default choice forStaticDispatchActor
straightforward message handlers, when dispatching based on message run-time type is not
necessary. For example, make dataflow operators four times fasterStaticDispatchActors
compared to when using .DynamicDispatchActor

Reactive Actor

The class, constructed typically by calling or ReactiveActor Actors.reactor()
 , allow for more event-driven like approach. When a reactive actorDefaultPGroup.reactor()

receives a message, the supplied block of code, which makes up the reactive actor's body, is
run with the message as a parameter. The result returned from the code is sent in reply.

final def group = DefaultPGroup()new

 def doubler = group.reactor {final
 2 * it
}

group.actor {
 println ' of 10 = ' + doubler.sendAndWait(10)Double
}

group.actor {
 println ' of 20 = ' + doubler.sendAndWait(20)Double
}

group.actor {
 println ' of 30 = ' + doubler.sendAndWait(30)Double
}

(i in (1..10)) {for
 println " of $i = ${doubler.sendAndWait(i)}"Double
}

doubler.stop()
doubler.join()

Here's an example of an actor, which submits a batch of numbers to a forReactiveActor
processing and then prints the results gradually as they arrive.

72

import groovyx.gpars.actor.Actor
 groovyx.gpars.actor.Actorsimport

 def doubler = Actors.reactor {final
 2 * it
}

Actor actor = Actors.actor {
 (1..10).each {doubler << it}
 i = 0int
 loop {
 i += 1
 (i > 10) stop()if
 {else
 react {message ->
 println " of $i = $message"Double
 }
 }
 }
}

actor.join()
doubler.stop()
doubler.join()

Essentially reactive actors provide a convenience shortcut for an actor that would wait for
messages in a loop, process them and send back the result. This is schematically how the
reactive actor looks inside:

public class ReactiveActor DefaultActor {extends
 Closure body

void act() {
 loop {
 react {message ->
 reply body(message)
 }
 }
 }
}

 can be set to behave in a fair on non-fair (default) manner.ReactiveActor
Depending on the strategy chosen, the actor either makes the thread
available to other actors sharing the same parallel group (fair), or keeps
the thread fot itself until the message queue gets empty (non-fair).
Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the factory method or the actor's makeFair()fairReactor()
method.

def fairActor = Actors.fairReactor {...}

5.3 Tips and Tricks

Structuring actor's code
When extending the class, you can call any actor's methods from within the DefaultActor act()
method and use the or methods in them.react() loop()

73

class MyDemoActor DefaultActor {extends

 void act() {protected
 handleA()
 }

 void handleA() {private
 react {a ->
 handleB(a)
 }
 }

 void handleB(a) {private int
 react {b ->
 println a + b
 reply a + b
 }
 }
}

 def demoActor = MyDemoActor()final new
demoActor.start()

Actors.actor {
 demoActor 10
 demoActor 20
 react {
 println "Result: $it"
 }
}.join()

Bear in mind that the methods and in all our examples will only schedulehandleA() handleB()
the supplied message handlers to run as continuations of the current calculation in reaction to
the next message arriving.

Alternatively, when using the factory method, you can add event-handling codeactor()
through the meta class as closures.

Actor demoActor = Actors.actor {
 delegate.metaClass {
 handleA = {->
 react {a ->
 handleB(a)
 }
 }

handleB = {a ->
 react {b ->
 println a + b
 reply a + b
 }
 }
 }

handleA()
}

Actors.actor {
 demoActor 10
 demoActor 20
 react {
 println "Result: $it"
 }
}.join()

Closures, which have the actor set as their delegate can also be used to structure
event-handling code.

74

Closure handleB = {a ->
 react {b ->
 println a + b
 reply a + b
 }
}

Closure handleA = {->
 react {a ->
 handleB(a)
 }
}

Actor demoActor = Actors.actor {
 handleA.delegate = delegate
 handleB.delegate = delegate

handleA()
}

Actors.actor {
 demoActor 10
 demoActor 20
 react {
 println "Result: $it"
 }
}.join()

Event-driven loops
When coding event-driven actors you have to have in mind that calls to and react() loop()
methods have slightly different semantics. This becomes a bit of a challenge once you try to
implement any types of loops in your actors. On the other hand, if you leverage the fact that

 only schedules a continuation and returns, you may call methods recursively withoutreact()
fear to fill up the stack. Look at the examples below, which respectively use the three
described techniques for structuring actor's code.

A subclass of DefaultActor

class MyLoopActor DefaultActor {extends

 void act() {protected
 outerLoop()
 }

 void outerLoop() {private
 react {a ->
 println 'Outer: ' + a
 (a != 0) innerLoop()if
 println 'Done'else
 }
 }

 void innerLoop() {private
 react {b ->
 println 'Inner ' + b
 (b == 0) outerLoop()if
 innerLoop()else
 }
 }
}

 def actor = MyLoopActor().start()final new
actor 10
actor 20
actor 0
actor 0
actor.join()

Enhancing the actor's metaClass

75

Actor actor = Actors.actor {

delegate.metaClass {
 outerLoop = {->
 react {a ->
 println 'Outer: ' + a
 (a!=0) innerLoop()if
 println 'Done'else
 }
 }

innerLoop = {->
 react {b ->
 println 'Inner ' + b
 (b==0) outerLoop()if
 innerLoop()else
 }
 }
 }

outerLoop()
}

actor 10
actor 20
actor 0
actor 0
actor.join()

Using Groovy closures

Closure innerLoop

Closure outerLoop = {->
 react {a ->
 println 'Outer: ' + a
 (a!=0) innerLoop()if
 println 'Done'else
 }
}

innerLoop = {->
 react {b ->
 println 'Inner ' + b
 (b==0) outerLoop()if
 innerLoop()else
 }
}

Actor actor = Actors.actor {
 outerLoop.delegate = delegate
 innerLoop.delegate = delegate

outerLoop()
}

actor 10
actor 20
actor 0
actor 0
actor.join()

Plus don't forget about the possibility to use the actor's method to create a loop thatloop()
runs until the actor terminates.

76

class MyLoopingActor DefaultActor {extends

 void act() {protected
 loop {
 outerLoop()
 }
 }

 void outerLoop() {private
 react {a ->
 println 'Outer: ' + a
 (a!=0) innerLoop()if
 println 'Done now, but will loop again'else for
 }
 }

 void innerLoop() {private
 react {b ->
 println 'Inner ' + b
 (b == 0) outerLoop()if
 innerLoop()else
 }
 }
}

 def actor = MyLoopingActor().start()final new
actor 10
actor 20
actor 0
actor 0
actor 10
actor.stop()
actor.join()

5.4 Active Objects
Active objects provide an OO facade on top of actors, allowing you to avoid dealing directly
with the actor machinery, having to match messages, wait for results and send replies.

Actors with a friendly facade

import groovyx.gpars.activeobject.ActiveObject
 groovyx.gpars.activeobject.ActiveMethodimport

@ActiveObject
class Decryptor {
 @ActiveMethod
 def decrypt(encryptedText) {String
 encryptedText.reverse()return
 }

@ActiveMethod
 def decrypt(encryptedNumber) {Integer
 -1*encryptedNumber + 142return
 }
}

 Decryptor decryptor = Decryptor()final new
def part1 = decryptor.decrypt(' noitcA ni yvoorG')
def part2 = decryptor.decrypt(140)
def part3 = decryptor.decrypt('noitide dn')

print part1.get()
print part2.get()
println part3.get()

You mark active objects with the annotation. This will ensure a hidden actor@ActiveObject
instance is created for each instance of your class. Now you can mark methods with the

 annotation indicating that you want the method to be invoked asynchronously@ActiveMethod
by the target object's internal actor. An optional boolean parameter to the blocking

 annotation specifies, whether the caller should block until a result is available@ActiveMethod
or whether instead the caller should only receive a for a future result in a form of a promise

 and so the caller is not blocked waiting.DataflowVariable

77

By default, all active methods are set to be . However,non-blocking
methods, which declare their return type explicitly, must be configured as
blocking, otherwise the compiler will report an error. Only , and def void

 are allowed return types for non-blocking methods.DataflowVariable

Under the covers, GPars will translate your method call to a message being sent to the
 . The actor will eventually handle that message by invoking the desired methodinternal actor

on behalf of the caller and once finished a reply will be sent back to the caller. Non-blocking
methods return promises for results, aka .DataflowVariables

But blocking means we're not really asynchronous, are we?

Indeed, if you mark your active methods as , the caller will be blocked waiting for theblocking
result, just like when doing normal plain method invocation. All we've achieved is being
thread-safe inside the Active object from concurrent access. Something the synchronized
keyword could give you as well. So it is the methods that should drive yournon-blocking
decision towards using active objects. Blocking methods will then provide the usual
synchronous semantics yet give the consistency guarantees across concurrent method
invocations. The blocking methods are then still very useful when used in combination with
non-blocking ones.

import groovyx.gpars.activeobject.ActiveMethod
 groovyx.gpars.activeobject.ActiveObjectimport
 groovyx.gpars.dataflow.DataflowVariableimport

@ActiveObject
class Decryptor {
 @ActiveMethod(blocking=)true
 decrypt(encryptedText) {String String
 encryptedText.reverse()
 }

@ActiveMethod(blocking=)true
 decrypt(encryptedNumber) {Integer Integer
 -1*encryptedNumber + 142
 }
}

 Decryptor decryptor = Decryptor()final new
print decryptor.decrypt(' noitcA ni yvoorG')
print decryptor.decrypt(140)
println decryptor.decrypt('noitide dn')

Non-blocking semantics

Now calling the non-blocking active method will return as soon as the actor has been sent a
message. The caller is now allowed to do whatever he likes, while the actor is taking care of
the calculation. The state of the calculation can be polled using the property on thebound
promise. Calling the method on the returned promise will block the caller until a value isget()
available. The call to will eventually return a value or throw an exception, depending onget()
the outcome of the actual calculation.

The method has also a variant with a timeout parameter, if you wantget()
to avoid the risk of waiting indefinitely.

Annotation rules

78

1.

2.

3.

4.

5.

There are a few rules to follow when annotating your objects:

The annotations are only accepted in classes annotated as ActiveMethod ActiveObject

Only instance (non-static) methods can be annotated as ActiveMethod

You can override active methods with non-active ones and vice versa

Subclasses of active objects can declare additional active methods, provided they are
themselves annotated as ActiveObject

Combining concurrent use of active and non-active methods may result in race
conditions. Ideally design your active objects as completely encapsulated classes with all
non-private methods marked as active

Inheritance

The annotation can appear on any class in an inheritance hierarchy. The actor@ActiveObject
field will only be created in top-most annotated class in the hierarchy, the subclasses will
reuse the field.

import groovyx.gpars.activeobject.ActiveObject
 groovyx.gpars.activeobject.ActiveMethodimport
 groovyx.gpars.dataflow.DataflowVariableimport

@ActiveObject
class A {
 @ActiveMethod
 def fooA(value) {
 …
 }
}

class B A {extends
}

@ActiveObject
class C B {extends
 @ActiveMethod
 def fooC(value1, value2) {
 …
 }
}

In our example the actor field will be generated into class . Class has to be annotatedA C
with since it holds the annotation on method , while@ActiveObject @ActiveMethod fooC()
class does not need the annotation, since none of its methods is active.B

Groups

Just like actors can be grouped around thread pools, active objects can be configured to use
threads from particular parallel groups.

@ActiveObject()"group1"
class MyActiveObject {
 …
}

The parameter to the annotation specifies a name of parallel group tovalue @ActiveObject
bind the internal actor to. Only threads from the specified group will be used to run internal
actors of instances of the class. The groups, however, need to be created and registered prior
to creation of any of the active object instances belonging to that group. If not specified
explicitly, an active object will use the default actor group - .Actors.defaultActorPGroup

79

final DefaultPGroup group = DefaultPGroup(10)new
ActiveObjectRegistry.instance.register(, group)"group1"

Alternative names for the internal actor

You will probably only rarely run into name collisions with the default name for the active
object's internal actor field. May you need to change the default name

 , use the parameter to the annotation.internalActiveObjectActor actorName @ActiveObject

@ActiveObject(actorName =)"alternativeActorName"
class MyActiveObject {
 …
}

Alternative names for internal actors as well as their desired groups cannot
be overriden in subclasses. Make sure you only specify these values in the
top-most active objects in your inheritance hierarchy. Obviously, the top
most active object is still allowed to subclass other classes, just none of the
predecessors must be an active object.

5.5 Classic Examples

A few examples on Actors use

Examples

The Sieve of Eratosthenes

Sleeping Barber

Dining Philosophers

Word Sort

Load Balancer

The Sieve of Eratosthenes

Problem description

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

80

import groovyx.gpars.actor.DynamicDispatchActor

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using actors
 *
 * In principle, the algorithm consists of concurrently run chained filters,
 * each of which detects whether the current number can be divided by a single prime number.
 * (generate nums 1, 2, 3, 4, 5, ...) -> (filter by mod 2) -> (filter by mod 3) -> (filter by mod 5) ->
(filter by mod 7) -> (filter by mod 11) -> (caution! Primes falling out here)
 * The chain is built (grows) on the fly, whenever a prime is found.new
 */

 requestedPrimeNumberBoundary = 1000int

 def firstFilter = FilterActor(2).start()final new

/**
 * Generating candidate numbers and sending them to the actor chain
 */
(2..requestedPrimeNumberBoundary).each {
 firstFilter it
}
firstFilter.sendAndWait 'Poison'

/**
 * Filter out numbers that can be divided by a single prime number
 */

 class FilterActor DynamicDispatchActor {final extends
 myPrimeprivate final int
 def followerprivate

def FilterActor(myPrime) { .myPrime = myPrime; }final this

/**
 * Try to divide the received number with the prime. If the number cannot be divided, send it along
the chain.
 * If there's no-one to send it to, I'm the last in the chain, the number is a prime and so I will
create and chain
 * a actor responsible filtering by newly found prime number.new for this
 */
 def onMessage(value) {int
 (value % myPrime != 0) {if
 (follower) follower valueif
 {else
 println "Found $value"
 follower = FilterActor(value).start()new
 }
 }
 }

/**
 * Stop the actor on poisson reception
 */
 def onMessage(def poisson) {
 (follower) {if
 def sender = sender
 follower.sendAndContinue(poisson, { .stop(); sender?.send('Done')}) //Pass the poissonthis
along and stop after a reply
 } { //I am the last in the chainelse
 stop()
 reply 'Done'
 }
 }
}

Sleeping Barber

Problem description

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.actor.DefaultActorimport
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.actor.Actorimport

 def group = DefaultPGroup()final new

http://en.wikipedia.org/wiki/Sleeping_barber_problem

81

 def barber = group.actor {final
 def random = Random()final new
 loop {
 react {message ->
 (message) {switch
 Enter:case
 message.customer.send Start()new
 println "Barber: Processing customer ${message.customer.name}"
 doTheWork(random)
 message.customer.send Done()new
 reply Next()new
 break
 Wait:case
 println "Barber: No customers. Going to have a sleep"
 break
 }
 }
 }
}

 def doTheWork(Random random) {private
 .sleep(random.nextInt(10) * 1000)Thread
}

 Actor waitingRoomfinal

waitingRoom = group.actor {
 capacity = 5final int
 List<Customer> waitingCustomers = []final
 barberAsleep = boolean true

loop {
 react {message ->
 (message) {switch
 Enter:case
 (waitingCustomers.size() == capacity) {if
 reply Full()new
 } {else
 waitingCustomers << message.customer
 (barberAsleep) {if
 assert waitingCustomers.size() == 1
 barberAsleep = false
 waitingRoom.send Next()new
 }
 reply Wait()else new
 }
 break
 Next:case
 (waitingCustomers.size()>0) {if
 def customer = waitingCustomers.remove(0)
 barber.send Enter(customer:customer)new
 } {else
 barber.send Wait()new
 barberAsleep = true
 }
 }
 }
 }

}

class Customer DefaultActor {extends
 nameString
 Actor localBarbers

void act() {
 localBarbers << Enter(customer:)new this
 loop {
 react {message ->
 (message) {switch
 Full:case
 println "Customer: $name: The waiting room is full. I am leaving."
 stop()
 break
 Wait:case
 println "Customer: $name: I will wait."
 break
 Start:case
 println "Customer: $name: I am now being served."
 break
 Done:case
 println "Customer: $name: I have been served."
 stop();
 break

}
 }
 }
 }
}

class Enter { Customer customer }
class Full {}
class Wait {}
class Next {}
class Start {}
class Done {}

def customers = []
customers << Customer(name:'Joe', localBarbers:waitingRoom).start()new
customers << Customer(name:'Dave', localBarbers:waitingRoom).start()new
customers << Customer(name:'Alice', localBarbers:waitingRoom).start()new

82

sleep 15000
customers << Customer(name: 'James', localBarbers: waitingRoom).start()new
sleep 5000
customers*.join()
barber.stop()
waitingRoom.stop()

Dining Philosophers

Problem description

http://en.wikipedia.org/wiki/Dining_philosophers_problem

83

import groovyx.gpars.actor.DefaultActor
 groovyx.gpars.actor.Actorsimport

Actors.defaultActorPGroup.resize 5

 class Philosopher DefaultActor {final extends
 Random random = Random()private new

 nameString
 def forks = []

void act() {
 assert 2 == forks.size()
 loop {
 think()
 forks*.send Take()new
 def messages = []
 react {a ->
 messages << [a, sender]
 react {b ->
 messages << [b, sender]
 ([a, b].any {Rejected.isCase it}) {if
 println "$name: tOops, can't get my forks! Giving up."
 def accepted = messages.find {Accepted.isCase it[0]}final
 (accepted!=) accepted[1].send Finished()if null new
 } {else
 eat()
 reply Finished()new
 }
 }
 }
 }
 }

void think() {
 println "$name: tI'm thinking"
 .sleep random.nextInt(5000)Thread
 println "$name: tI'm done thinking"
 }

void eat() {
 println "$name: tI'm EATING"
 .sleep random.nextInt(2000)Thread
 println "$name: tI'm done EATING"
 }
}

 class Fork DefaultActor {final extends

 nameString
 available = boolean true

void act() {
 loop {
 react {message ->
 (message) {switch
 Take:case
 (available) {if
 available = false
 reply Accepted()new
 } reply Rejected()else new
 break
 Finished:case
 assert !available
 available = true
 break
 : IllegalStateException()default throw new "Cannot process the message: $message"
 }
 }
 }
 }
}

 class Take {}final
 class Accepted {}final
 class Rejected {}final
 class Finished {}final

def forks = [
 Fork(name:'Fork 1'),new
 Fork(name:'Fork 2'),new
 Fork(name:'Fork 3'),new
 Fork(name:'Fork 4'),new
 Fork(name:'Fork 5')new
]

def philosophers = [
 Philosopher(name:'Joe', forks:[forks[0], forks[1]]),new
 Philosopher(name:'Dave', forks:[forks[1], forks[2]]),new
 Philosopher(name:'Alice', forks:[forks[2], forks[3]]),new
 Philosopher(name:'James', forks:[forks[3], forks[4]]),new
 Philosopher(name:'Phil', forks:[forks[4], forks[0]]),new
]

forks*.start()
philosophers*.start()

sleep 10000
forks*.stop()
philosophers*.stop()

84

Word sort

Given a folder name, the script will sort words in all files in the folder. The actorSortMaster
creates a given number of , splits among them the files to sort words in andWordSortActors
collects the results.

Inspired by Scala Concurrency blog post by Michael Galpin

http://fupeg.blogspot.com/2009/06/scala-concurrency.html

85

//Messages
 class FileToSort { fileName }private final String
 class SortResult { fileName; List< > words }private final String String

//Worker actor
class WordSortActor DefaultActor {extends

 List< > sortedWords(fileName) {private String String
 parseFile(fileName).sort {it.toLowerCase()}
 }

 List< > parseFile(fileName) {private String String
 List< > words = []String
 File(fileName).splitEachLine(' ') {words.addAll(it)}new
 wordsreturn
 }

void act() {
 loop {
 react {message ->
 (message) {switch
 FileToSort:case
 println "Sorting file=${message.fileName} on thread ${Thread
.currentThread().name}"
 reply SortResult(fileName: message.fileName, words:new
sortedWords(message.fileName))
 }
 }
 }
 }
}

//Master actor
 class SortMaster DefaultActor {final extends

 docRoot = '/'String
 numActors = 1int

List<List< >> sorted = []String
 CountDownLatch startupLatch = CountDownLatch(1)private new
 CountDownLatch doneLatchprivate

 void beginSorting() {private
 cnt = sendTasksToWorkers()int
 doneLatch = CountDownLatch(cnt)new
 }

 List createWorkers() {private
 (1..numActors).collect { WordSortActor().start()}return new
 }

 sendTasksToWorkers() {private int
 List<Actor> workers = createWorkers()
 cnt = 0int
 File(docRoot).eachFile {new
 workers[cnt % numActors] << FileToSort(fileName: it)new
 cnt += 1
 }
 cntreturn
 }

 void waitUntilDone() {public
 startupLatch.await()
 doneLatch.await()
 }

void act() {
 beginSorting()
 startupLatch.countDown()
 loop {
 react {
 (it) {switch
 SortResult:case
 sorted << it.words
 doneLatch.countDown()
 println "Received results file=${it.fileName}"for
 }
 }
 }
 }
}

//start the actors to sort words
def master = SortMaster(docRoot: 'c:/tmp/Logs/', numActors: 5).start()new
master.waitUntilDone()
println 'Done'

File file = File()new "c:/tmp/Logs/sorted_words.txt"
file.withPrintWriter { printer ->
 master.sorted.each { printer.println it }
}

Load Balancer

86

Demonstrates work balancing among adaptable set of workers. The load balancer receives
tasks and queues them in a temporary task queue. When a worker finishes his assignment, it
asks the load balancer for a new task.

If the load balancer doesn't have any tasks available in the task queue, the worker is stopped.
If the number of tasks in the task queue exceeds certain limit, a new worker is created to
increase size of the worker pool.

87

import groovyx.gpars.actor.Actor
 groovyx.gpars.actor.DefaultActorimport

/**
 * Demonstrates work balancing among adaptable set of workers.
 * The load balancer receives tasks and queues them in a temporary task queue.
 * When a worker finishes his assignment, it asks the load balancer a task.for new
 * If the load balancer doesn't have any tasks available in the task queue, the worker is stopped.
 * If the number of tasks in the task queue exceeds certain limit, a worker is creatednew
 * to increase size of the worker pool.
 */

 class LoadBalancer DefaultActor {final extends
 workers = 0int
 List taskQueue = []
 QUEUE_SIZE_TRIGGER = 10private static final

void act() {
 loop {
 react { message ->
 (message) {switch
 NeedMoreWork:case
 (taskQueue.size() == 0) {if
 println 'No more tasks in the task queue. Terminating the worker.'
 reply DemoWorker.EXIT
 workers -= 1
 } reply taskQueue.remove(0)else
 break
 WorkToDo:case
 taskQueue << message
 ((workers == 0) || (taskQueue.size() >= QUEUE_SIZE_TRIGGER)) {if
 println 'Need more workers. Starting one.'
 workers += 1
 DemoWorker().start()new this
 }
 }
 println "Active workers=${workers}tTasks in queue=${taskQueue.size()}"
 }
 }
 }
}

 class DemoWorker DefaultActor {final extends
 EXIT = ()final static Object new Object
 Random random = Random()private static final new

Actor balancer

def DemoWorker(balancer) {
 .balancer = balancerthis
 }

void act() {
 loop {
 .balancer << NeedMoreWork()this new
 react {
 (it) {switch
 WorkToDo:case
 processMessage(it)
 break
 EXIT: terminate()case
 }
 }
 }

}

 void processMessage(message) {private
 (random) {synchronized
 .sleep random.nextInt(5000)Thread
 }
 }
}

 class WorkToDo {}final
 class NeedMoreWork {}final

 Actor balancer = LoadBalancer().start()final new

//produce tasks
 (i in 1..20) {for

 .sleep 100Thread
 balancer << WorkToDo()new
}

//produce tasks in a parallel thread
.start {Thread

 (i in 1..10) {for
 .sleep 1000Thread
 balancer << WorkToDo()new
 }
}

.sleep 35000 //let the queues get emptyThread
balancer << WorkToDo()new
balancer << WorkToDo()new

.sleep 10000Thread

balancer.stop()
balancer.join()

88

6 Agents
The Agent class, which is a thread-safe non-blocking shared mutable state wrapper
implementation inspired by Agents in Clojure.

A lot of the concurrency problems disappear when you eliminate the need
for Shared Mutable State with your architecture. Indeed, concepts like
actors, CSP or dataflow concurrency avoid or isolate mutable state
completely. In some cases, however, sharing mutable data is either
inevitable or makes the design more natural and understandable. Think, for
example, of a shopping cart in a typical e-commerce application, when
multiple AJAX requests may hit the cart with read or write requests
concurrently.

Introduction

In the Clojure programing language you can find a concept of Agents, the purpose of which is
to protect mutable data that need to be shared across threads. Agents hide the data and
protect it from direct access. Clients can only send commands (functions) to the agent. The
commands will be serialized and processed against the data one-by-one in turn. With the
commands being executed serially the commands do not need to care about concurrency and
can assume the data is all theirs when run. Although implemented differently, GPars Agents,
called , fundamentally behave like actors. They accept messages and process themAgent
asynchronously. The messages, however, must be commands (functions or Groovy closures)
and will be executed inside the agent. After reception the received function is run against the
internal state of the Agent and the return value of the function is considered to be the new
internal state of the Agent.

Essentially, agents safe-guard mutable values by allowing only a single agent-managed
 to make modifications to them. The mutable values are fromthread not directly accessible

outside, but instead and the agent guarantees torequests have to be sent to the agent
process the requests sequentially on behalf of the callers. Agents guarantee sequential
execution of all requests and so consistency of the values.

Schematically:

agent = Agent(0) //created a Agent wrapping an integer with initial value 0new new
agent.send {increment()} //asynchronous send operation, sending the increment() function
…
//after some delay to process the message the internal Agent's state has been updated
…
assert agent.val== 1

To wrap integers, we can certainly use AtomicXXX types on the Java platform, but when the
state is a more complex object we need more support.

Concepts

GPars provides an Agent class, which is a special-purpose thread-safe non-blocking
implementation inspired by Agents in Clojure.

89

An Agent wraps a reference to mutable state, held inside a single field, and accepts code
(closures / commands) as messages, which can be sent to the Agent just like to any other
actor using the '<<' operator, the send() methods or the implicit method. At some pointcall()
after reception of a closure / command, the closure is invoked against the internal mutable
field and can make changes to it. The closure is guaranteed to be run without intervention
from other threads and so may freely alter the internal state of the Agent held in the internal
<i>data</i> field.

The whole update process is of the fire-and-forget type, since once the message (closure) is
sent to the Agent, the caller thread can go off to do other things and come back later to check
the current value with Agent.val or Agent.valAsync(closure).

Basic rules

When executed, the submitted commands obtain the agent's state as a parameter.

The submitted commands /closures can call any methods on the agent's state.

Replacing the state object with a new one is also possible and is done using the
.updateValue() method

The of the submitted closure doesn't have a special meaning and isreturn value
ignored.

If the message sent to an is , it is considered to be a forAgent not a closure new value
the internal reference field.

The property of an will wait until all preceding commands in the agent's queueval Agent
are consumed and then safely return the value of the Agent.

The method will do the same the caller.valAsync() without blocking

The property will return an immediate snapshot of the internal agent's state.instantVal

All Agent instances share a default daemon thread pool. Setting the propertythreadPool
of an Agent instance will allow it to use a different thread pool.

Exceptions thrown by the commands can be collected using the property.errors

Examples

Shared list of members

The Agent wraps a list of members, who have been added to the jug. To add a new member
a message (command to add a member) has to be sent to the Agent.jugMembers

90

import groovyx.gpars.agent.Agent
 java.util.concurrent.ExecutorServiceimport
 java.util.concurrent.Executorsimport

/**
 * Create a Agent wrapping a list of stringsnew
 */
def jugMembers = Agent<List< >>(['Me']) //add Menew String

jugMembers.send {it.add 'James'} //add James

 t1 = .start {final Thread Thread
 jugMembers.send {it.add 'Joe'} //add Joe
}

 t2 = .start {final Thread Thread
 jugMembers << {it.add 'Dave'} //add Dave
 jugMembers {it.add 'Alice'} //add Alice (using the implicit call() method)
}

[t1, t2]*.join()
println jugMembers.val
jugMembers.valAsync {println }"Current members: $it"

jugMembers.await()

Shared conference counting number of registrations

The Conference class allows registration and un-registration, however these methods can
only be called from the commands sent to the Agent.conference

import groovyx.gpars.agent.Agent

/**
 * Conference stores number of registrations and allows parties to register and unregister.
 * It inherits from the Agent class and adds the register() and unregister() methods,private
 * which callers may use it the commands they submit to the Conference.
 */
class Conference Agent< > {extends Long
 def Conference() { (0) }super
 def register(num) { data += num }private long
 def unregister(num) { data -= num }private long
}

 Agent conference = Conference() // Conference createdfinal new new

/**
 * Three external parties will to register/unregister concurrentlytry
 */

 t1 = .start {final Thread Thread
 conference << {register(10L)} //send a command to register 10 attendees
}

 t2 = .start {final Thread Thread
 conference << {register(5L)} //send a command to register 5 attendees
}

 t3 = .start {final Thread Thread
 conference << {unregister(3L)} //send a command to unregister 3 attendees
}

[t1, t2, t3]*.join()

assert 12L == conference.val

Factory methods

Agent instances can also be created using the factory method.Agent.agent()

def jugMembers = Agent.agent ['Me'] //add Me

Listeners and validators

91

1.

2.

Agents allow the user to add listeners and validators. While listeners will get notified each
time the internal state changes, validators get a chance to reject a coming change by throwing
an exception.

final Agent counter = Agent()new

counter.addListener {oldValue, newValue -> println }"Changing value from $oldValue to $newValue"
counter.addListener {agent, oldValue, newValue -> println "Agent $agent changing value from $oldValue to

}$newValue"

counter.addValidator {oldValue, newValue -> (oldValue > newValue) if throw new
IllegalArgumentException('Things can only go up in Groovy')}
counter.addValidator {agent, oldValue, newValue -> (oldValue == newValue) if throw new
IllegalArgumentException('Things never stay the same $agent')}for

counter 10
counter 11
counter {updateValue 12}
counter 10 //Will be rejected
counter {updateValue it - 1} //Will be rejected
counter {updateValue it} //Will be rejected
counter {updateValue 11} //Will be rejected
counter 12 //Will be rejected
counter 20
counter.await()

Both listeners and validators are essentially closures taking two or three arguments.
Exceptions thrown from the validators will be logged inside the agent and can be tested using
the method or retrieved through the property.hasErrors() errors

assert counter.hasErrors()
assert counter.errors.size() == 5

Validator gotchas

With Groovy being not very strict on data types and immutability, agent users should be
aware of potential bumps on the road. If the submitted code modifies the state directly,
validators will not be able to un-do the change in case of a validation rule violation. There are
two possible solutions available:

Make sure you never change the supplied object representing current agent state

Use custom copy strategy on the agent to allow the agent to create copies of the internal
state

In both cases you need to call to set and validate the new state properly.updateValue()

The problem as well as both of the solutions are shown below:

92

//Create an agent storing names, rejecting 'Joe'
 Closure rejectJoeValidator = {oldValue, newValue -> ('Joe' in newValue) final if throw new

IllegalArgumentException('Joe is not allowed to enter our list.')}

Agent agent = Agent([])new
agent.addValidator rejectJoeValidator

agent {it << 'Dave'} //Accepted
agent {it << 'Joe'} //Erroneously accepted, since by-passes the validation mechanism
println agent.val

//Solution 1 - never alter the supplied state object
agent = Agent([])new
agent.addValidator rejectJoeValidator

agent {updateValue(['Dave', * it])} //Accepted
agent {updateValue(['Joe', * it])} //Rejected
println agent.val

//Solution 2 - use custom copy strategy on the agent
agent = Agent([], {it.clone()})new
agent.addValidator rejectJoeValidator

agent {updateValue it << 'Dave'} //Accepted
agent {updateValue it << 'Joe'} //Rejected, since 'it' is now just a copy of the internal agent's
state
println agent.val

Grouping

By default all Agent instances belong to the same group sharing its daemon thread pool.

Custom groups can also create instances of Agent. These instances will belong to the group,
which created them, and will share a thread pool. To create an Agent instance belonging to a
group, call the factory method on the group. This way you can organize and tuneagent()
performance of agents.

final def group = NonDaemonPGroup(5) //create a group around a thread poolnew
def jugMembers = group.agent(['Me']) //add Me

The default thread pool for agents contains daemon threads. Make sure
that your custom thread pools either use daemon threads, too, which can
be achieved either by using DefaultPGroup or by providing your own
thread factory to a thread pool constructor, or in case your thread pools
use non-daemon threads, such as when using the NonDaemonPGroup
group class, make sure you shutdown the group or the thread pool
explicitly by calling its shutdown() method, otherwise your applications will
not exit.

Direct pool replacement

Alternatively, by calling the method on an Agent instance a customattachToThreadPool()
thread pool can be specified for it.

def jugMembers = Agent<List< >>(['Me']) //add Menew String

 ExecutorService pool = Executors.newFixedThreadPool(10)final
jugMembers.attachToThreadPool(DefaultPool(pool))new

Remember, like actors, a single Agent instance (aka agent) can never use
more than one thread at a time

93

1.

The shopping cart example

import groovyx.gpars.agent.Agent

class ShoppingCart {
 def cartState = Agent([:])private new
//----------------- methods below here ----------------------------------public
 void addItem(product, quantity) {public String int
 cartState << {it[product] = quantity} //the << sendsoperator
 //a message to the Agent
 } void removeItem(product) {public String
 cartState << {it.remove(product)}
 } listContent() {public Object
 cartState.valreturn
 } void clearItems() {public
 cartState << performClear
 }

 void increaseQuantity(product, quantityChange) {public String int
 cartState << .&changeQuantity.curry(product, quantityChange)this
 }
//----------------- methods below here ---------------------------------private
 void changeQuantity(product, quantityChange, Map items) {private String int
 items[product] = (items[product] ?: 0) + quantityChange
 } Closure performClear = { it.clear() }private
}
//----------------- script code below here -------------------------------------

 ShoppingCart cart = ShoppingCart()final new
cart.addItem 'Pilsner', 10
cart.addItem 'Budweisser', 5
cart.addItem 'Staropramen', 20

cart.removeItem 'Budweisser'
cart.addItem 'Budweisser', 15

println "Contents ${cart.listContent()}"

cart.increaseQuantity 'Budweisser', 3
println "Contents ${cart.listContent()}"

cart.clearItems()
println "Contents ${cart.listContent()}"

You might have noticed two implementation strategies in the code.

Public methods may internally just send the required code off to the Agent, instead of
executing the same functionality directly

And so sequential code like

public void addItem(product, quantity) {String int
 cartState[product]=quantity

}

becomes

public void addItem(product, quantity) {String int
 cartState << {it[product] = quantity}
}

2. Public methods may send references to internal private methods or closures, which hold
the desired functionality to perform

public void clearItems() {
 cartState << performClear
}

 Closure performClear = { it.clear() }private

, if the closure takes other arguments besides the currentCurrying might be necessary
internal state instance. See the method.increaseQuantity

94

The printer service example

Another example - a not thread-safe printer service shared by multiple threads. The printer
needs to have the document and quality properties set before printing, so obviously a
potential for race conditions if not guarded properly. Callers don't want to block until the
printer is available, which the fire-and-forget nature of actors solves very elegantly.

import groovyx.gpars.agent.Agent

/**
 * A non-thread-safe service that slowly prints documents on at a time
 */
class PrinterService {
 documentString
 qualityString

 void printDocument() {public
 println "Printing $document in $quality quality"
 .sleep 5000Thread
 println "Done printing $document"
 }
}

def printer = Agent<PrinterService>(PrinterService())new new

 thread1 = .start {final Thread Thread
 (num in (1..3)) {for
 text = final String "document $num"
 printer << {printerService ->
 printerService.document = text
 printerService.quality = 'High'
 printerService.printDocument()
 }
 .sleep 200Thread
 }
 println ' 1 is ready to something . All print tasks have been submitted'Thread do else
}

 thread2 = .start {final Thread Thread
 (num in (1..4)) {for
 text = final String "picture $num"
 printer << {printerService ->
 printerService.document = text
 printerService.quality = 'Medium'
 printerService.printDocument()
 }
 .sleep 500Thread
 }
 println ' 2 is ready to something . All print tasks have been submitted'Thread do else
}

[thread1, thread2]*.join()
printer.await()

For latest update, see the respective Demos.

Reading the value

To follow the clojure philosophy closely the Agent class gives reads higher priority than to
writes. By using the property your read request will bypass the incoming messageinstantVal
queue of the Agent and return the current snapshot of the internal state. The property willval
wait in the message queue for processing, just like the non-blocking variant valAsync(Clojure

 , which will invoke the provided closure with the internal state as a parameter.cl)

You have to bear in mind that the property might return although correct, butinstantVal
randomly looking results, since the internal state of the Agent at the time of instantVal
execution is non-deterministic and depends on the messages that have been processed
before the thread scheduler executes the body of .instantVal

The method allows you to wait for processing all the messages submitted to the Agentawait()
before and so blocks the calling thread.

State copy strategy

95

To avoid leaking the internal state the Agent class allows to specify a copy strategy as the
second constructor argument. With the copy strategy specified, the internal state is processed
by the copy strategy closure and the output value of the copy strategy value is returned to the
caller instead of the actual internal state. This applies to , as well as to instantVal val

 .valAsync()

Error handling

Exceptions thrown from within the submitted commands are stored inside the agent and can
be obtained from the property. The property gets cleared once read.errors

def jugMembers = Agent<List>()new
 assert jugMembers.errors.empty

jugMembers.send { IllegalStateException('test1')}throw new
 jugMembers.send { IllegalArgumentException('test2')}throw new
 jugMembers.await()

List errors = jugMembers.errors
 assert 2 == errors.size()
 assert errors[0] IllegalStateExceptioninstanceof
 assert 'test1' == errors[0].message
 assert errors[1] IllegalArgumentExceptioninstanceof
 assert 'test2' == errors[1].message

assert jugMembers.errors.empty

Fair and Non-fair agents

Agents can be either fair or non-fair. Fair agents give up the thread after processing each
message, non-fair agents keep a thread until their message queue is empty. As a result,
non-fair agents tend to perform better than fair ones. The default setting for all Agent
instances is to be , however by calling its method the instance can benon-fair makeFair()
made fair.

def jugMembers = Agent<List>(['Me']) //add Menew
 jugMembers.makeFair()

96

7 Dataflow
Dataflow concurrency offers an alternative concurrency model, which is inherently safe and
robust.

Introduction

Check out the small example written in Groovy using GPars, which sums results of
calculations performed by three concurrently run tasks:

import groovyx.gpars.dataflow.Dataflow.taskstatic

 def x = DataflowVariable()final new
 def y = DataflowVariable()final new
 def z = DataflowVariable()final new

task {
 z << x.val + y.val
}

task {
 x << 10
}

task {
 y << 5
}

println "Result: ${z.val}"

Or the same algorithm rewritten using the class.Dataflows

import groovyx.gpars.dataflow.Dataflow.taskstatic

 def df = Dataflows()final new

task {
 df.z = df.x + df.y
}

task {
 df.x = 10
}

task {
 df.y = 5
}

println "Result: ${df.z}"

We start three logical tasks, which can run in parallel and perform their particular activities.
The tasks need to exchange data and they do so using . Think ofDataflow Variables
Dataflow Variables as one-shot channels safely and reliably transferring data from producers
to their consumers.

The Dataflow Variables have a pretty straightforward semantics. When a task needs to read a
value from (through the val property), it will block until the value has beenDataflowVariable
set by another task or thread (using the '<<' operator). Each can be set DataflowVariable only

 in its lifetime. Notice that you don't have to bother with ordering and synchronizing theonce
tasks or threads and their access to shared variables. The values are magically transferred
among tasks at the right time without your intervention. The data flow seamlessly among
tasks / threads without your intervention or care.

97

 The three tasks in the example Implementation detail: do not necessarily need to be
. Tasks represent so-called "green" or "logical" threadsmapped to three physical threads

and can be mapped under the covers to any number of physical threads. The actual mapping
depends on the scheduler, but the outcome of dataflow algorithms doesn't depend on the
actual scheduling.

The operation of dataflow variables silently accepts re-binding to abind
value, which is equal to an already bound value. Call to rejectbindUnique
equal values on already-bound variables.

Benefits

Here's what you gain by using Dataflow Concurrency (by):Jonas Bonér

No race-conditions

No live-locks

Deterministic deadlocks

Completely deterministic programs

BEAUTIFUL code.

This doesn't sound bad, does it?

http://www.jonasboner.com

98

Concepts

Dataflow programming

Quoting Wikipedia

Operations (in Dataflow programs) consist of "black boxes" with inputs and outputs, all of
which are always explicitly defined. They run as soon as all of their inputs become valid, as
opposed to when the program encounters them. Whereas a traditional program essentially
consists of a series of statements saying "do this, now do this", a dataflow program is more
like a series of workers on an assembly line, who will do their assigned task as soon as the
materials arrive. This is why dataflow languages are inherently parallel; the operations have
no hidden state to keep track of, and the operations are all "ready" at the same time.

Principles

With Dataflow Concurrency you can safely share variables across tasks. These variables (in
Groovy instances of the class) can only be assigned (using the '<<'DataflowVariable
operator) a value once in their lifetime. The values of the variables, on the other hand, can be
read multiple times (in Groovy through the val property), even before the value has been
assigned. In such cases the reading task is suspended until the value is set by another task.
So you can simply write your code for each task sequentially using Dataflow Variables and
the underlying mechanics will make sure you get all the values you need in a thread-safe
manner.

In brief, you generally perform three operations with Dataflow variables:

Create a dataflow variable

Wait for the variable to be bound (read it)

Bind the variable (write to it)

And these are the three essential rules your programs have to follow:

When the program encounters an unbound variable it waits for a value.

It is not possible to change the value of a dataflow variable once it is bound.

Dataflow variables makes it easy to create concurrent stream agents.

Dataflow Queues and Broadcasts

Before you go to check the samples of using , and , youDataflow Variables Tasks Operators
should know a bit about streams and queues to have a full picture of Dataflow Concurrency.
Except for dataflow variables there are also the concepts of and DataflowQueues

 that you can leverage in your code. You may think of them as thread-safeDataflowBroadcast
buffers or queues for message transfer among concurrent tasks or threads. Check out a
typical producer-consumer demo:

99

import groovyx.gpars.dataflow.Dataflow.taskstatic

def words = ['Groovy', 'fantastic', 'concurrency', 'fun', 'enjoy', 'safe', 'GPars', 'data', 'flow']
 def buffer = DataflowQueue()final new

task {
 (word in words) {for
 buffer << word.toUpperCase() //add to the buffer
 }
}

task {
 () println buffer.val //read from the buffer in a loopwhile true
}

Both and , just like , implement the DataflowBroadcasts DataflowQueues DataflowVariables
 interface with common methods allowing users to write to them and readDataflowChannel

values from them. The ability to treat both types identically through the DataflowChannel
interface comes in handy once you start using them to wire , or tasks operators selectors
together.

The interface combines two interfaces, each serving itsDataflowChannel
purpose:

DataflowReadChannel holding all the methods necessary for reading
values from a channel - getVal(), getValAsync(), whenBound(), etc.

DataflowWriteChannel holding all the methods necessary for writing
values into a channel - bind(), <<

You may prefer using these dedicated interfaces instead of the general
 interface, to better express the intended usage.DataflowChannel

Please refer to the for more details on the channel interfaces.API doc

Point-to-point communication

The class can be viewed as a point-to-point (1 to 1, many to 1)DataflowQueue
communication channel. It allows one or more producers send messages to one reader. If
multiple readers read from the same , they will each consume differentDataflowQueue
messages. Or to put it a different way, each message is consumed by exactly one reader.
You can easily imagine a simple load-balancing scheme built around a shared

 with readers being added dynamically when the consumer part of yourDataflowQueue
algorithm needs to scale up. This is also a useful default choice when connecting tasks or
operators.

Publish-subscribe communication

The class offers a publish-subscribe (1 to many, many to many)DataflowBroadcast
communication model. One or more producers write messages, while all registered readers
will receive all the messages. Each message is thus consumed by all readers with a valid
subscription at the moment when the message is being written to the channel. The readers
subscribe by calling the method.createReadChannel()

http://gpars.codehaus.org/API+doc

100

DataflowWriteChannel broadcastStream = DataflowBroadcast()new
DataflowReadChannel stream1 = broadcastStream.createReadChannel()
DataflowReadChannel stream2 = broadcastStream.createReadChannel()
broadcastStream << 'Message1'
broadcastStream << 'Message2'
broadcastStream << 'Message3'
assert stream1.val == stream2.val
assert stream1.val == stream2.val
assert stream1.val == stream2.val

Under the hood uses the class to implement the messageDataflowBroadcast DataflowStream
delivery.

DataflowStream

The class represents a deterministic dataflow channel. It is build around theDataflowStream
concept of a functional queue and so provides a lock-free thread-safe implementation for
message passing. Essentially, you may think of as a 1 to manyDataflowStream
communication channel, since when a reader consumes a messages, other readers will still
be able to read the message. Also, all messages arrive to all readers in the same order. Since

 is implemented as a functional queue, its API requires that users traverse theDataflowStream
values in the stream themselves. On the other hand offers handy methodsDataflowStream
for value filtering or transformation together with interesting performance characteristics.

The class, unlike the other communication elements, doesDataflowStream
not implement the interface, since the semantics of itsDataflowChannel
use is different. Use and DataflowStreamReadAdapter

 classes to wrap instances of the DataflowStreamWriteAdapter
 class in or DataflowChannel DataflowReadChannel DataflowWriteChannel

implementations.

101

import groovyx.gpars.dataflow.stream.DataflowStream
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.scheduler.ResizeablePoolimport

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using dataflow tasks
 *
 * In principle, the algorithm consists of a concurrently run chained filters,
 * each of which detects whether the current number can be divided by a single prime number.
 * (generate nums 1, 2, 3, 4, 5, ...) -> (filter by mod 2) -> (filter by mod 3) -> (filter by mod 5) ->
(filter by mod 7) -> (filter by mod 11) -> (caution! Primes falling out here)
 * The chain is built (grows) on the fly, whenever a prime is foundnew
 */

/**
 * We need a resizeable thread pool, since tasks consume threads waiting blocked values atwhile for
DataflowQueue.val
 */
group = DefaultPGroup(ResizeablePool())new new true

 requestedPrimeNumberCount = 100final int

/**
 * Generating candidate numbers
 */

 DataflowStream candidates = DataflowStream()final new
group.task {
 candidates.generate(2, {it + 1}, {it < 1000})
}

/**
 * Chain a filter a particular prime number to the end of the Sievenew for
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide prime candidates withfuture
 * @ A channel ending the whole chainreturn new
 */
def filter(DataflowStream inChannel, prime) {int
 inChannel.filter { number ->
 group.task {
 number % prime != 0
 }
 }
}

/**
 * Consume Sieve output and add additional filters all found primesfor
 */
def currentOutput = candidates
requestedPrimeNumberCount.times {
 prime = currentOutput.firstint
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
}

For convenience and for the ability to use with other dataflow constructs, likeDataflowStream
e.g. operators, you can wrap it with for read access or DataflowReadAdapter

 for write access. The class is designed forDataflowWriteAdapter DataflowStream
single-threaded producers and consumers. If multiple threads are supposed to read or write
values to the stream, their access to the stream must be serialized externally or the adapters
should be used.

DataflowStream Adapters

Since the API as well as the semantics of its use are very different from theDataflowStream
one defined by , adapters have to be used in order to allow Dataflow(Read/Write)Channel

 to be used with other dataflow elements. The DataflowStreams DataflowStreamReadAdapter
class will wrap a with necessary methods to read values, while the DataflowStream

 class will provide write methods around the wrapped DataflowStreamWriteAdapter
 .DataflowStream

102

It is important to mention that the is threadDataflowStreamWriteAdapter
safe allowing multiple threads to add values to the wrapped

 through the adapter. On the other hand, DataflowStream
 is designed to be used by a single thread.DataflowStreamReadAdapter

To minimize the overhead and stay in-line with the DataflowStream
semantics, the class is not thread-safe andDataflowStreamReadAdapter
should only be used from within a single thread. If multiple threads need to
read from a DataflowStream, they should each create their own wrapping

 .DataflowStreamReadAdapter

Thanks to the adapters can be used for communication between operators orDataflowStream
selectors, which expect .Dataflow(Read/Write)Channels

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.stream.DataflowStreamimport
 groovyx.gpars.dataflow.stream.DataflowStreamReadAdapterimport
 groovyx.gpars.dataflow.stream.DataflowStreamWriteAdapterimport
 groovyx.gpars.dataflow.Dataflow.selectorimport static
 groovyx.gpars.dataflow.Dataflow.import static operator

/**
 * Demonstrates the use of DataflowStreamAdapters to allow dataflow operators to use DataflowStreams
 */

 DataflowStream a = DataflowStream()final new
 DataflowStream b = DataflowStream()final new

def aw = DataflowStreamWriteAdapter(a)new
def bw = DataflowStreamWriteAdapter(b)new
def ar = DataflowStreamReadAdapter(a)new
def br = DataflowStreamReadAdapter(b)new

def result = DataflowQueue()new

def op1 = (ar, bw) {operator
 bindOutput it
}
def op2 = selector([br], [result]) {
 result << it
}

aw << 1
aw << 2
aw << 3
assert([1, 2, 3] == [result.val, result.val, result.val])
op1.stop()
op2.stop()
op1.join()
op2.join()

Also the ability to select a value from multiple can only be used through anDataflowChannels
adapter around a :DataflowStream

103

import groovyx.gpars.dataflow.Select
 groovyx.gpars.dataflow.stream.DataflowStreamimport
 groovyx.gpars.dataflow.stream.DataflowStreamReadAdapterimport
 groovyx.gpars.dataflow.stream.DataflowStreamWriteAdapterimport
 groovyx.gpars.dataflow.Dataflow.selectimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates the use of DataflowStreamAdapters to allow dataflow select to select on DataflowStreams
 */

 DataflowStream a = DataflowStream()final new
 DataflowStream b = DataflowStream()final new

def aw = DataflowStreamWriteAdapter(a)new
def bw = DataflowStreamWriteAdapter(b)new
def ar = DataflowStreamReadAdapter(a)new
def br = DataflowStreamReadAdapter(b)new

 Select<?> select = select(ar, br)final
task {
 aw << 1
 aw << 2
 aw << 3
}
assert 1 == select().value
assert 2 == select().value
assert 3 == select().value
task {
 bw << 4
 aw << 5
 bw << 6
}
def result = (1..3).collect{select()}.sort{it.value}
assert result*.value == [4, 5, 6]
assert result*.index == [1, 0, 1]

If you don't need any of the functional queue DataflowStream-special
functionality, like generation, filtering or mapping, you may consider using
the class instead, which offers the DataflowBroadcast publish-subscribe
communication model through the interface.DataflowChannel

Bind handlers

def a = DataflowVariable()new
a >> {println }"The variable has just been bound to $it"
a.whenBound {println }"Just to confirm that the variable has been really set to $it"
...

Bind handlers can be registered on all dataflow channels (variables, queues or broadcasts)
either using the >> operator and the or the methods. They will be runthen() whenBound()
once a value is bound to the variable.

Dataflow queues and broadcasts also support a method to register a closurewheneverBound
or a message handler to run each time a value is bound to them.

def queue = DataflowQueue()new
queue.wheneverBound {println }"A value $it arrived to the queue"

Obviously nothing prevents you from having more of such handlers for a single promise: They
will all trigger in parallel once the promise has a concrete value:

104

Promise bookingPromise = task {
 data = collectData()final
 broker.makeBooking(data)return
}
…
bookingPromise.whenBound {booking -> printAgenda booking}
bookingPromise.whenBound {booking -> sendMeAnEmailTo booking}
bookingPromise.whenBound {booking -> updateTheCalendar booking}

Dataflow variables and broadcasts are one of several possible ways to
implement . For details, please check out Parallel Speculations Parallel

 in the section of the User Guide.Speculations Parallel Collections

Bind handlers grouping

When you need to wait for multiple DataflowVariables/Promises to be bound, you can benefit
from calling the function, which is available on the class as well aswhenAllBound() Dataflow
on instances.PGroup

final group = NonDaemonPGroup()new

//Calling asynchronous services and receiving back promises the reservationsfor
 Promise flightReservation = flightBookingService('PRG <-> BRU')
 Promise hotelReservation = hotelBookingService('BRU:Feb 24 2009 - Feb 29 2009')
 Promise taxiReservation = taxiBookingService('BRU:Feb 24 2009 10:31')

//when all reservations have been made we need to build an agenda our tripfor
 Promise agenda = group.whenAllBound(flightReservation, hotelReservation, taxiReservation) {flight,
hotel, taxi ->
 "Agenda: $flight | $hotel | $taxi"
 }

//since is a demo, we will only print the agenda and block till it is readythis
 println agenda.val

If you cannot specify up-front the number of parameters the handler takes,whenAllBound()
use a closure with one argument of type :List

Promise module1 = task {
 compile(module1Sources)
}
Promise module2 = task {
 compile(module2Sources)
}
//We don't know the number of modules that will be jarred together, so use a List

 jarCompiledModules = {List modules -> ...}final

whenAllBound([module1, module2], jarCompiledModules)

Bind handlers chaining

All dataflow channels also support the method to register a handler (a callback) thatthen()
should be invoked when a value becomes available. Unlike the methodwhenBound() then()
allows for chaining, giving you the option to pass result values between functions
asynchronously.

Notice that Groovy allows us to leave out some of the in the dots then()
method chains.

105

final DataflowVariable variable = DataflowVariable()new
 DataflowVariable result = DataflowVariable()final new

variable.then {it * 2} then {it + 1} then {result << it}
variable << 4
assert 9 == result.val

This could be nicely combined with Asynchronous functions

final DataflowVariable variable = DataflowVariable()new
 DataflowVariable result = DataflowVariable()final new

 doubler = {it * 2}final
 adder = {it + 1}final

variable.then doubler then adder then {result << it}

.start {variable << 4}Thread
assert 9 == result.val

or ActiveObjects

@ActiveObject
class ActiveDemoCalculator {
 @ActiveMethod
 def doubler(value) {int
 value * 2
 }

@ActiveMethod
 def adder(value) {int
 value + 1
 }
}

 DataflowVariable result = DataflowVariable()final new
 calculator = ActiveDemoCalculator();final new

calculator.doubler(4).then {calculator.adder it}.then {result << it}
assert 9 == result.val

106

Chaining can save quite some code when calling other asynchronous
services from within handlers. Asynchronous services, suchwhenBound()
as or , return for theirAsynchronous Functions Active Methods Promises
results. To obtain the actual results your handlers would either have to
block to wait for the value to be bound, which would lock the current thread
in an unproductive state,

variable.whenBound {value ->
 Promise promise = asyncFunction(value)
 println promise.get()
}

or, alternatively, it would register another (nested) handler,whenBound()
which would result in unnecessarily complex code.

variable.whenBound {value ->
 asyncFunction(value).whenBound {
 println it
 }
}

For illustration compare the two following code snippets, one using
 and one using chaining. They ate both equivalent inwhenBound() then()

terms of functionality and behavior.

final DataflowVariable variable = DataflowVariable()new

 doubler = {it * 2}final
 inc = {it + 1}final

//Using whenBound()
variable.whenBound {value ->
 task {
 doubler(value)
 }.whenBound {doubledValue ->
 task {
 inc(doubledValue)
 }.whenBound {incrementedValue ->
 println incrementedValue
 }
 }
}

//Using then() chaining
variable.then doubler then inc then .&printlnthis

.start {variable << 4}Thread

Chaining Promises solves both of these issues elegantly:

variable >> asyncFunction >> {println it}

The () operator has been overloaded to call and so can be chained theRightShift >> then()
same way:

final DataflowVariable variable = DataflowVariable()new
 DataflowVariable result = DataflowVariable()final new

 doubler = {it * 2}final
 adder = {it + 1}final

variable >> doubler >> adder >> {result << it}

.start {variable << 4}Thread

assert 9 == result.val

Error handling for Promise chaining

107

1.

2.

3.

4.

Asynchronous operations may obviously throw exceptions. It is important to be able to handle
them easily and with little effort. GPars promises can implicitly propagate exceptions from
asynchronous calculations across promise chains.

Promises propagate result values as well as exceptions. The blocking methodget()
re-throws the exception that was bound to the Promise and so the caller can handle it.

For asynchronous notifications, the handler closure gets the exceptionwhenBound()
passed in as an argument.

The method accepts two arguments - a and an optional then() value handler error
. These will be invoked depending on whether the result is a regular value or anhandler

exception. If no errorHandler is specified, the exception is re-thrown to the Promise
returned by .then()

Exactly the same behavior as for holds true for the method, whichthen() whenAllBound()
listens on multiple Promises to get bound

Promise< > initial = DataflowVariable< >()Integer new Integer
 Promise< > result = initial.then {it * 2} then {100 / it} //Will String throw
exception 0for
 .then {println ; it} //Since no error"Logging the value $it as it passes by" return
handler is defined, exceptions will be ignored
 //and silently
re-thrown to the next handler in the chain
 .then({ }, { }) //Here the exception"The result $num is $it"for "Error detected $num: $it"for
is caught
 initial << 0
 println result.get()

ErrorHandler is a closure that accepts instances of as its only (optional) argumentThrowable
and returns a value that should be bound to the result of the method call (the returnedthen()
Promise). If an exception is thrown from within an error handler, it is bound as an error to the
resulting Promise.

promise.then({it+1}) //Implicitly re-throws
potential exceptions bound to promise
promise.then({it+1}, {e -> e}) //Explicitly re-throw throws
potential exceptions bound to promise
promise.then({it+1}, {e -> RuntimeException('Error occurred', e}) //Explicitly re- a throw new throws new
exception wrapping a potential exception bound to promise

Just like with regular exception handling in Java with try-catch statements, this behavior of
GPars promises gives asynchronous invocations the freedom to handle exceptions at the
place where it is most convenient. You may freely ignore exceptions in your code and assume
things just work, yet exceptions will not get accidentally swallowed.

task {
 'gpars.codehaus.org'.toURL().text //should MalformedURLExceptionthrow
}
.then {page -> page.toUpperCase()}
.then {page -> page.contains('GROOVY')}
.then({mentionsGroovy -> println }, {error -> println "Groovy found: $mentionsGroovy" "Error: $error"
}).join()

Handling concrete exception type

You may be also more specific about the handled exception type:

108

url.then(download)
 .then(calculateHash, {MalformedURLException e -> 0})return
 .then(formatResult)
 .then(printResult, printError)
 .then(sendNotificationEmail);

`

Customer-site exception handling

You may also leave the exception completely un-handled and let the clients (consumers)
handle it:

`
Promise< > result = url.then(download).then(calculateHash).then(formatResult).then(printResult);Object

 {try
 result.get()
} (Exception e) {catch
 //handle exceptions here
}

`

Putting it together

By combining and (or >>) you can easily create large asynchronouswhenAllBound() then
scenarios in a convenient way:

withPool {
 Closure download = { url ->String
 sleep 3000 //Simulate a web read
 'web content'
 }.asyncFun()

Closure loadFile = { fileName ->String
 'file content' //simulate a local file read
 }.asyncFun()

Closure hash = {s -> s.hashCode()}

Closure compare = { first, second ->int int
 first == second
 }

Closure errorHandler = {println }"Error detected: $it"

def all = whenAllBound([
 download('http://www.gpars.org') >> hash,
 loadFile('/coolStuff/gpars/website/index.html') >> hash
], compare).then({println it}, errorHandler)
 all.join() //optionally block until the calculation is all done

Notice that only the initial action (function) needs to be asynchronous. The
functions further down the pipe will be invoked asynchronously by the
promise even if the are synchronous.

Dataflow Expressions

Look at the magic below:

109

def initialDistance = DataflowVariable()new
def acceleration = DataflowVariable()new
def time = DataflowVariable()new

task {
 initialDistance << 100
 acceleration << 2
 time << 10
}

def result = initialDistance + acceleration*0.5*time**2
println 'Total distance ' + result.val

We use DataflowVariables that represent several parameters to a mathematical equation
calculating total distance of an accelerating object. In the equation itself, however, we use the
DataflowVariables directly. We do not refer to the values they represent and yet we are able
to do the math correctly. This shows that DataflowVariables can be very flexible.

For example, you can call methods on them and these methods will get dispatched to the
bound values:

def name = DataflowVariable()new
task {
 name << ' adam '
}
println name.toUpperCase().trim().val

You can pass other DataflowVariables as arguments to such methods and the real values will
be passed automatically instead:

def title = DataflowVariable()new
def searchPhrase = DataflowVariable()new
task {
 title << ' Groovy in Action 2nd edition '
}

task {
 searchPhrase << '2nd'
}

println title.trim().contains(searchPhrase).val

And you can also query properties of the bound value using directly the DataflowVariable:

def book = DataflowVariable()new
def searchPhrase = DataflowVariable()new
task {
 book << [
 title:'Groovy in Action 2nd edition ',
 author:'Dierk Koenig',
 publisher:'Manning']
}

task {
 searchPhrase << '2nd'
}

book.title.trim().contains(searchPhrase).whenBound {println it} //Asynchronous waiting

println book.title.trim().contains(searchPhrase).val //Synchronous waiting

Please note that the result is still a DataflowVariable (DataflowExpression to be precise),
which you can get the real value from both synchronously and asynchronously.

Further reading

 by Jonas BonérScala Dataflow library

http://github.com/jboner/scala-dataflow/tree/f9a38992f5abed4df0b12f6a5293f703aa04dc33/src

110

 by Jonas BonérJVM concurrency presentation slides

Dataflow Concurrency library for Ruby

7.1 Tasks
The give you an easy-to-grasp abstraction of mutually-independent logicalDataflow tasks
tasks or threads, which can run concurrently and exchange data solely through Dataflow
Variables, Queues, Broadcasts and Streams. Dataflow tasks with their easy-to-express
mutual dependencies and inherently sequential body could also be used as a practical
implementation of UML .Activity Diagrams

Check out the examples.

A simple mashup example

In the example we're downloading the front pages of three popular web sites, each in their
own task, while in a separate task we're filtering out sites talking about Groovy today and
forming the output. The output task synchronizes automatically with the three download tasks
on the three Dataflow variables through which the content of each website is passed to the
output task.

import groovyx.gpars.GParsPool.*static
 groovyx.gpars.dataflow.DataflowVariableimport
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * A simple mashup sample, downloads content of three websites
 * and checks how many of them refer to Groovy.
 */

def dzone = DataflowVariable()new
def jroller = DataflowVariable()new
def theserverside = DataflowVariable()new

task {
 println 'Started downloading from DZone'
 dzone << 'http://www.dzone.com'.toURL().text
 println 'Done downloading from DZone'
}

task {
 println 'Started downloading from JRoller'
 jroller << 'http://www.jroller.com'.toURL().text
 println 'Done downloading from JRoller'
}

task {
 println 'Started downloading from TheServerSide'
 theserverside << 'http://www.theserverside.com'.toURL().text
 println 'Done downloading from TheServerSide'
}

task {
 withPool {
 println +" of Groovy sites today: "Number
 ([dzone, jroller, theserverside].findAllParallel {
 it.val.toUpperCase().contains 'GROOVY'
 }).size()
 }
}.join()

Grouping tasks

http://jonasboner.com/talks/state_youre_doing_it_wrong/html/all.html
http://github.com/larrytheliquid/dataflow/tree/master

111

Dataflow tasks can be organized into groups to allow for performance fine-tuning. Groups
provide a handy factory method to create tasks attached to the groups. Using groupstask()
allows you to organize tasks or operators around different thread pools (wrapped inside the
group). While the Dataflow.task() command schedules the task on a default thread pool
(java.util.concurrent.Executor, fixed size=#cpu+1, daemon threads), you may prefer being
able to define your own thread pool(s) to run your tasks.

import groovyx.gpars.group.DefaultPGroup

def group = DefaultPGroup()new

group.with {
 task {
 …
 }

task {
 …
 }
}

The default thread pool for dataflow tasks contains daemon threads, which
means your application will exit as soon as the main thread finishes and
won't wait for all tasks to complete. When grouping tasks, make sure that
your custom thread pools either use daemon threads, too, which can be
achieved by using DefaultPGroup or by providing your own thread factory
to a thread pool constructor, or in case your thread pools use non-daemon
threads, such as when using the NonDaemonPGroup group class, make
sure you shutdown the group or the thread pool explicitly by calling its
shutdown() method, otherwise your applications will not exit.

You may selectively override the default group used for tasks, operators, callbacks and other
dataflow elements inside a code block using the _Dataflow.usingGroup() method:

Dataflow.usingGroup(group) {
 task {
 'http://gpars.codehaus.org'.toURL().text //should MalformedURLExceptionthrow
 }
 .then {page -> page.toUpperCase()}
 .then {page -> page.contains('GROOVY')}
 .then({mentionsGroovy -> println }, {error -> println "Groovy found: $mentionsGroovy" "Error: $error"
}).join()
}

You can always override the default group by being specific:

Dataflow.usingGroup(group) {
 anotherGroup.task {
 'http://gpars.codehaus.org'.toURL().text //should MalformedURLExceptionthrow
 }
 .then(anotherGroup) {page -> page.toUpperCase()}
 .then(anotherGroup) {page -> page.contains('GROOVY')}.then(anotherGroup) {println
Dataflow.retrieveCurrentDFPGroup();it}
 .then(anotherGroup, {mentionsGroovy -> println }, {error -> println "Groovy found: $mentionsGroovy"

}).join()"Error: $error"
}

A mashup variant with methods

112

To avoid giving you wrong impression about structuring the Dataflow code, here's a rewrite of
the mashup example, with a method performing the actual download in adownloadPage()
separate task and returning a DataflowVariable instance, so that the main application thread
could eventually get hold of the downloaded content. Dataflow variables can obviously be
passed around as parameters or return values.

package groovyx.gpars.samples.dataflow

 groovyx.gpars.GParsExecutorsPool.*import static
 groovyx.gpars.dataflow.DataflowVariableimport
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * A simple mashup sample, downloads content of three websites and checks how many of them refer to
Groovy.
 */

 List urls = ['http://www.dzone.com', 'http://www.jroller.com', 'http://www.theserverside.com']final

task {
 def pages = urls.collect { downloadPage(it) }
 withPool {
 println +" of Groovy sites today: "Number
 (pages.findAllParallel {
 it.val.toUpperCase().contains 'GROOVY'
 }).size()
 }
}.join()

def downloadPage(def url) {
 def page = DataflowVariable()new
 task {
 println "Started downloading from $url"
 page << url.toURL().text
 println "Done downloading from $url"
 }
 pagereturn
}

A physical calculation example

Dataflow programs naturally scale with the number of processors. Up to a certain level, the
more processors you have the faster the program runs. Check out, for example, the following
script, which calculates parameters of a simple physical experiment and prints out the results.
Each task performs its part of the calculation and may depend on values calculated by some
other tasks as well as its result might be needed by some of the other tasks. With Dataflow
Concurrency you can split the work between tasks or reorder the tasks themselves as you like
and the dataflow mechanics will ensure the calculation will be accomplished correctly.

113

import groovyx.gpars.dataflow.DataflowVariable
 groovyx.gpars.dataflow.Dataflow.taskimport static

 def mass = DataflowVariable()final new
 def radius = DataflowVariable()final new
 def volume = DataflowVariable()final new
 def density = DataflowVariable()final new
 def acceleration = DataflowVariable()final new
 def time = DataflowVariable()final new
 def velocity = DataflowVariable()final new
 def decelerationForce = DataflowVariable()final new
 def deceleration = DataflowVariable()final new
 def distance = DataflowVariable()final new

def t = task {
 println """
Calculating distance required to stop a moving ball.
==
The ball has a radius of ${radius.val} meters and is made of a material with ${density.val} kg/m3
density,
which means that the ball has a volume of ${volume.val} m3 and a mass of ${mass.val} kg.
The ball has been accelerating with ${acceleration.val} m/s2 from 0 ${time.val} seconds and sofor
reached a velocity of ${velocity.val} m/s.

Given our ability to push the ball backwards with a force of ${decelerationForce.val} N (Newton), we can
cause a deceleration
of ${deceleration.val} m/s2 and so stop the ball at a distance of ${distance.val} m.

===
This
example has been calculated asynchronously in multiple tasks using GPars Dataflow concurrency in Groovy.
Author: ${author.val}
"""

.exit 0System
}

task {
 mass << volume.val * density.val
}

task {
 volume << .PI * (radius.val ** 3)Math
}

task {
 radius << 2.5
 density << 998.2071 //water
 acceleration << 9.80665 //free fall
 decelerationForce << 900
}

task {
 println 'Enter your name:'
 def name = InputStreamReader(.in).readLine()new System
 author << (name?.trim()?.size()>0 ? name : 'anonymous')
}

task {
 time << 10
 velocity << acceleration.val * time.val
}

task {
 deceleration << decelerationForce.val / mass.val
}

task {
 distance << deceleration.val * ((velocity.val/deceleration.val) ** 2) * 0.5
}

t.join()

Note: I did my best to make all the physical calculations right. Feel free to change the values
and see how long distance you need to stop the rolling ball.

Deterministic deadlocks

If you happen to introduce a deadlock in your dependencies, the deadlock will occur each
time you run the code. No randomness allowed. That's one of the benefits of Dataflow
concurrency. Irrespective of the actual thread scheduling scheme, if you don't get a deadlock
in tests, you won't get them in production.

114

task {
 println a.val
 b << 'Hi there'
}

task {
 println b.val
 a << 'Hello man'
}

Dataflows map

As a handy shortcut the class can help you reduce the amount of code you have toDataflows
write to leverage Dataflow variables.

def df = Dataflows()new
df.x = 'value1'
assert df.x == 'value1'

Dataflow.task {df.y = 'value2}

assert df.y == 'value2'

Think of Dataflows as a map with Dataflow Variables as keys storing their bound values as
appropriate map values. The semantics of reading a value (e.g. df.x) and binding a value (e.g.
df.x = 'value') remain identical to the semantics of plain Dataflow Variables (x.val and x <<
'value' respectively).

Mixing and Groovy blocksDataflows with

When inside a block of a Dataflows instance, the dataflow variables stored inside thewith
Dataflows instance can be accessed directly without the need to prefix them with the
Dataflows instance identifier.

new Dataflows().with {
 x = 'value1'
 assert x == 'value1'

Dataflow.task {y = 'value2}

assert y == 'value2'
}

Returning a value from a task

Typically dataflow tasks communicate through dataflow variables. On top of that, tasks can
also return values, again through a dataflow variable. When you invoke the factorytask()
method, you get back an instance of DataflowVariable, on which you can listen for the task's
return value, just like when using any other DataflowVariable.

final DataflowVariable t1 = task {
 10return
 }
 DataflowVariable t2 = task {final
 20return
 }
 def results = [t1, t2]*.val
 println 'Both sub-tasks finished and returned values: ' + results

115

Obviously the value can also be obtained without blocking the caller using the whenBound()
method.

def task = task {
 println 'The task is running and calculating the value'return
 30
}
task >> {value -> println }"The task finished and returned $value"

h2. Joining tasks

Using the operation on the result dataflow variable of a task you can block until the taskjoin()
finishes.

task {
 DataflowVariable t1 = task {final
 println 'First sub-task running.'
 }
 DataflowVariable t2 = task {final
 println 'Second sub-task running'
 }
 [t1, t2]*.join()
 println 'Both sub-tasks finished'
 }.join()

7.2 Selects
Frequently a value needs to be obtained from one of several dataflow channels (variables,
queues, broadcasts or streams). The class is suitable for such scenarios. canSelect Select
scan multiple dataflow channels and pick one channel from all the input channels, which
currently have a value available for read. The value from that channels is read and returned to
the caller together with the index of the originating channel. Picking the channel is either
random, or based on channel priority, in which case channels with lower position index in the

 constructor have higher priority.Select

Selecting a value from multiple channels

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.DataflowVariableimport
 groovyx.gpars.dataflow.Dataflow.selectimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Shows a basic use of Select, which monitors a set of input channels values and makes these valuesfor
 * available on its output irrespective of their original input channel.
 * Note that dataflow variables and queues can be combined Select.for
 *
 * You might also consider checking out the prioritySelect method, which prioritizes values by the index
of their input channel
 */
def a = DataflowVariable()new
def b = DataflowVariable()new
def c = DataflowQueue()new

task {
 sleep 3000
 a << 10
}

task {
 sleep 1000
 b << 20
}

task {
 sleep 5000
 c << 30
}

def select = select([a, b, c])
println "The fastest result is ${select().value}"

116

Note that the return type from is , holding the value asselect() SelectResult
well as the originating channel index.

There are multiple ways to read values from a Select:

def sel = select(a, b, c, d)
def result = sel.select() //Random selection
def result = sel() //Random selection (a -hand variant)short
def result = sel.select([, , ,]) //Random selection with guards specifiedtrue true false true
def result = sel([, , ,]) //Random selection with guards specifiedtrue true false true
(a -hand variant)short
def result = sel.prioritySelect() //Priority selection
def result = sel.prioritySelect([, , ,]) //Priority selection with guardstrue true false true
specifies

By default the blocks the caller until a value to read is available. Alternatively, Select Select
allows to have the value sent to a provided (e.g. an actor) without blockingMessageStream
the caller.

def handler = actor {...}
def sel = select(a, b, c, d)

sel.select(handler) //Random selection
sel(handler) //Random selection (a -hand variant)short
sel.select(handler, [, , ,]) //Random selection with guards specifiedtrue true false true
sel(handler, [, , ,]) //Random selection with guards specified (a true true false true

-hand variant)short
sel.prioritySelect(handler) //Priority selection
sel.prioritySelect(handler, [, , ,]) //Priority selection with guards specifiestrue true false true

Guards

Guards allow the caller to omit some input channels from the selection. Guards are specified
as a List of boolean flags passed to the or methods.select() prioritySelect()

def sel = select(leaders, seniors, experts, juniors)
def teamLead = sel([, , ,]).value //Only 'leaders' and 'seniors' qualify true true false false for
becoming a teamLead here

A typical use for guards is to make Selects flexible to adopt to the changes in the user state.

117

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.selectimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates the ability to enable/disable channels during a value selection on a select by providing

 guards.boolean
 */

 DataflowQueue operations = DataflowQueue()final new
 DataflowQueue numbers = DataflowQueue()final new

def t = task {
 def select = select(operations, numbers)final
 3.times {
 def instruction = select([,]).valuetrue false
 def num1 = select([,]).valuefalse true
 def num2 = select([,]).valuefalse true
 def formula = final "$num1 $instruction $num2"
 println "$formula = ${ GroovyShell().evaluate(formula)}"new
 }
}

task {
 operations << '+'
 operations << '+'
 operations << '*'
}

task {
 numbers << 10
 numbers << 20
 numbers << 30
 numbers << 40
 numbers << 50
 numbers << 60
}

t.join()

Priority Select

When certain channels should have precedence over others when selecting, the prioritySelect
methods should be used instead.

/**
 * Shows a basic use of Priority Select, which monitors a set of input channels values and makesfor
these values
 * available on its output irrespective of their original input channel.
 * Note that dataflow variables, queues and broadcasts can be combined Select.for
 * Unlike plain select method call, the prioritySelect call gives precedence to input channels with lower
index.
 * Available messages from high priority channels will be served before messages from lower-priority
channels.
 * Messages received through a single input channel will have their mutual order preserved.
 *
 */
def critical = DataflowVariable()new
def ordinary = DataflowQueue()new
def whoCares = DataflowQueue()new

task {
 ordinary << 'All working fine'
 whoCares << 'I feel a bit tired'
 ordinary << 'We are on target'
}

task {
 ordinary << 'I have just started my work. Busy. Will come back later...'
 sleep 5000
 ordinary << 'I am done now'for
}

task {
 whoCares << 'Huh, what is that noise'
 ordinary << 'Here I am to some clean-up work'do
 whoCares << 'I wonder whether unplugging cable will eliminate that nasty sound.'this
 critical << 'The server room goes on UPS!'
 whoCares << 'The sound has disappeared'
}

def select = select([critical, ordinary, whoCares])
println 'Starting to monitor our IT department'
sleep 3000
10.times {println }"Received: ${select.prioritySelect().value}"

118

7.3 Operators
Dataflow Operators and Selectors provide a full Dataflow implementation with all the usual
ceremony.

Concepts

Full dataflow concurrency builds on the concept of channels connecting operators and
selectors, which consume values coming through input channels, transform them into new
values and output the new values into their output channels. While wait for inputOperators all
channels to have a value available for read before they start process them, areSelectors
triggered by a value available on of the input channels.any

operator(inputs: [a, b, c], outputs: [d]) {x, y, z ->
 …
 bindOutput 0, x + y + z
}

/**
 * CACHE
 *
 * Caches sites' contents. Accepts requests url content, outputs the content. Outputs requests for for
download
 * the site is not in cache yet.if
 */

(inputs: [urlRequests], outputs: [downloadRequests, sites]) {request ->operator

 (!request.content) {if
 println "[Cache] Retrieving ${request.site}"
 def content = cache[request.site]
 (content) {if
 println "[Cache] Found in cache"
 bindOutput 1, [site: request.site, word:request.word, content: content]
 } {else
 def downloads = pendingDownloads[request.site]
 (downloads !=) {if null
 println "[Cache] Awaiting download"
 downloads << request
 } {else
 pendingDownloads[request.site] = []
 println "[Cache] Asking download"for
 bindOutput 0, request
 }
 }
 } {else
 println "[Cache] Caching ${request.site}"
 cache[request.site] = request.content
 bindOutput 1, request
 def downloads = pendingDownloads[request.site]
 (downloads !=) {if null
 (downloadRequest in downloads) {for
 println "[Cache] Waking up"
 bindOutput 1, [site: downloadRequest.site, word:downloadRequest.word, content:
request.content]
 }
 pendingDownloads.remove(request.site)
 }
 }
}

119

The standard error handling will print out an error message to the standard
error output and terminate the operator in case an uncaught exception is
thrown from withing the operator's body. To alter the behavior, you can
register your own event listener:

def listener = DataflowEventAdapter() {new
 @Override
 onException(DataflowProcessor processor, Throwable e) {boolean final final
 logChannel << e
 //Indicate whether to terminate the or notreturn false operator
 }
}

op = group. (inputs: [a, b], outputs: [c], listeners: [listener]) {x, y ->operator
 …
}
See the section more details.Operator lifecycle for

Types of operators

There are specialized versions of operators serving specific purposes:

operator - the basic general-purpose operator

selector - operator that is triggered by a value being available in any of its input channels

prioritySelector - a selector that prefers delivering messages from lower-indexed input
channels over higher-indexed ones

splitter - a single-input operator copying its input values to all of its output channels

Wiring operators together

Operators are typically combined into networks, when some operators consume output by
other operators.

operator(inputs:[a, b], outputs:[c, d]) {...}
splitter(c, [e, f])
selector(inputs:[e, d]: outputs:[]) {...}

You may alternatively refer to output channels through operators themselves:

def op1 = (inputs:[a, b], outputs:[c, d]) {...}operator
def sp1 = splitter(op1.outputs[0], [e, f]) //takes the first output of op1
selector(inputs:[sp1.outputs[0], op1.outputs[1]]: outputs:[]) {...} //takes the first output of sp1 and
the second output of op1

Grouping operators

Dataflow operators can be organized into groups to allow for performance fine-tuning. Groups
provide a handy factory method to create tasks attached to the groups.operator()

120

import groovyx.gpars.group.DefaultPGroup

def group = DefaultPGroup()new

group.with {
 (inputs: [a, b, c], outputs: [d]) {x, y, z ->operator
 …
 bindOutput 0, x + y + z
 }
}

The default thread pool for dataflow operators contains daemon threads,
which means your application will exit as soon as the main thread finishes
and won't wait for all tasks to complete. When grouping operators, make
sure that your custom thread pools either use daemon threads, too, which
can be achieved by using DefaultPGroup or by providing your own thread
factory to a thread pool constructor, or in case your thread pools use
non-daemon threads, such as when using the NonDaemonPGroup group
class, make sure you shutdown the group or the thread pool explicitly by
calling its shutdown() method, otherwise your applications will not exit.

You may selectively override the default group used for tasks, operators, callbacks and other
dataflow elements inside a code block using the _Dataflow.usingGroup() method:

Dataflow.usingGroup(group) {
 (inputs: [a, b, c], outputs: [d]) {x, y, z ->operator
 …
 bindOutput 0, x + y + z
 }
}

You can always override the default group by being specific:

Dataflow.usingGroup(group) {
 anotherGroup. (inputs: [a, b, c], outputs: [d]) {x, y, z ->operator
 …
 bindOutput 0, x + y + z
 }
}

Constructing operators

The construction properties of an operator, such as , , or inputs outputs stateObject maxForks
cannot be modified once the operator has been build. You may find the

 class helpful when gradually collecting channels andgroovyx.gpars.dataflow.ProcessingNode
values into lists before you finally build an operator.

121

import groovyx.gpars.dataflow.Dataflow
 groovyx.gpars.dataflow.DataflowQueueimport
 groovyx.gpars.dataflow.ProcessingNode.nodeimport static

/**
 * Shows how to build operators using the ProcessingNode class
 */

 DataflowQueue aValues = DataflowQueue()final new
 DataflowQueue bValues = DataflowQueue()final new
 DataflowQueue results = DataflowQueue()final new

//Create a config and gradually set the required properties - channels, code, etc.
def adderConfig = node {valueA, valueB ->
 bindOutput valueA + valueB
}
adderConfig.inputs << aValues
adderConfig.inputs << bValues
adderConfig.outputs << results

//Build the operator
 adder = adderConfig. (Dataflow.DATA_FLOW_GROUP)final operator

//Now the is running and processing the dataoperator
aValues << 10
aValues << 20
bValues << 1
bValues << 2

assert [11, 22] == (1..2).collect {
 results.val
}

State in operators

Although operators can frequently do without keeping state between subsequent invocations,
GPars allows operators to maintain state, if desired by the developer. One obvious way is to
leverage the Groovy closure capabilities to close-over their context:

int counter = 0
(inputs: [a], outputs: [b]) {value ->operator

 counter += 1
}

Another way, which allows you to avoid declaring the state object outside of the operator
definition, is to pass the state object into the operator as a parameter atstateObject
construction time:

operator(inputs: [a], outputs: [b], stateObject: [counter: 0]) {value ->
 stateObject.counter += 1
}

Parallelize operators

By default an operator's body is processed by a single thread at a time. While this is a safe
setting allowing the operator's body to be written in a non-thread-safe manner, once an
operator becomes "hot" and data start to accumulate in the operator's input queues, you
might consider allowing multiple threads to run the operator's body concurrently. Bear in mind
that in such a case you need to avoid or protect shared resources from multi-threaded
access. To enable multiple threads to run the operator's body concurrently, pass an extra

 parameter when creating an operator:maxForks

122

def op = (inputs: [a, b, c], outputs: [d, e], maxForks: 2) {x, y, z ->operator
 bindOutput 0, x + y + z
 bindOutput 1, x * y * z
}

The value of the parameter indicates the maximum of threads running the operatormaxForks
concurrently. Only positive numbers are allowed with value 1 being the default.

Please always make sure the serving the operator holds enoughgroup
threads to support all requested forks. Using groups allows you to organize
tasks or operators around different thread pools (wrapped inside the
group). While the Dataflow.task() command schedules the task on a
default thread pool (java.util.concurrent.Executor, fixed size=#cpu+1,
daemon threads), you may prefer being able to define your own thread
pool(s) to run your tasks.

def group = DefaultPGroup(10)new
group. ((inputs: [a, b, c], outputs: [d, e], maxForks: 5) {x, y, z -> ...}operator

The default group uses a resizeable thread pool as so will never run out of
threads.

Synchronizing the output

When enabling internal parallelization of an operator by setting the value for to amaxForks
value greater than 1 it is important to remember that without explicit or implicit synchronization
in the operators' body race-conditions may occur. Especially bear in mind that values written
to multiple output channels are not guarantied to be written atomically in the same order to all
the channels

operator(inputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->
 bindOutput 0, msg
 bindOutput 1, msg
}
inputChannel << 1
inputChannel << 2
inputChannel << 3
inputChannel << 4
inputChannel << 5

May result in output channels having the values mixed-up something like:

a -> 1, 3, 2, 4, 5
b -> 2, 1, 3, 5, 4

Explicit synchronization is one way to get correctly bound all output channels and protect
operator not-thread local state:

def lock = ()new Object
(inputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->operator

 doStuffThatIsThreadSafe()

(lock) {synchronized
 doSomethingThatMustNotBeAccessedByMultipleThreadsAtTheSameTime()
 bindOutput 0, msg
 bindOutput 1, 2*msg
 }
}

123

Obviously you need to weight the pros and cons here, since synchronization may defeat the
purpose of setting to a value greater than 1.maxForks

To set values of all the operator's output channels in one atomic step, you may also consider
calling either the method, passing in a single value to write to allbindAllOutputsAtomically
output channels or the method, which takes a multiple values, eachbindAllOutputsAtomically
of which will be written to the output channel with the same position index.

operator(inputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->
 doStuffThatIsThreadSafe()
 bindAllOutputValuesAtomically msg, 2*msg
 }
}

Using the or the methods will notbindAllOutputs bindAllOutputValues
guarantee atomicity of writes across al the output channels when using
internal parallelism. If preserving the order of messages in multiple output
channels is not an issue, as well as bindAllOutputs bindAllOutputValues
will provide better performance over the atomic variants.

Operator lifecycle

Dataflow operators and selectors fire several events during their lifecycle, which allows the
interested parties to obtain notifications and potential alter operator's behavior. The

 interface offers a couple of callback methods:DataflowEventListener

124

public DataflowEventListener {interface
 /**
 * Invoked immediately after the starts by a pooled thread before the first message isoperator
obtained
 *
 * @param processor The reporting dataflow /selectoroperator
 */
 void afterStart(DataflowProcessor processor);

/**
 * Invoked immediately after the terminatesoperator
 *
 * @param processor The reporting dataflow /selectoroperator
 */
 void afterStop(DataflowProcessor processor);

/**
 * Invoked an exception occurs.if
 * If any of the listeners returns , the will terminate.true operator
 * Exceptions outside of the 's body or listeners' messageSentOut() handlers will terminateoperator
the irrespective of the listeners' votes.operator
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param e The thrown exception
 * @ True, the should terminate in response to the exception, otherwise.return if operator false
 */
 onException(DataflowProcessor processor, Throwable e);boolean

/**
 * Invoked when a message becomes available in an input channel.
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param channel The input channel holding the message
 * @param index The index of the input channel within the operator
 * @param message The incoming message
 * @ The original message or a message that should be used insteadreturn
 */
 messageArrived(DataflowProcessor processor, DataflowReadChannel< > channel, index, Object Object int

 message);Object

/**
 * Invoked when a control message (instances of ControlMessage) becomes available in an input
channel.
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param channel The input channel holding the message
 * @param index The index of the input channel within the operator
 * @param message The incoming message
 * @ The original message or a message that should be used insteadreturn
 */
 controlMessageArrived(DataflowProcessor processor, DataflowReadChannel< > channel, Object Object int
index, message);Object

/**
 * Invoked when a message is being bound to an output channel.
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param channel The output channel to send the message to
 * @param index The index of the output channel within the operator
 * @param message The message to send
 * @ The original message or a message that should be used insteadreturn
 */
 messageSentOut(DataflowProcessor processor, DataflowWriteChannel< > channel, index, Object Object int

 message);Object

/**
 * Invoked when all messages required to trigger the become available in the input channels.operator
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param messages The incoming messages
 * @ The original list of messages or a modified/ list of messages that should be usedreturn new
instead
 */
 List< > beforeRun(DataflowProcessor processor, List< > messages);Object Object

/**
 * Invoked when the completes a single runoperator
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param messages The incoming messages that have been processed
 */
 void afterRun(DataflowProcessor processor, List< > messages);Object

/**
 * Invoked when the fireCustomEvent() method is triggered manually on a dataflow /selectoroperator
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param data The custom piece of data provided as part of the event
 * @ A value to from the fireCustomEvent() method to the caller (event initiator)return return
 */
 customEvent(DataflowProcessor processor, data);Object Object
}

A default implementation is provided through the class.DataflowEventAdapter

125

Listeners provide a way to handle exceptions, when they occur inside operators. A listener
may typically log such exceptions, notify a supervising entity, generate an alternative output or
perform any steps required to recover from the situation. If there's no listener registered or if
any of the listeners returns the operator will terminate, preserving the contract of true

 . Exceptions that occur outside the actual operator's body, i.e. at the parameterafterStop()
preparation phase before the body is triggered or at the clean-up and channel subscription
phase, after the body finishes, always lead to operator termination.

The method available on operators and selectors may be used tofireCustomEvent()
communicate back and forth between operator's body and the interested listeners:

final listener = DataflowEventAdapter() {new
 @Override
 customEvent(DataflowProcessor processor, data) {Object Object
 println "Log: Getting quite high on the scale $data"
 100 //The value to use insteadreturn
 }
}

op = group. (inputs: [a, b], outputs: [c], listeners: [listener]) {x, y ->operator
 sum = x + yfinal
 (sum > 100) bindOutput(fireCustomEvent(sum)) //Reporting that the sum is too high, binding theif
lowered value that comes back
 bindOutput sumelse
}

Selectors

Selector's body should be a closure consuming either one or two arguments.

selector (inputs : [a, b, c], outputs : [d, e]) {value ->

}

The two-argument closure will get a value plus an index of the input channel, the value of
which is currently being processed. This allows the selector to distinguish between values
coming through different input channels.

selector (inputs : [a, b, c], outputs : [d, e]) {value, index ->

}

Priority Selector

When priorities need to be preserved among input channels, a DataflowPrioritySelector
should be used.

prioritySelector(inputs : [a, b, c], outputs : [d, e]) {value, index ->
 …
}

The priority selector will always prefer values from channels with lower position index over
values coming through the channels with higher position index.

Join selector

126

A selector without a body closure specified will copy all incoming values to all of its output
channels.

def join = selector (inputs : [programmers, analysis, managers], outputs : [employees, colleagues])

Internal parallelism

The attribute allowing for internal selectors parallelism is also available.maxForks

selector (inputs : [a, b, c], outputs : [d, e], maxForks : 5) {value ->

}

Guards

Just like , also allow the users to temporarily include/exclude individualSelects Selectors
input channels from selection. The input property can be used to set the initial maskguards
on all input channels and the and methods are then available in thesetGuards setGuard
selector's body.

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.selectorimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates the ability to enable/disable channels during a value selection on a select by providing

 guards.boolean
 */

 DataflowQueue operations = DataflowQueue()final new
 DataflowQueue numbers = DataflowQueue()final new

def instruction
def nums = []

selector(inputs: [operations, numbers], outputs: [], guards: [,]) {value, index -> //initialtrue false
guards is set here
 (index == 0) {if
 instruction = value
 setGuard(0,) //setGuard() used herefalse
 setGuard(1,)true
 }
 nums << valueelse
 (nums.size() == 2) {if
 setGuards([,]) //setGuards() used heretrue false
 def formula = final "${nums[0]} $instruction ${nums[1]}"
 println "$formula = ${ GroovyShell().evaluate(formula)}"new
 nums.clear()
 }
}

task {
 operations << '+'
 operations << '+'
 operations << '*'
}

task {
 numbers << 10
 numbers << 20
 numbers << 30
 numbers << 40
 numbers << 50
 numbers << 60
}

127

1.

2.

3.

Avoid combining and greater than 1. Although the guards maxForks
 is thread-safe and won't be damaged in any way, the guards areSelector

likely not to be set the way you expect. The multiple threads running
selector's body concurrently will tend to over-write each-other's settings to
the property.guards

7.4 Shutting Down Dataflow Networks
Shutting down a network of dataflow processors (operators and selectors) may sometimes be
a non-trivial task, especially if you need a generic mechanism that will not leave any
messages unprocessed.

Dataflow operators and selectors can be terminated in three ways:

by calling the terminate() method on all operators that need to be terminated

by sending a poisson message

by setting up a network of activity monitors that will shutdown the network after all
messages have been processed

Check out the details on the ways that GPars provides.

Shutting down the thread pool

If you use a custom to maintain a thread pool for your dataflowPGroup
network, you should not forget to shutdown the pool once the network is
terminated. Otherwise the thread pool will consume system resources and,
in case of using non-daemon threads, it will prevent JVM from exit.

Emergency shutdown

You can call on any operator/selector to immediately shut it down. Provided youterminate()
keep track of all your processors, perhaps by adding them to a list, the fastest way to stop the
network would be:

allMyProcessors*.terminate()

This should, however, be treated as an emergency exit, since no guarantees can be given
regarding messages processed nor finished work. Operators will simply terminate instantly
leaving work unfinished and abandoning messages in the input channels. Certainly, the
lifecycle event listeners hooked to the operators/selectors will have their eventafterStop()
handlers invoked in order to, for example, release resources or output a note into the log.

def op1 = (inputs: [a, b, c], outputs: [d, e]) {x, y, z -> }operator

def op2 = selector(inputs: [d], outputs: [f, out]) { }

def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

[op1, op2, op3]*.terminate() //Terminate all operators by calling the terminate() method on them
op1.join()
op2.join()
op3.join()

128

Shutting down the whole JVM through will also obvisoulySystem.exit()
shutdown the dataflow network, however, no lifecycle listeners will be
invoked in such cases.

Stopping operators gently

Operators handle incoming messages repeatedly. The only safe moment for stopping an
operator without the risk of loosing any messages is right after the operator has finished
processing messages and is just about to look for more messages in its incoming pipes. This
is exactly what the method does. It will schedule the operator forterminateAfterNextRun()
shutdown after the next set of messages gets handled.

The unprocessed messages will stay in the input channels, which allows you to handle them
later, perhaps with a different operator/selector or in some other way. Using

 you will not loose any input messages. This may be particularlyterminateAfterNextRun()
handy when you use a group of operators/selectors to load-balance messages coming from a
channel. Once the work-load decreases, the terminateAfterNextRun() method may be used to
safely reduce the pool of load-balancing operators.

Detecting shutdown

Operators and electors offer a handy method for those who need tojoin()
block until the operator terminates.

allMyProcessors*.join()

This is the easies way to wait until the whole dataflow network shuts down,
irrespective of the shutdown method used.

PoisonPill

 is a common term for a strategy that uses special-purpose messages to stopPoisonPill
entities that receive it. GPars offers the class, which has exactly such effect orPoisonPill
operators and selectors. Since is a , it is invisible to operator'sPoisonPill ControlMessage
body and custom code does not need to handle it in any way. mayDataflowEventListeners
react to through the handler method.ControlMessages controlMessageArrived()

def op1 = (inputs: [a, b, c], outputs: [d, e]) {x, y, z -> }operator

def op2 = selector(inputs: [d], outputs: [f, out]) { }

def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

a << PoisonPill.instance //Send the poisson

op1.join()
op2.join()
op3.join()

129

After receiving a poisson an operator terminates, right after it finishes the current calculation
and makes sure the poisson is sent to all its output channels, so that the poisson can spread
to the connected operators. Also, although operators typically wait for all inputs to have a
value, in case of , the operator will terminate immediately as soon as a PoisonPills PoisonPill
appears on any of its inputs. The values already obtained from the other channels will be lost.
It can be considered an error in the design of the network, if these messages were supposed
to be processed. They would need a proper value as their peer and not a PoisonPill in order
to be processes normally.

Selectors, on the other hand, will patiently wait for to be received from all their inputPoisonPill
channels before sending it on the the output channels. This behavior prevents networks
containing from being shutdown using . Afeed-back loops involving selectors PoisonPill
selector would never receive a from the channel that comes back from behind thePoisonPill
selector. A different shutdown strategy should be used for such networks.

Given the potential variety of operator networks and their asynchronous
nature, a good termination strategy is that operators and selectors should
only ever terminate themselves. All ways of terminating them from outside
(either by calling the terminate() method or by sending poisson down the
stream) may result in messages being lost somewhere in the pipes, when
the reading operators terminate before they fully handle the messages
waiting in their input channels.

Immediate poison pill

Especially for selectors to shutdown immediately after receiving a poison pill, a notion of
 has been introduced. Since normal, non-immediate poison pillsimmediate poison pill

merely close the input channel leaving the selector alive until at least one input channel
remains open, the immediate poison pill closes the selector instantly. Obviously, unprocessed
messages from the other selector's input channels will not be handled by the selector, once it
reads an immediate poison pill.

With immediate poison pill you can safely shutdown networks with selectors involved in
feedback loops.

def op1 = selector(inputs: [a, b, c], outputs: [d, e]) {value, index -> }
def op2 = selector(inputs: [d], outputs: [f, out]) { }
def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

a << PoisonPill.immediateInstance

[op1, op2, op3]*.join()

Poison with counting

When sending a poison pill down the operator network you may need to be notified when all
the operators or a specified number of them have been stopped. The CountingPoisonPill
class serves exactly this purpose:

130

operator(inputs: [a, b, c], outputs: [d, e]) {x, y, z -> }
selector(inputs: [d], outputs: [f, out]) { }
prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

//Send the poisson indicating the number of operators than need to be terminated before we can continue
 pill = CountingPoisonPill(3)final new

a << pill

//Wait all operators to terminatefor
pill.join()
//At least 3 operators should be terminated by now

The property of the class is a regular andtermination CountingPoisonPill Promise<Boolean>
so has a lot of handy properties.

//Send the poisson indicating the number of operators than need to be terminated before we can continue
 pill = CountingPoisonPill(3)final new

pill.termination.whenBound {println }"Reporting asynchronously that the network has been stopped"
a << pill

 (pill.termination.bound) println if "Wow, that was quick. We are done already!"
 println else "Things are being slow today. The network is still running."

//Wait all operators to terminatefor
assert pill.termination.get()
//At least 3 operators should be terminated by now

An immediate variant of is also available - CountingPoisonPill
 .ImmediateCountingPoisonPill

def op1 = selector(inputs: [a, b, c], outputs: [d, e]) {value, index -> }
def op2 = selector(inputs: [d], outputs: [f, out]) { }
def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

 pill = ImmediateCountingPoisonPill(3)final new
a << pill
pill.join()

 will safely and instantly shutdown dataflowImmediateCountingPoisonPill
networks even with selectors involved in feedback loops, which normal
non-immediate poison pill would not be able to.

Poison strategies

To correctly shutdown a network using you must identify the appropriate set ofPoisonPill
channels to send to. will spread in the network the usual way through thePoisonPill PoisonPill
channels and processors down the stream. Typically the right channels to send toPoisonPill
will be those that serve as for the network. This may be difficult to achieve fordata sources
general cases or for complex networks. On the other hand, for networks with a prevalent
direction of message flow provides a very straightforward way to shutdown thePoisonPill
whole network gracefully.

Load-balancing architectures, which use multiple operators reading
messages off a shared channel (queue), will also prevent poison shutdown
to work properly, since only one of the reading operators will get to read
the poison message. You may consider using instead,forked operators
by setting the property to a value greater than 1. AnothermaxForks
alternative is to manually split the message stream into multiple channels,
each of which would be consumed by one of the original operators.

131

Termination tips and tricks

Notice that GPars return a , which gets bound to a value as soon astasks DataflowVariable
the task finishes. The 'terminator' operator below leverages the fact that DataflowVariables
are implementations of the interface and thus can be consumed byDataflowReadChannel
operators. As soon as both tasks finish, the operator will send a down the PoisonPill q
channel to stop the consumer as soon as it processes all data.

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.group.NonDaemonPGroupimport

def group = NonDaemonPGroup()new

 DataflowQueue q = DataflowQueue()final new

// destinationfinal
def customs = group. (inputs: [q], outputs: []) { value ->operator
 println "Customs received $value"
}

// big producer
def green = group.task {
 (1..100).each {
 q << 'green channel ' + it
 sleep 10
 }
}

// little producer
def red = group.task {
 (1..10).each {
 q << 'red channel ' + it
 sleep 15
 }
}

def terminator = group. (inputs: [green, red], outputs: []) { t1, t2 ->operator
 q << PoisonPill.instance
}

customs.join()
group.shutdown()

Keeping PoisonPill inside a given network

If your network passed values through channels to entities outside of it, you may need to stop
the messages on the network boundaries. This can be easily achieved by putting aPoisonPill
single-input single-output filtering operator on each such channel.

operator(networkLeavingChannel, otherNetworkEnteringChannel) {value ->
 (!(value instanceOf PoisonPill)) bindOutput itif
}

The DSL may be also helpful here:Pipeline

networkLeavingChannel.filter { !(it instanceOf PoisonPill) } into otherNetworkEnteringChannel

Check out the section to find out more on pipelines.Pipeline DSL

Graceful shutdown

132

GPars provides a generic way to shutdown a dataflow network. Unlike the previously
mentioned mechanisms this approach will keep the network running until all the messages get
handled and than gracefully shuts all operators down letting you know when this happens.
You have to pay a modest performance penalty, though. This is unavoidable since we need to
keep track of what's happening inside the network.

import groovyx.gpars.dataflow.DataflowBroadcast
 groovyx.gpars.dataflow.DataflowQueueimport
 groovyx.gpars.dataflow. .component.GracefulShutdownListenerimport operator
 groovyx.gpars.dataflow. .component.GracefulShutdownMonitorimport operator
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.group.PGroupimport

PGroup group = DefaultPGroup(10)new
 a = DataflowQueue()final new
 b = DataflowQueue()final new
 c = DataflowQueue()final new
 d = DataflowQueue< >()final new Object
 e = DataflowBroadcast< >()final new Object
 f = DataflowQueue< >()final new Object
 result = DataflowQueue< >()final new Object

 monitor = GracefulShutdownMonitor(100);final new

def op1 = group. (inputs: [a, b], outputs: [c], listeners: [operator new
GracefulShutdownListener(monitor)]) {x, y ->
 sleep 5
 bindOutput x + y
}
def op2 = group. (inputs: [c], outputs: [d, e], listeners: [operator new
GracefulShutdownListener(monitor)]) {x ->
 sleep 10
 bindAllOutputs 2*x
}
def op3 = group. (inputs: [d], outputs: [f], listeners: [GracefulShutdownListener(monitor)])operator new
{x ->
 sleep 5
 bindOutput x + 40
}
def op4 = group. (inputs: [e.createReadChannel(), f], outputs: [result], listeners: [operator new
GracefulShutdownListener(monitor)]) {x, y ->
 sleep 5
 bindOutput x + y
}

100.times{a << 10}
100.times{b << 20}

 shutdownPromise = monitor.shutdownNetwork()final

100.times{assert 160 == result.val}

shutdownPromise.get()
[op1, op2, op3, op4]*.join()

group.shutdown()

First, we need an instance of , which will orchestrate the shutdownGracefulShutdownMonitor
process. It relies on instances of attached to allGracefulShutdownListener
operators/selectors. These listeners observe their respective processors together with their
input channels and report to the shared . Once GracefulShutdownMonitor shutdownNetwork()
is called on , it will periodically check for reported activities, queryGracefulShutdownMonitor
the state of operators as well as the number of messages in their input channels.

Please make sure that no new messages enter the dataflow network after
the shutdown has been initiated, since this may cause the network to never
terminate. The shutdown process should only be started after all data
producers have ceased sending additional messages to the monitored
network.

The method returns a so that you can do the usual set of tricksshutdownNetwork() Promise
with it - block waiting for the network to terminate using the method, register a callbackget()
using the method or make it trigger a whole set of activities through the whenBound() then()
method.

133

1.

2.

3.

Limitations of graceful shutdown

For to work correctly, its GracefulShutdownListener messageArrived()
event handler must see the original value that has arrived through the
input channel. Since some event listeners may alter the messages as
they pass through the listeners it is advisable to add the

 first to the list of listeners on each dataflowGracefulShutdownListener
processor.

Also, graceful shutdown will not work for those rare operators that
have listeners, which turn control messages into plain value messages
in the event handler.controlMessageArrived()

Third and last, load-balancing architectures, which use multiple
operators reading messages off a shared channel (queue), will also
prevent graceful shutdown to work properly. You may consider using

 instead, by setting the property to a valueforked operators maxForks
greater than 1. Another alternative is to manually split the message
stream into multiple channels, each of which would be consumed by
one of the original operators.

7.5 Application Frameworks
Dataflow Operators and Selectors can be successfully used to build high-level
domain-specific frameworks for problems that naturally fit the flow model.

Building flow frameworks on top of GPars dataflow

GPars dataflow can be viewed as bottom-line language-level infrastructure. Operators,
selectors, channels and event listeners can be very useful at language level to combine, for
example, with actors or parallel collections. Whenever a need comes for asynchronous
handling of events that come through one of more channels, a dataflow operator or a small
dataflow network could be a very good fit. Unlike tasks, operators are lightweight and release
threads when there's no message to process. Unlike actors, operators are addressed
indirectly through channels and may easily combine messages from multiple channels into
one action.

Alternatively, operators can be looked at as continuous functions, which instantly and
repeatedly transform their input values into output. We believe that a concurrency-friendly
general-purpose programming language should provide this type of abstraction.

At the same time, dataflow elements can be easily used as building blocks for constructing
domain-specific workflow-like frameworks. These frameworks can offer higher-level
abstractions specialized to a single problem domain, which would be inappropriate for a
general-purpose language-level library. Each of the higher-level concepts is then mapped to
(potentially several) GPars concepts.

134

For example, a network solving data-mining problems may consist of several data sources,
data cleaning nodes, categorization nodes, reporting nodes and others. Image processing
network, on the other hand, may need nodes specialized in image compression and format
transformation. Similarly, networks for data encryption, mp3 encoding, work-flow management
as well as many other domains that would benefit from dataflow-based solutions, will differ in
many aspects - the type of nodes in the network, the type and frequency of events, the
load-balancing scheme, potential constraints on branching, the need for visualization,
debugging and logging, the way users define the networks and interact with them as well as
many others.

The higher-level application-specific frameworks should put effort into providing abstractions
best suited for the given domain and hide GPars complexities. For example, the visual graph
of the network that the user manipulates on the screen should typically not show all the
channels that participate in the network. Debugging or logging channels, which rarely
contribute to the core of the solution, are among the first good candidates to consider for
exclusion. Also channels and lifecycle-event listeners, which orchestrate aspects such as load
balancing or graceful shutdown, will probably be not exposed to the user, although they will
be part of the generated and executed network. Similarly, a single channel in the
domain-specific model will in reality translate into multiple channels perhaps with one or more
logging/transforming/filtering operators connecting them together. The function associated
with a node will most likely be wrapped with some additional infrastructural code to form the
operator's body.

GPars gives you the underlying components that the end user may be abstracted away
completely by the application-specific framework. This keeps GPars domain-agnostic and
universal, yet useful at the implementation level.

7.6 Pipeline DSL

A DSL for building operators pipelines

Building dataflow networks can be further simplified. GPars offers handy shortcuts for the
common scenario of building (mostly linear) pipelines of operators.

def toUpperCase = {s -> s.toUpperCase()}

 encrypt = DataflowQueue()final new
 DataflowReadChannel encrypted = encrypt | toUpperCase | {it.reverse()} | {'###encrypted###' + it +final

'###'}

encrypt << "I need to keep message secret!"this
encrypt << "GPars can build linear pipelines really easily"operator

println encrypted.val
println encrypted.val

This saves you from directly creating, wiring and manipulating all the channels and operators
that are to form the pipeline. The operator lets you hook an output of onepipe
function/operator/process to the input of another one. Just like chaining system processes on
the command line.

The operator is a handy shorthand for a more generic method:pipe chainWith()

135

def toUpperCase = {s -> s.toUpperCase()}

 encrypt = DataflowQueue()final new
 DataflowReadChannel encrypted = encrypt.chainWith toUpperCase chainWith {it.reverse()} chainWithfinal

{'###encrypted###' + it + '###'}

encrypt << "I need to keep message secret!"this
encrypt << "GPars can build linear pipelines really easily"operator

println encrypted.val
println encrypted.val

Combining pipelines with straight operators

Since each operator pipeline has an entry and an exit channel, pipelines can be wired into
more complex operator networks. Only your imagination can limit your ability to mix pipelines
with channels and operators in the same network definitions.

def toUpperCase = {s -> s.toUpperCase()}
def save = {text ->
 //Just pretending to be saving the text to disk, database or whatever
 println 'Saving ' + text
}

 toEncrypt = DataflowQueue()final new
 DataflowReadChannel encrypted = toEncrypt.chainWith toUpperCase chainWith {it.reverse()} chainWithfinal

{'###encrypted###' + it + '###'}

 DataflowQueue fork1 = DataflowQueue()final new
 DataflowQueue fork2 = DataflowQueue()final new

splitter(encrypted, [fork1, fork2]) //Split the data flow

fork1.chainWith save //Hook in the save operation

//Hook in a sneaky decryption pipeline
 DataflowReadChannel decrypted = fork2.chainWith {it[15..-4]} chainWith {it.reverse()} chainWithfinal

{it.toLowerCase()}
 .chainWith {'Groovy leaks! Check out a decrypted secret message: ' + it}

toEncrypt << "I need to keep message secret!"this
toEncrypt << "GPars can build pipelines really easy"operator

println decrypted.val
println decrypted.val

The type of the channel is preserved across the whole pipeline. E.g. if you
start chaining off a synchronous channel, all the channels in the pipeline
will be synchronous. In that case, obviously, the whole chain blocks,
including the writer who writes into the channel at head, until someone
reads data off the tail of the pipeline.

final SyncDataflowQueue queue = SyncDataflowQueue()new
 result = queue.chainWith {it * 2}.chainWith {it + 1} chainWith {it * 100}final

.start {Thread
 5.times {
 println result.val
 }
}

queue << 1
queue << 2
queue << 3
queue << 4
queue << 5

Joining pipelines

Two pipelines (or channels) can be connected using the method:into()

136

final encrypt = DataflowQueue()new
 DataflowWriteChannel messagesToSave = DataflowQueue()final new

encrypt.chainWith toUpperCase chainWith {it.reverse()} into messagesToSave

task {
 encrypt << "I need to keep message secret!"this
 encrypt << "GPars can build pipelines really easy"operator
}

task {
 2.times {
 println + messagesToSave.val"Saving "
 }
}

The output of the pipeline is directly connected to the input of the pipeline (aencryption saving
single channel in out case).

Forking the data flow

When a need comes to copy the output of a pipeline/channel into more than one following
pipeline/channel, the method will help you:split()

final encrypt = DataflowQueue()new
 DataflowWriteChannel messagesToSave = DataflowQueue()final new
 DataflowWriteChannel messagesToLog = DataflowQueue()final new

encrypt.chainWith toUpperCase chainWith {it.reverse()}.split(messagesToSave, messagesToLog)

Tapping into the pipeline

Like the method allows you to fork the data flow into multiple channels. Tapping,split() tap()
however, is slightly more convenient in some scenarios, since it treats one of the two new
forks as the successor of the pipeline.

queue.chainWith {it * 2}.tap(logChannel).chainWith{it + 1}.tap(logChannel).into(PrintChannel)

Merging channels

Merging allows you to join multiple read channels as inputs for a single dataflow operator. The
function passed as the second argument needs to accept as many arguments as there are
channels being merged - each will hold a value of the corresponding channel.

maleChannel.merge(femaleChannel) {m, f -> m.marry(f)}.into(mortgageCandidatesChannel)

Separation

 is the opposite operation to . The supplied closure returns a list of values,Separation merge
each of which will be output into an output channel with the corresponding position index.

queue1.separate([queue2, queue3, queue4]) {a -> [a-1, a, a+1]}

Choices

137

The and methods allow you to send a value to one out of two (orbinaryChoice() choice()
many) output channels, as indicated by the return value from a closure.

queue1.binaryChoice(queue2, queue3) {a -> a > 0}
queue1.choice([queue2, queue3, queue4]) {a -> a % 3}

Filtering

The method allows to filter data in the pipeline using boolean predicates.filter()

final DataflowQueue queue1 = DataflowQueue()new
 DataflowQueue queue2 = DataflowQueue()final new

 odd = {num -> num % 2 != 0 }final

queue1.filter(odd) into queue2
 (1..5).each {queue1 << it}
 assert 1 == queue2.val
 assert 3 == queue2.val
 assert 5 == queue2.val

Null values

If a chained function returns a value, it is normally passed along the pipeline as a validnull
value. To indicate to the operator that no value should be passed further down the pipeline, a

 instance must be returned.NullObject.nullObject

final DataflowQueue queue1 = DataflowQueue()new
 DataflowQueue queue2 = DataflowQueue()final new

 odd = {num ->final
 (num == 5) // values are normally passed onif return null null
 (num % 2 != 0) numif return
 NullObject.nullObject // value gets blockedelse return this
 }

queue1.chainWith odd into queue2
 (1..5).each {queue1 << it}
 assert 1 == queue2.val
 assert 3 == queue2.val
 assert == queue2.valnull

Customizing the thread pools

All of the Pipeline DSL methods allow for custom thread pools or to be specified:PGroups

138

channel | {it * 2}

channel.chainWith(closure)
channel.chainWith(pool) {it * 2}
channel.chainWith(group) {it * 2}

channel.into(otherChannel)
channel.into(pool, otherChannel)
channel.into(group, otherChannel)

channel.split(otherChannel1, otherChannel2)
channel.split(otherChannels)
channel.split(pool, otherChannel1, otherChannel2)
channel.split(pool, otherChannels)
channel.split(group, otherChannel1, otherChannel2)
channel.split(group, otherChannels)

channel.tap(otherChannel)
channel.tap(pool, otherChannel)
channel.tap(group, otherChannel)

channel.merge(otherChannel)
channel.merge(otherChannels)
channel.merge(pool, otherChannel)
channel.merge(pool, otherChannels)
channel.merge(group, otherChannel)
channel.merge(group, otherChannels)

channel.filter(otherChannel)
channel.filter(pool, otherChannel)
channel.filter(group, otherChannel)

channel.binaryChoice(trueBranch, falseBranch)
channel.binaryChoice(pool, trueBranch, falseBranch)
channel.binaryChoice(group, trueBranch, falseBranch)

channel.choice(branches)
channel.choice(pool, branches)
channel.choice(group, branches)

channel.separate(outputs)
channel.separate(pool, outputs)
channel.separate(group, outputs)

Overriding the default PGroup

To avoid the necessity to specify PGroup for each Pipeline DSL method separately you may
override the value of the default Dataflow PGroup.

Dataflow.usingGroup(group) {
 channel.choice(branches)
}
//Is identical to
channel.choice(group, branches)

The method resets the value of the default dataflow PGroup for theDataflow.usingGroup()
given code block to the value specified.

The pipeline builder

The class offers an intuitive builder for operator pipelines. The greatest benefit ofPipeline
using the class compared to chaining the channels directly is the ease with which aPipeline
custom thread pool/group can be applied to all the operators along the constructed chain. The
available methods and overloaded operators are identical to the ones available on channels
directly.

139

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow. .Pipelineimport operator
 groovyx.gpars.scheduler.DefaultPoolimport
 groovyx.gpars.scheduler.Poolimport

 DataflowQueue queue = DataflowQueue()final new
 DataflowQueue result1 = DataflowQueue()final new
 DataflowQueue result2 = DataflowQueue()final new
 Pool pool = DefaultPool(, 2)final new false

 negate = {-it}final

 Pipeline pipeline = Pipeline(pool, queue)final new

pipeline | {it * 2} | {it + 1} | negate
pipeline.split(result1, result2)

queue << 1
queue << 2
queue << 3

assert -3 == result1.val
assert -5 == result1.val
assert -7 == result1.val

assert -3 == result2.val
assert -5 == result2.val
assert -7 == result2.val

pool.shutdown()

Passing construction parameters through the Pipeline DSL

You are likely to frequently need the ability to pass additional initialization parameters to the
operators, such as the listeners to attach or the value for . Just like when buildingmaxForks
operators directly, the Pipeline DSL methods accept an optional map of parameters to pass
in.

new Pipeline(group, queue1).merge([maxForks: 4, listeners: [listener]], queue2) {a, b -> a + b}.into
queue3

7.7 Implementation
The Dataflow Concurrency in GPars builds on the same principles as the actor support. All of
the dataflow tasks share a thread pool and so the number threads created through

 factory method don't need to correspond to the number of physical threadsDataflow.task()
required from the system. The factory method can be used to attach thePGroup.task()
created task to a group. Since each group defines its own thread pool, you can easily
organize tasks around different thread pools just like you do with actors.

Combining actors and Dataflow Concurrency

The good news is that you can combine actors and Dataflow Concurrency in any way you feel
fit for your particular problem at hands. You can freely you use Dataflow Variables from
actors.

140

final DataflowVariable a = DataflowVariable()new

 Actor doubler = Actors.actor {final
 react {message->
 a << 2 * message
 }
}

 Actor fakingDoubler = actor {final
 react {
 doubler.send it //send a number to the doubler
 println //wait the result to be bound to 'a'"Result ${a.val}" for
 }
}

fakingDoubler << 10

In the example you see the "fakingDoubler" using both messages and a toDataflowVariable
communicate with the actor.doubler

Using plain java threads

The as well as the classes can obviously be used from anyDataflowVariable DataflowQueue
thread of your application, not only from the tasks created by . Consider theDataflow.task()
following example:

import groovyx.gpars.dataflow.DataflowVariable

 DataflowVariable a = DataflowVariable< >()final new String
 DataflowVariable b = DataflowVariable< >()final new String

.start {Thread
 println "Received: $a.val"
 .sleep 2000Thread
 b << 'Thank you'
}

.start {Thread
 .sleep 2000Thread
 a << 'An important message from the second thread'
 println "Reply: $b.val"
}

We're creating two plain instances, which exchange data using the two datajava.lang.Thread
flow variables. Obviously, neither the actor lifecycle methods, nor the send/react functionality
or thread pooling take effect in such scenarios.

7.8 Synchronous Variables and Channels
When using asynchronous dataflow channels, apart from the fact that readers have to wait for
a value to be available for consumption, the communicating parties remain completely
independent. Writers don't wait for their messages to get consumed. Readers obtain values
immediately as they come and ask. Synchronous channels, on the other hand, can
synchronize writers with the readers as well as multiple readers among themselves. This is
particularly useful when you need to increase the level of determinism. The writer-to-reader
partial ordering imposed by asynchronous communication is complemented with
reader-to-writer partial ordering, when using synchronous communication. In other words, you
are guaranteed that whatever the reader did before reading a value from a synchronous
channel preceded whatever the writer did after writing the value. Also, with synchronous
communication writers can never get too far ahead of readers, which simplifies reasoning
about the system and reduces the need to manage data production speed in order to avoid
system overload.

Synchronous dataflow queue

141

The class should be used for point-to-point (1:1 or n:1) communication.SyncDataflowQueue
Each message written to the queue will be consumed by exactly one reader. Writers are
blocked until their message is consumed, readers are blocked until there's a value available
for them to read.

import groovyx.gpars.dataflow.SyncDataflowQueue
 groovyx.gpars.group.NonDaemonPGroupimport

/**
 * Shows how synchronous dataflow queues can be used to throttle fast producer when serving data to a
slow consumer.
 * Unlike when using asynchronous channels, synchronous channels block both the writer and the readers
until all parties are ready to exchange messages.
 */

def group = NonDaemonPGroup()new

 SyncDataflowQueue channel = SyncDataflowQueue()final new

def producer = group.task {
 (1..30).each {
 channel << it
 println "Just sent $it"
 }
 channel << -1
}

def consumer = group.task {
 () {while true
 sleep 500 //simulating a slow consumer
 msg = channel.valfinal Object
 (msg == -1) if return
 println "Received $msg"
 }
}

consumer.join()

group.shutdown()

Synchronous dataflow broadcast

The class should be used for publish-subscribe (1:n or n:m)SyncDataflowBroadcast
communication. Each message written to the broadcast will be consumed by all subscribed
readers. Writers are blocked until their message is consumed by all readers, readers are
blocked until there's a value available for them to read and all the other subscribed readers
ask for the message as well. With you get all readers processing theSyncDataflowBroadcast
same message at the same time and waiting for one-another before getting the next one.

142

import groovyx.gpars.dataflow.SyncDataflowBroadcast
 groovyx.gpars.group.NonDaemonPGroupimport

/**
 * Shows how synchronous dataflow broadcasts can be used to throttle fast producer when serving data to
slow consumers.
 * Unlike when using asynchronous channels, synchronous channels block both the writer and the readers
until all parties are ready to exchange messages.
 */

def group = NonDaemonPGroup()new

 SyncDataflowBroadcast channel = SyncDataflowBroadcast()final new

def subscription1 = channel.createReadChannel()
def fastConsumer = group.task {
 () {while true
 sleep 10 //simulating a fast consumer
 msg = subscription1.valfinal Object
 (msg == -1) if return
 println "Fast consumer received $msg"
 }
}

def subscription2 = channel.createReadChannel()
def slowConsumer = group.task {
 () {while true
 sleep 500 //simulating a slow consumer
 msg = subscription2.valfinal Object
 (msg == -1) if return
 println "Slow consumer received $msg"
 }
}

def producer = group.task {
 (1..30).each {
 println "Sending $it"
 channel << it
 println "Sent $it"
 }
 channel << -1
}

[fastConsumer, slowConsumer]*.join()

group.shutdown()

Synchronous dataflow variable

Unlike , which is asynchronous and only blocks the readers until a value isDataflowVariable
bound to the variable, the class provides a one-shot data exchangeSyncDataflowVariable
mechanism that blocks the writer and all readers until a specified number of waiting parties is
reached.

import groovyx.gpars.dataflow.SyncDataflowVariable
 groovyx.gpars.group.NonDaemonPGroupimport

 NonDaemonPGroup group = NonDaemonPGroup()final new

 SyncDataflowVariable value = SyncDataflowVariable(2) //two readers required to exchange thefinal new
message

def writer = group.task {
 println "Writer about to write a value"
 value << 'Hello'
 println "Writer has written the value"
}

def reader = group.task {
 println "Reader about to read a value"
 println "Reader has read the value: ${value.val}"
}

def slowReader = group.task {
 sleep 5000
 println "Slow reader about to read a value"
 println "Slow reader has read the value: ${value.val}"
}

[reader, slowReader]*.join()

group.shutdown()

7.9 Kanban Flow

143

APIs: | | | KanbanFlow KanbanLink KanbanTray ProcessingNode

KanbanFlow

A is a composed object that uses dataflow abstractions to define dependenciesKanbanFlow
between multiple concurrent producer and consumer operators.

Each link between a producer and a consumer is defined by a .KanbanLink

Inside each KanbanLink, the communication between producer and consumer follows the
KanbanFlow pattern as described in (recommended read). They useThe KanbanFlow Pattern
objects of type to send products downstream and signal requests for furtherKanbanTray
products back to the producer.

The figure below shows a with one producer, one consumer and five traysKanbanLink
numbered 0 to 4. Tray number 0 has been used to take a product from producer to consumer,
has been emptied by the consumer and is now sent back to the producer's input queue. Trays
1 and 2 wait carry products waiting for consumption, trays 3 and 4 wait to be used by
producers.

A object links producers to consumers thus creating objects. In theKanbanFlow KanbanLink
course of this activity, a second link may be constructed where the producer is the same
object that acted as the consumer in a formerly created link such that the two links become
connected to build a chain.

Here is an example of a with only one link, e.g. one producer and one consumer.KanbanFlow
The producer always sends the number 1 downstream and the consumer prints this number.

import groovyx.gpars.dataflow.ProcessingNode.nodestatic
 groovyx.gpars.dataflow.KanbanFlowimport

def producer = node { down -> down 1 }
def consumer = node { up -> println up.take() }

 KanbanFlow().with {new
 link producer to consumer
 start()
 // run a for while
 stop()
}

For putting a product into a tray and sending the tray downstream, one can either use the
 method, the operator, or use the tray as a method object. The following lines aresend() <<

equivalent:

node { down -> down.send 1 }
node { down -> down << 1 }
node { down -> down 1 }

When a product is taken from the input tray with the method, the empty tray istake()
automatically released.

You should call only once!take()

http://people.canoo.com/mittie/kanbanflow.html

144

If you prefer to not using an empty tray for sending products downstream (as typically the
case when a acts as a filter), you must release the tray in order to keep it inProcessingNode
play. Otherwise, the number of trays in the system decreases. You can release a tray either
by calling the method or by using the operator (think "shake it off"). Therelease() ~
following lines are equivalent:

node { down -> down.release() }
node { down -> ~down }

Trays are automatically released, if you call any of the or take() send()
methods.

Various linking structures

In addition to a linear chains, a can also link a single producer to multipleKanbanFlow
consumers (tree) or multiple producers to a single consumer (collector) or any combination of
the above that results in a directed acyclic graph (DAG).

The class has many examples for such structures, including scenariosKanbanFlowTest
where a single producer delegates work to multiple consumers with

a strategy where all consumers get their pick from the downstream,work-stealing

a strategy where a producer chooses from the available consumers, andmaster-slave

a strategy where a producer sends all products to all consumers.broadcast

Cycles are forbidden by default but when enabled, they can be used as so-called generators.
A producer can even be his own consumer that increases a product value in every cycle. The
generator itself remains state-free since the value is only stored as a product riding on a tray.
Such a generator can be used for e.g. lazy sequences or as a the "heartbeat" of a subsequent
flow.

The approach of generator "loops" can equally be applied to collectors, where a collector
does not maintain any internal state but sends a collection onto itself, adding products at each
call.

Generally speaking, a can link to itself for exporting state to the tray/productProcessingNode
that it sends to itself. Access to the product is then .thread-safe by design

Composing KanbanFlows

Just as objects can be chained together to form a , flowsKanbanLink KanbanFlow
themselves can be composed again to form new greater flows from existing smaller ones.

145

def firstFlow = KanbanFlow()new
def producer = node(counter)
def consumer = node(repeater)
firstFlow.link(producer).to(consumer)

def secondFlow = KanbanFlow()new
def producer2 = node(repeater)
def consumer2 = node(reporter)
secondFlow.link(producer2).to(consumer2)

flow = firstFlow + secondFlow

flow.start()

Customizing concurrency characteristics

The amount of concurrency in a kanban system is determined by the number of trays
(sometimes called = work in progress). With no trays in the streams, the system doesWIP
nothing.

With one tray only, the system is confined to sequential execution.

With more trays, concurrency begins.

With more trays than available processing units, the system begins to waste resources.

The number of trays can be controlled in various ways. They are typically set when starting
the flow.

flow.start(0) // start without trays
flow.start(1) // start with one tray per link in the flow
flow.start() // start with the optimal number of trays

In addition to the trays, the may also be constrained by its underlying KanbanFlow
 . A pool of size 1 for example will not allow much concurrency.ThreadPool

 use a default pool that is dimensioned by the number of available cores. ThisKanbanFlows
can be customized by setting the property.pooledGroup

 Test:
 KanbanFlowTest

 Demos:
 DemoKanbanFlow

 DemoKanbanFlowBroadcast
 DemoKanbanFlowCycle

DemoKanbanLazyPrimeSequenceLoops

7.10 Classic Examples

The Sieve of Eratosthenes implementation using dataflow tasks

https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/dataflow/KanbanFlowTest.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanFlow.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanFlowBroadcast.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanFlowCycle.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanLazyPrimeSequenceLoops.groovy

146

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using dataflow tasks
 */

 requestedPrimeNumberCount = 1000final int

 DataflowQueue initialChannel = DataflowQueue()final new

/**
 * Generating candidate numbers
 */
task {
 (2..10000).each {
 initialChannel << it
 }
}

/**
 * Chain a filter a particular prime number to the end of the Sievenew for
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide prime candidates withfuture
 * @ A channel ending the whole chainreturn new
 */
def filter(inChannel, prime) {int
 def outChannel = DataflowQueue()new

task {
 () {while true
 def number = inChannel.val
 (number % prime != 0) {if
 outChannel << number
 }
 }
 }
 outChannelreturn
}

/**
 * Consume Sieve output and add additional filters all found primesfor
 */
def currentOutput = initialChannel
requestedPrimeNumberCount.times {
 prime = currentOutput.valint
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
}

The Sieve of Eratosthenes implementation using a combination of
dataflow tasks and operators

147

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.import static operator
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using dataflow tasks and
operators
 */

 requestedPrimeNumberCount = 100final int

 DataflowQueue initialChannel = DataflowQueue()final new

/**
 * Generating candidate numbers
 */
 task {
 (2..1000).each {
 initialChannel << it
 }
 }

/**
 * Chain a filter a particular prime number to the end of the Sievenew for
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide prime candidates withfuture
 * @ A channel ending the whole chainreturn new
 */
 def filter(inChannel, prime) {int
 def outChannel = DataflowQueue()new

([inputs: [inChannel], outputs: [outChannel]]) {operator
 (it % prime != 0) {if
 bindOutput it
 }
 }
 outChannelreturn
 }

/**
 * Consume Sieve output and add additional filters all found primesfor
 */
 def currentOutput = initialChannel
 requestedPrimeNumberCount.times {
 prime = currentOutput.valint
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
 }

148

8 STM
Software Transactional Memory (STM) gives developers transactional semantics for
accessing in-memory data. When multiple threads share data in memory, by marking blocks
of code as transactional (atomic) the developer delegates the responsibility for data
consistency to the Stm engine. GPars leverages the Multiverse Stm engine. Check out more
details on the transactional engine at the Multiverse site

Running a piece of code atomically

When using Stm, developers organize their code into transactions. A transaction is a piece of
code, which is executed - either all the code is run or none at all. The data usedatomically
by the transactional code remains irrespective of whether the transaction finishesconsistent
normally or abruptly. While running inside a transaction the code is given an illusion of being

 from the other concurrently run transactions so that changes to data in oneisolated
transaction are not visible in the other ones until the transactions commit. This gives us the

 part of the characteristics of database transactions. The transactionalACI ACID durability
aspect so typical for databases, is not typically mandated for Stm.

GPars allows developers to specify transaction boundaries by using the closures.atomic

import groovyx.gpars.stm.GParsStm
 org.multiverse.api.references.IntRefimport
 org.multiverse.api.StmUtils.newIntRefimport static

 class Account {public
 IntRef amount = newIntRef(0);private final

 void transfer(a) {public final int
 GParsStm.atomic {
 amount.increment(a);
 }
 }

 getCurrentAmount() {public int
 GParsStm.atomicWithInt {
 amount.get();
 }
 }
}

There are several types of closures, each for different type of return value:atomic

 - returning atomic Object

 - returning atomicWithInt int

 - returning atomicWithLong long

 - returning atomicWithBoolean boolean

 - returning atomicWithDouble double

 - no return valueatomicWithVoid

Multiverse by default uses optimistic locking strategy and automatically rolls back and retries
colliding transactions. Developers should thus restrain from irreversible actions (e.g. writing to
the console, sending and e-mail, launching a missile, etc.) in their transactional code. To
increase flexibility, the default Multiverse settings can be customized through custom atomic

 .blocks

http://multiverse.codehaus.org/overview.html

149

Customizing the transactional properties

Frequently it may be desired to specify different values for some of the transaction properties
(e.g. read-only transactions, locking strategy, isolation level, etc.). The createAtomicBlock
method will create a new configured with the supplied values:AtomicBlock

import groovyx.gpars.stm.GParsStm
 org.multiverse.api.AtomicBlockimport
 org.multiverse.api.PropagationLevelimport

 AtomicBlock block = GParsStm.createAtomicBlock(maxRetries: 3000, familyName: 'Custom',final
PropagationLevel: PropagationLevel.Requires, interruptible:)false
assert GParsStm.atomicWithBoolean(block) {
 true
}

The customized can then be used to create transactions following the specifiedAtomicBlock
settings. instances are thread-safe and can be freely reused among threads andAtomicBlock
transactions.

Using the objectTransaction

The atomic closures are provided the current as a parameter. The Transaction Transaction
objects can then be used to manually control the transaction. This is illustrated in the example
below, where we use the method to block the current transaction until the counterretry()
reaches the desired value:

import groovyx.gpars.stm.GParsStm
 org.multiverse.api.AtomicBlockimport
 org.multiverse.api.PropagationLevelimport
 org.multiverse.api.StmUtils.newIntRefimport static

 AtomicBlock block = GParsStm.createAtomicBlock(maxRetries: 3000, familyName: 'Custom',final
PropagationLevel: PropagationLevel.Requires, interruptible:)false

def counter = newIntRef(0)
 max = 100final int
.start {Thread

 (counter.atomicGet() < max) {while
 counter.atomicIncrementAndGet(1)
 sleep 10
 }
}
assert max + 1 == GParsStm.atomicWithInt(block) {tx ->
 (counter.get() == max) counter.get() + 1if return
 tx.retry()
}

Data structures

You might have noticed in the code examples above that we use dedicated data structures to
hold values. The fact is that normal Java classes do not support transactions and thus cannot
be used directly, since Multiverse would not be able to share them safely among concurrent
transactions, commit them nor roll them back. We need to use data that know about
transactions:

150

IntRef

LongRef

BooleanRef

DoubleRef

Ref

You typically create these through the factory methods of the org.multiverse.api.StmUtils
class.

More information

We decided not to duplicate the information that is already available on the Multiverse
website. Please visit the and use it as a reference for your further StmMultiverse site
adventures with GPars.

http://multiverse.codehaus.org/overview.html

151

9 Google App Engine Integration
GPars can be run on the . It can be made part of Groovy and JavaGoogle App Engine (GAE)
GAE applications as well as a plugged into Gaelyk. The small GPars App Engine integration

 provides all the necessary infrastructure to hook GAE services into GPars. Althoughlibrary
you'll be running on GAE threads and leveraging GAE timer services, the high-level
abstractions remain the same. With a few restrictions you can still use GPars actors, dataflow,
agents, parallel collections and other handy concepts.

Please refer to the documentation for details on how to proceedGPars App Engine library
with GPars on GAE.

https://developers.google.com/appengine/
https://github.com/musketyr/gpars-appengine
https://github.com/musketyr/gpars-appengine
https://github.com/musketyr/gpars-appengine

152

10 Tips

General GPars Tips

Grouping

High-level concurrency concepts, like Agents, Actors or Dataflow tasks and operators can be
grouped around shared thread pools. The class and its sub-classes representPGroup
convenient GPars wrappers around thread pools. Objects created using the group's factory
methods will share the group's thread pool.

def group1 = DefaultPGroup()new
def group2 = NonDaemonPGroup()new

group1.with {
 task {...}
 task {...}
 def op = (...) {...}operator
 def actor = actor{...}
 def anotherActor = group2.actor{...} //will belong to group2
 def agent = safe(0)
}

When customizing the thread pools for groups, consider using the existing
GPars implementations - the or classes. OrDefaultPool ResizeablePool
you may create your own implementation of the

 interface to pass to the or groovyx.gpars.scheduler.Pool DefaultPGroup
 constructors.NonDaemonPGroup

Java API

Most of GPars functionality can be used from Java just as well as from Groovy. Checkout the
 section of the User Guide and experiment with the2.6 Java API - Using GPars from Java

maven-based stand-alone Java . Take GPars with you wherever you go!demo application

10.1 Performance
Your code in Groovy can be just as fast as code written in Java, Scala or any other
programing language. This should not be surprising, since GPars is technically a solid tasty
Java-made cake with a Groovy DSL cream on it.

Unlike in Java, however, with GPars, as well as with other DSL-friendly languages, you are
very likely to experience a useful kind of code speed-up for free, a speed-up coming from a
better and cleaner design of your application. Coding with a concurrency DSL will give you
smaller code-base with code using the concurrency primitives as language constructs. So it is
much easier to build robust concurrent applications, identify potential bottle-necks or errors
and eliminate them.

While this whole User Guide is describing how to use Groovy and GPars to create beautiful
and robust concurrent code, let's use this chapter to highlight a few places, where some code
tuning or minor design compromises could give you interesting performance gains.

http://gpars.codehaus.org/Demos

153

Parallel Collections
Methods for parallel collection processing, like , and such use eachParallel() collectParallel()

 , an efficient tree-like data structure behind the scenes. This data structure hasParallel Array
to be built from the original collection each time you call any of the parallel collection methods.
Thus when chaining parallel method calls you might consider using the APImap/reduce
instead or resort to using the API directly, to avoid the creationParallelArray Parallel Array
overhead.

GParsPool.withPool {
 people.findAllParallel{it.isMale()}.collectParallel{it.name}.any{it == 'Joe'}
 people.parallel.filter{it.isMale()}.map{it.name}.filter{it == 'Joe'}.size() > 0
 people.parallelArray.withFilter({it.isMale()} as Predicate).withMapping({it.name} as Mapper).any{it
== 'Joe'} != null
}

In many scenarios changing the pool size from the default value may give you performance
benefits. Especially if your tasks perform IO operations, like file or database access,
networking and such, increasing the number of threads in the pool is likely to help
performance.

GParsPool.withPool(50) {
 …
}

Since the closures you provide to the parallel collection processing methods will get executed
frequently and concurrently, you may further slightly benefit from turning them into Java.

Actors

GPars actors are fast. and are about twice as fast asDynamicDispatchActors ReactiveActors
the , since they don't have to maintain an implicit state between subsequentDefaultActors
message arrivals. The are in fact on par in performance with actors in ,DefaultActors Scala
which you can hardly hear of as being slow.

If top performance is what you're looking for, a good start is to identify the following patterns in
your actor code:

actor {
 loop {
 react {msg ->
 (msg) {switch
 :…case String
 :…case Integer
 }
 }
 }
}

and replace them with :DynamicDispatchActor

messageHandler {
 when{ msg -> ...}String
 when{ msg -> ...}Integer
}

The and methods are rather costly to call.loop react

154

Defining a or as classes instead of using the DynamicDispatchActor ReactiveActor
 and factory methods will also give you some more speed:messageHandler reactor

class MyHandler DynamicDispatchActor {extends
 void handleMessage(msg) {public String
 …
 }

 void handleMessage(msg) {public Integer
 …
 }
}

Now, moving the class into Java will squeeze the last bit of performance fromMyHandler
GPars.

Pool adjustment

GPars allows you to group actors around thread pools, giving you the freedom to organize
actors any way you like. It is always worthwhile to experiment with the actor pool size and
type. usually gives better characteristics that , but seems to be moreFJPool DefaultPool
sensitive to the number of threads in the pool. Sometimes using a or ResizeablePool

 could help performance by automatic eliminating unneeded threads.ResizeableFJPool

def attackerGroup = DefaultPGroup(ResizeableFJPool(10))new new
def defenderGroup = DefaultPGroup(DefaultPool(5))new new

def attacker = attackerGroup.actor {...}
def defender = defenderGroup.messageHandler {...}
...

Agents

GPars are even a bit faster in processing messages than actors. The advice to groupAgents
agents wisely around thread pools and tune the pool sizes and types applies to agents as well
as to actors. With agents, you may also benefit from submitting Java-written closures as
messages.

Share your experience

The more we hear about GPars uses in the wild the better we can adapt it for the future. Let
us know how you use GPars and how it performs. Send us your benchmarks, performance
comparisons or profiling reports to help us tune GPars for you.

10.2 Integration into hosted environment
Hosted environments, such as Google App Engine, impose additional restrictions on
threading. For GPars to integrate with these environments better, the default thread factory
and timer factory can be customized. The class provides static initializationGPars_Config
methods allowing third parties to register their own implementations of the and PoolFactory

 interfaces, which will then be used to create default pools and timers for Actors,TimerFactory
Dataflow and PGroups.

155

public class GParsConfig {final
 PoolFactory poolFactory;private static volatile
 TimerFactory timerFactory;private static volatile

 void setPoolFactory(PoolFactory pool)public static final

 PoolFactory getPoolFactory()public static

 Pool retrieveDefaultPool()public static

 void setTimerFactory(TimerFactory timerFactory)public static final

 TimerFactory getTimerFactory()public static

 GeneralTimer retrieveDefaultTimer(name, daemon)public static final String final boolean
}

The custom factories should be registered immediately after the application startup in order
for Actors and Dataflow to be able to use them for their default groups.

Compatibility

Some further compatibility problems may occur when running GPars in a hosted environment.
The most noticeable one is probably the lack of ForkJoinThreadPool (aka jsr-166y) support in
GAE. Functionality such as Fork/Join and GParsPool may thus not be available on some
services as a result. However, GParsExecutorsPool, Dataflow, Actors, Agents and Stm
should work normally even when using managed non-Java SE thread pools.

156

11 Conclusion
This was quite a wild ride, wasn't it? Now, after going through the User Guide, you're certainly
ready to build fast, robust and reliable concurrent applications. You've seen that there are
many concepts you can choose from and each has its own areas of applicability. The ability to
pick the right concept to apply to a given problem and combine it with the rest of the system is
key to being a successful developer. If you feel you can do this with GPars, the mission of the
User Guide has been accomplished.

Now, go ahead, use GPars and have fun!

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that each copy

contains this Copyright Notice, whether distributed in print or electronically. Tackling the
complexity of concurrent programming with Groovy.

