Table of contents

Groovy Parallel Systems

The GPars Framework - Reference Documentation

Authors: The Whole GPars Gang
Version: 1.1.0

Table of Contents

1 Introduction

1.1 Enter GPars

1.2 Credits

2 Getting Started

2.1 Downloading and Installing
2.2 A Hello World Example
2.3 Code conventions

2.4 Getting Set Up in an IDE
2.5 Applicability of Concepts
2.6 What's New

2.7 Java API - Using GPars from Java

3 Data Parallelism

3.1 Parallel Collections
3.1.1 GParsPool
3.1.2 GParsExecutorsPool
3.1.3 Memoize

3.2 Map-Reduce

3.3 Parallel Arrays

3.4 Asynchronous Invocation
3.5 Composable Asynchronous Functions
3.6 Fork-Join

3.7 Parallel Speculations

4 Groovy CSP

5 Actors

5.1 Actors Principles

5.2 Stateless Actors

5.3 Tips and Tricks

5.4 Active Objects

5.5 Classic Examples

6 Agents

7 Dataflow

7.1 Tasks

7.2 Selects
7.3 Operators
7.4 Shutting Down Dataflow Networks
7.5 Application Frameworks
7.6 Pipeline DSL
7.7 Implementation
7.8 Synchronous Variables and Channels
7.9 Kanban Flow
7.10 Classic Examples
8 STM
9 Google App Engine Integration
10 Tips
10.1 Performance
10.2 Integration into hosted environment

11 Conclusion

1 Introduction

The world of mainstream computing is changing rapidly these days. If you open the hood and loc
your computer, you'll most likely see a dual-core processor there. Or a quad-core one, if you hav
computer. We all now run our software on multi-processor systems. The code we write today anc
probably never run on a single processor system: parallel hardware has become standard. Not s
though, at least not yet. People still create single-threaded code, even though it will not be able t
power of current and future hardware. Some developers experiment with low-level concurrency f
and locks or synchronized blocks. However, it has become obvious that the shared-memory muli
used at the application level causes more trouble than it solves. Low-level concurrency handling
right, and it's not much fun either. With such a radical change in hardware, software inevitably ha
dramatically too. Higher-level concurrency and parallelism concepts like map/reduce, fork/join, ac
provide natural abstractions for different types of problem domains while leveraging the multi-cor

1.1 Enter GPars

Meet GPars - an open-source concurrency and parallelism library for Java and Groovy that gives
high-level abstractions for writing concurrent and parallel code in Groovy (map/reduce, fork/join, .
closures, actors, agents, dataflow concurrency and other concepts), which can make your Java ¢
concurrent and/or parallel with little effort. With GPars your Java and/or Groovy code can easily
processors on the target system. You can run multiple calculations at the same time, request net
parallel, safely solve hierarchical divide-and-conquer problems, perform functional style map/red:
collection processing or build your applications around the actor or dataflow model.

The project is open sourced under the Apache 2 License . If you're working on a commercial, opt
or any other type of software project in Groovy, download the binaries or integrate them from the
get going. The way to writing highly concurrent and/or parallel Java and Groovy code is wide ope

1.2 Credits

This project could not have reached the point where it stands currently without all the great help i
many individuals, who have devoted their time, energy and expertise to make GPars a solid proc
people in the core team who should be mentioned:

© Véclav Pech

© Dierk Koenig
© Alex Tkachman
© Russel Winder
© Paul King

© Jon Kerridge

Over time, many people have contributed their ideas, provided useful feedback or helped GPars
There are many people in this group, too many to name them all, but let's list at least the most ac

http://gpars.codehaus.org
http://gpars.codehaus.org/License

© Hamlet d'Arcy

© Hans Dockter

© Guillaume Laforge
© Robert Fischer

© Johannes Link

© Graeme Rocher
© Alex Miller

© Jeff Gortatowsky
© Jii Kropaek

Many thanks to everyone!

2 Getting Started

Let's set out a few assumptions before we get started:

1.

o k~ 0D

You know and use Groovy and Java: otherwise you'd not be investing your valuable time stt
and parallelism library for Groovy and Java.

You definitely want to write your codes employing concurrency and parallelism using Groovy

If you are not using Groovy for your code, you are prepared to pay the inevitable verbosity te

You target multi-core hardware with your code.

You appreciate that in concurrent and parallel code things can happen at any time, in any or
with than one thing happening at once.

With those assumptions in place, we get started.

It's becoming more and more obvious that dealing with concurrency and parallelism at the threac
level, as provided by the JVM, is far too low a level to be safe and comfortable. Many high-level
actors and dataflow have been around for quite some time: parallel computers have been in use,
centres if not on the desktop, long before multi-core chips hit the hardware mainstream. Now the
these higher-level abstractions in the mainstream software industry. This is what GPars enables
Java languages, allowing Groovy and Java programmers to use higher-level abstractions and the
developing concurrent and parallel software easier and less error prone.

The concepts available in GPars can be categorized into three groups:

1. Code-level helpers Constructs that can be applied to small parts of the code-base such as ir
data structures without any major changes in the overall project architecture

1.
2.
3.

Parallel Collections
Asynchronous Processing

Fork/Join (Divide/Conquer)

Architecture-level concepts Constructs that need to be taken into account when designing tr

1.
2.
3.
4.

Actors
Communicating Sequential Processes (CSP)
Dataflow

Data Parallelism

Shared Mutable State Protection Although about 95% of current use of shared mutable state
proper abstractions, good abstractions are still necessary for the remaining 5% use cases, W\
state cannot be avoided

1. Agents

2.

Software Transactional Memory (not fully implemented in GPars as yet)

2.1 Downloading and Installing

GPars is now distributed as standard with Groovy. So if you have a Groovy installation, you shou
already. The exact version of GPars you have will, of course, depend of which version of Groovy
have GPars, and you do have Groovy, then perhaps you should upgrade your Groovy!

If you do not have a Groovy installation, but get Groovy by using dependencies or just having the
then you will need to get GPars. Also if you want to use a version of GPars different from the one
an old GPars-less Groovy you cannot upgrade, you will need to get GPars. The ways of getting (

© Download the artifact from a repository and add it and all the transitive dependencies manug
© Specify a dependency in Gradle, Maven, or Ivy (or Gant, or Ant) build files.

© Use Grapes (especially useful for Groovy scripts).

If you're building a Grails or a Griffon application, you can use the appropriate plugins to fetch the

The GPars Artifact

As noted above GPars is now distributed as standard with Groovy. If however, you have to mane
manually, the GPars artifact is in the main Maven repository and in the Codehaus main and snag
The released versions are in the Maven and Codehaus main repositories, the current developme
(SNAPSHOT) is in the Codehaus snapshots repository. To use from Gradle or Grapes use the s

"org. codehaus. gpars: gpars: 1. 1. 0"

for the release version, and:

"org. codehaus. gpar s: gpar s: 1. 2- SNAPSHOT"

for the development version. You will likely need to add the Codehaus snapshots repository man
in this latter case. Using Maven the dependency is:

<dependency>
<gr oupl d>or g. codehaus. gpar s</ gr oupl d>
<artifactld>gpars</artifactld>

<version>1. 1. 0</ ver si on>
</ dependency>

or version 1.2-SNAPSHOT if using the latest snapshot.

Transitive Dependencies

GPars as a library depends on Groovy version equal or greater than 2.0. Also, the Fork/Join con
jsrl66y (an artifact from the JSR-166 Project) must be on the classpath the programs, which use
and execute. Released versions of this artifact are in the main Maven and Codehaus repositories
versions of the artifact are available in the Codehaus snapshots repository. Using Gradle or Graf
following dependency specification:

"org. codehaus. jsr166-mrror:jsril66y:1.7.0"

For Maven, the specification would be:

http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166y.jar
http://g.oswego.edu/dl/concurrency-interest/

<dependency>
<groupl d>or g. codehaus. j sr166-m rror </ groupl d>
<artifactld>jsril66y</artifactld>
<version>1. 7. 0</ ver si on>

</ dependency>

The development versions have version number 1.7.0.1-SNAPSHOT.

GPars defines this dependency in its own descriptor, so ideally all dependency management shc
automatically, if you use Gradle, Grails, Griffon, Maven, Ivy or other type of automatic dependent

Please visit the page Integration on the GPars website for more details.

2.2 A Hello World Example

Once you are setup, try the following Groovy script to test that your setup is functioning as it shot

i mport static groovyx.gpars.actor.Actors. actor
/**

* A denp showi ng two cooperating actors. The decryptor decrypts received nmessages
* and replies themback. The console actor sends a nessage to decrypt, prints out
* the reply and terminates both actors. The main thread waits on both actors to
* finish using the join() nethod to prevent premature exit, since both actors use
* the default actor group, which uses a daenon thread pool

*/@huthor Di erk Koeni g, Vaclav Pech

*

def decryptor = actor {
I oop {
react { nessage ->
if (message instanceof String) reply nessage.reverse()
el se stop()
}
}
}

def console = actor {
decryptor.send 'lellarap si yvoorG
react {
println 'Decrypted nessage: ' + it
decryptor.send false

}

[decryptor, console]*.join()

You should get a message "Decrypted message: Groovy is parallel” printed out on the console w

& GPars has been designed primarily for use with the Groovy programming language. (
all Java and Groovy programs are just bytecodes running on the JVM, so GPars can
with Java source. Despite being aimed at Groovy code use, the solid technical found:
the good performance characteristics, of GPars make it an excellent library for Java
In fact most of GPars is written in Java, so there is no performance penalty for Java
applications using GPars.

For details please refer to the Java API section.

To quick-test using GPars via the Java API, you can compile and run the following Java code:

http://gpars.codehaus.org/Integration

i nport groovyx. gpars. Messagi ngRunnabl e;
import groovyx. gpars. actor. Dynam cDi spat chAct or;

public class Statel essActorDeno {
public static void main(String[] args) throws |nterruptedException {
final M/Statel essActor actor = new MyStatel essActor();
actor.start();
actor.send("Hello");
act or. sendAndWai t (10) ;
act or. sendAndCont i nue(10. 0, new Messagi ngRunnabl e<String>() {
@verride protected void doRun(final String s) {
Systemout. println("Received a reply " + s);

1)
}
}

cl ass MySt at el essActor extends Dynani cDi spat chActor {
public void onMessage(final String nsg) {
System out . println("Received " + nsQ);
repl yl f Exi sts(" Thank you");

public void onMessage(final Integer nsg) {
System out. println("Received a nunber " + nsQ);
repl yl f Exi st s(" Thank you");

public void onMessage(final Object nsg) {
System out. println("Recei ved an object " + nsg);
replyl f Exi st s(" Thank you");

Remember though that you will almost certainly have to add the Groovy artifact to the build as w
artifact. GPars may well work at Java speeds with Java applications, but it still has some compila
Groovy.

2.3 Code conventions

We follow certain conventions in the code samples. Understanding these may help you read and
code samples better.

© The leftShift operator << has been overloaded on actors, agents and dataflow expressions (
streams) to mean send a message or assign a value.

myAct or << ' nessage’
nyAgent << {account -> account.add('5 USD)}
nmyDat af | owVari abl e << 120332

© On actors and agents the default call() method has been also overloaded to mean send . Sc
an actor or agent may look like a regular method call.

nmyAct or "nessage"

nyAgent {house -> house.repair()}

© The rightShift operator >> in GPars has the when bound meaning. So

nyDat af | owvari abl e >> {val ue -> doSonet hi ngWt h(val ue) }

will schedule the closure to run only after myDataflowVariable is bound to a value, with the value

In samples we tend to statically import frequently used factory methods:

© GParsPool.withPool()

© GParsPool.withExistingPool()
© GParsExecutorsPool.withPool()
© GParsExecutorsPool.withExistingPool()
© Actors.actor()

© Actors.reactor()

© Actors.fairReactor()

© Actors.messageHandler()

© Actors.fairMessageHandler()

© Agent.agent()

© Agent.fairAgent()

© Dataflow.task()

© Dataflow.operator()

It is more a matter of style preferences and personal taste, but we think static imports make the ¢
and readable.

2.4 Getting Set Up in an IDE

Adding the GPars jar files to your project or defining the appropriate dependencies in pom.xml st
you started with GPars in your IDE.

GPars DSL recognition

IntelliJ IDEA in both the free Community Edition and the commercial Ultimate Edition will recogr
specific languages, complete methods like eachParallel() , reduce() or callAsync() and validate tf
GroovyDSL mechanism, which teaches IntelliJ IDEA the DSLs as soon as the GPars jar file is ac

2.5 Applicability of Concepts

GPars provides a lot of concepts to pick from. We're continuously building and updating a page t
choose the right abstraction for their tasks at hands. Please, refer to the Concepts compared pa¢

To briefly summarize the suggestions, below you can find the basic guide-lines:

10

http://www.jetbrains.net/confluence/display/GRVY/Scripting+IDE+for+DSL+awareness
http://gpars.codehaus.org/Concepts+compared

. You're looking at a collection, which needs to be iterated or processed using one of the mar

collections method, like each() , collect() , find() and such. Proposing that processing each e
collection is independent of the other items, using GPars parallel collections can be recom

. If you have a long-lasting calculation , which may safely run in the background, use the as

invocation support in GPars. Since the GPars asynchronous functions can be composed,
parallelize complex functional calculations without having to mark independent calculations ¢

. You need to parallelize an algorithm at hand. You can identify a set of tasks with their mutL

tasks typically do not need to share data, but instead some tasks may need to wait for other
starting. You're ready to express these dependencies explicitly in code. With GPars dataflo\
internally sequential tasks, each of which can run concurrently with the others. Dataflow vari
provide the tasks with the capability to express their dependencies and to exchange data sa

. You can't avoid using shared mutable state in your algorithm. Multiple threads will be acce:

(some of them) modifying it. Traditional locking and synchronized approach feels too risky ol
agents, which will wrap your data and serialize all access to it.

. You're building a system with high concurrency demands. Tweaking a data structure here or

You need to build the architecture from the ground up with concurrency in mind. Message-p
way to go.

1. Groovy CSP will give you highly deterministic and composable model for concurrent pr:
organized around the concept of calculations or processes, which run concurrently ar
through synchronous channels.

2. If you're trying to solve a complex data-processing problem, consider GPars dataflow ¢
data flow network. The concept is organized around event-driven transformations wired
asynchronous channels.

3. Actors and Active Objects will shine if you need to build a general-purpose, highly cor
architecture following the object-oriented paradigm.

Now you may have a better idea of what concepts to use on your current project. Go and check «

them in the User Guide.

2.6 What's New

The new GPars 1.1.0 release introduces several enhancements and improvements on top of the
mainly in the dataflow area.

Check out the JIRA release notes

Project changes

& See the Breaking Changes listing for the list of breaking changes.

Asynchronous functions

11

Parallel collections

https://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=12030&version=17399
http://gpars.codehaus.org/Breaking+Changes

© Deprecated foldParallel, renamed to injectParallel

Fork / Join
Actors

Dataflow
© LazyDataflowVariable added to allow for lazy asynchronous values
© Timeout channels on Selects
© Added a Promise-based API for value selection through the Select class
© Enabled listening for bind errors on DataflowVariables

© Minor APl improvement affecting Promise and DataflowReadChannel

Agent

© Protecting agent's blocking methods from being called from within commands

Stm
© Updated to the latest 0.7.0 GA version of Multiverse

Other
© Migrated to Groovy 2.0

© Used @CompileStatic where appropriate

Renaming hints

2.7 Java API - Using GPars from Java

Using GPars is very addictive, | guarantee. Once you get hooked you won't be able to code withc
force you to write code in Java, you will still be able to benefit from most of GPars features.

Java APl specifics

Some parts of GPars are irrelevant in Java and it is better to use the underlying Java libraries dir
© Parallel Collection - use jsr-166y library's Parallel Array directly
© Fork/Join - use jsr-166y library's Fork/Join support directly

© Asynchronous functions - use Java executor services directly

12

The other parts of GPars can be used from Java just like from Groovy, although most will miss th
capabilities.

GPars Closures in Java API

To overcome the lack of closures as a language element in Java and to avoid forcing users to us
directly through the Java API, a few handy wrapper classes have been provided to help you defir
body or dataflow tasks.

© groovyx.gpars.MessagingRunnable - used for single-argument callbacks or actor body
© groovyx.gpars.ReactorMessagingRunnable - used for ReactiveActor body

© groovyx.gpars.DataflowMessagingRunnable - used for dataflow operators' body

These classes can be used in all places GPars API expects a Groovy closure.

Actors

The DynamicDispatchActor as well as the ReactiveActor classes can be used just like in Groovy:

i mport groovyx.gpars. Messagi ngRunnabl e;
i nport groovyx.gpars. actor. Dynan cDi spat chAct or;

public class Statel essActorDeno {
public static void main(String[] args) throws |nterruptedException {

final M/Statel essActor actor = new MyStatel essActor();

actor.start();

actor.send("Hello");

act or. sendAndWi t (10) ;

act or. sendAndCont i nue(10. 0, new Messagi ngRunnabl e<String>() {
@verride protected void doRun(final String s) {

Systemout.println("Received a reply " + s);

}
1)
}
}

cl ass MySt at el essActor extends Dynani cDi spat chActor {
public void onMessage(final String nsg) {
System out. println("Received " + nmsg);
replyl f Exi sts(" Thank you");

public void onMessage(final Integer nsg) {
System out. println("Received a nunber " + nsQ);
repl yl f Exi sts(" Thank you");

public void onMessage(final Object nsg) {
System out. println("Recei ved an object " + msgQ);
replyl f Exi sts(" Thank you");

Although there are not many differences between Groovy and Java GPars use, notice, the callba
MessagingRunnable class in place for a groovy closure.

13

i mport groovy. | ang. Cl osure;

i mport groovyx. gpars. React or Messagi ngRunnabl e;
i nport groovyx. gpars.actor.Actor;

i nport groovyx.gpars.actor. ReactiveActor;

public class ReactorDenp {
public static void main(final String[] args) throws |nterruptedException {
final C osure handl er = new React or Messagi ngRunnabl e<l nt eger, Integer>() {
@verride protected |Integer doRun(final Integer integer) {
return integer * 2;
}

i
final Actor actor = new ReactiveActor(handler);
actor.start();

stemout.println esul t: + actor.sen it ;
intln("Resul " dAndWai t (1
Systemout.println("Result: " + actor.sendAndWait(2));
Systemout.println("Result: " + actor.sendAndWait(3));
}
}

Convenience factory methods

Obviously, all the essential factory methods to build actors quickly are available where you'd exp

import groovy.|ang. d osure;

i mport groovyx. gpars. React or Messagi ngRunnabl e;
i mport groovyx. gpars. actor. Actor;

i nmport groovyx. gpars. actor.Actors;

public class ReactorDeno {
public static void nain(final String[] args) throws I|nterruptedException {
final Cosure handl er = new React or Messagi ngRunnabl e<l nt eger, |Integer>() {
@verride protected |Integer doRun(final Integer integer) {
return integer * 2;

I
final Actor actor = Actors.reactor(handler);

Systemout.println("Result: " + actor.sendAndWait(1));
Systemout.println("Result: " + actor.sendAndWait(2));
Systemout.println("Result: " + actor.sendAndWait(3));

}

Agents

import groovyx.gpars. Messagi ngRunnabl e;
i nport groovyx.gpars.agent. Agent ;

public class Agent Denp {
public static void main(final String[] args) throws |nterruptedException {
final Agent counter = new Agent <l nteger>(0);
count er. send(10) ;
Systemout.println("Current value: " + counter.getVal());
count er. send(new Messagi ngRunnabl e<l nt eger >() {
@verride protected void doRun(final Integer integer) {
count er. updat eVal ue(i nteger + 1);

Sy:st emout.println("Current value: " + counter.getVal());

Dataflow Concurrency
Both DataflowVariables and DataflowQueues can be used from Java without any hiccups. Just a

overloaded operators and go straight to the methods, like bind , whenBound , getVal and other. ®
using dataflow tasks passing to them instances of Runnable or Callable just like groovy Closure .

14

i nport groovyx. gpars. Messagi ngRunnabl e;
import groovyx. gpars. dat af | ow. Dat af | owvar i abl e;
import groovyx. gpars. group. Def aul t PG oup;

inmport java.util.concurrent. Callabl e;

public class Datafl owlaskDenp {
public static void main(final String[] args) throws |nterruptedException {
final Default PG oup group = new Def aul t PG oup(10);

final Dataflowariable a = new Datafl owari abl e();

group. t ask(new Runnabl e() {
public void run() {
a. bi nd(10);

1)

final Promi se result = group.task(new Callable() {
public Qbject call() throws Exception {
return (Integer)a.getVal () + 10;

1)

resul t. whenBound(new Messagi ngRunnabl e<I nt eger >() {
@verride protected void doRun(final Integer integer) {
System out.println("argunments = " + integer);

1)

Systemout.println("result =" + result.getVal());

}

Dataflow operators

The sample below should illustrate the main differences between Groovy and Java API for datafl
1. Use the convenience factory methods accepting list of channels to create operators or selec
2. Use DataflowMessagingRunnable to specify the operator body

3. Call getOwningProcessor() to get hold of the operator from within the body in order to e.g. bi

i mport groovyx. gpars. Dat af | omessagi ngRunnabl e;

import groovyx. gpars. dataf | ow. Dat af | ow,

i mport groovyx. gpars. dat af | ow. Dat af | owQueue;

import groovyx. gpars. dat afl ow. oper at or . Dat af | owPr ocessor ;

inport java.util.Arrays;
inmport java.util.List;

public class Datafl owOperat or Deno {
public static void main(final String[] args) throws |nterruptedException {
final Datafl owmQueue streanl = new Dat af | owQueue() ;
final Datafl owQueue streanR new Dat af | owQueue() ;
final Datafl owQueue streanB new Dat af | owQueue() ;
final Datafl owQueue streamt new Dat af | owQueue() ;

final Datafl owProcessor opl = Dataflow sel ector(Arrays. asLi st(streanl), Arrays.asList(strean2), new Dat af | ow\
@verride protected void doRun(final Object...objects) {
get Omi ngProcessor (). bi ndQut put (2*(| nt eger) obj ects[0]);

1
final List secondOperatorlnput = Arrays. asLi st(strean®, streanB);

final Datafl owProcessor op2 = Datafl ow. operator(secondOperatorlnput, Arrays.asList(strean¥), new Dat af | owesse
@verride protected void doRun(final Object...objects) {
get Omi ngProcessor (). bi ndQut put ((I nteger) objects[0] + (lnteger) objects[1]);

1)

streant. bi nd(1);
streantl. bi nd(2);
streant. bi nd(3);
streanB. bi nd(100) ;
st reanB. bi nd(100) ;
streanB. bi nd(100) ;

Systemout.println("Result: " + streamd. getVal ());
Systemout.println("Result: " + streamd. getVal ());
Systemout.println("Result: " + streamd.getVal ());
opl. stop();
op2. stop();

15

Performance

In general, GPars overhead is identical irrespective of whether you use it from Groovy or Java ar
low. GPars actors, for example, can compete head-to-head with other JVM actor options, like Sc

Since Groovy code in general runs slower than Java code, mainly due to dynamic method invoce
consider writing your code in Java to improve performance. Typically numeric operations or freqt
method calls within a task or actor body may benefit from a rewrite into Java.

Prerequisites

All the GPars integration rules apply to Java projects just like they do to Groovy projects. You on
groovy distribution jar file in your project and all is clear to march ahead. You may also want to ct
Java Maven project to get tips on how to integrate GPars into a maven-based pure Java applicat
Maven Project

16

http://gpars.codehaus.org/Demos
http://gpars.codehaus.org/Demos

3 Data Parallelism

Focusing on data instead of processes helps a great deal to create robust concurrent programs.
define your data together with functions that should be applied to it and then let the underlying m
the data. Typically a set of concurrent tasks will be created and then they will be submitted to a tl
processing.

In GPars the GParsPool and GParsExecutorsPool classes give you access to low-level data par
While the GParsPool class relies on the jsr-166y Fork/Join framework and so offers greater funct
performance, the GParsExecutorsPool uses good old Java executors and so is easier to setup ir
restricted environment.

There are three fundamental domains covered by the GPars low-level data parallelism:
1. Processing collections concurrently
2. Running functions (closures) asynchronously

3. Performing Fork/Join (Divide/Conquer) algorithms

3.1 Parallel Collections

Dealing with data frequently involves manipulating collections. Lists, arrays, sets, maps, iterators
other data types can be viewed as collections of items. The common pattern to process such col
elements sequentially, one-by-one, and make an action for each of the items in row.

Take, for example, the min() function, which is supposed to return the smallest element of a colle
the min() method on a collection of numbers, the caller thread will create an accumulator or so-fe
initialized to the minimum value of the given type, let say to zero. And then the thread will iterate
of the collection and compare them with the value in the accumulator . Once all elements have b
minimum value is stored in the accumulator .

This algorithm, however simple, is totally wrong on multi-core hardware. Running the min() func
chip can leverage at most 50% of the computing power of the chip. On a quad-core it would be ¢
algorithm effectively wastes 75% of the computing power of the chip.

Tree-like structures proved to be more appropriate for parallel processing. The min() function in ¢
need to iterate through all the elements in row and compare their values with the accumulator . V
is relying on the multi-core nature of your hardware. A parallel_min() function could, for example,
tuples of certain size) of neighboring values in the collection and promote the smallest value fromnr
round of comparison. Searching for minimum in different tuples can safely happen in parallel anc
round can be processed by different cores at the same time without races or contention among tl

Meet Parallel Arrays

The jsr-166y library brings a very convenient abstraction called Parallel Arrays . GPars leverages
implementation in several ways. The GParsPool and GParsExecutorsPool classes provide par
common Groovy iteration methods like each() , collect() , findAll() and such.

def selfPortraits = inages.findAllParallel{it.contains ne}.collectParallel {it.resize()}

It also allows for a more functional style map/reduce collection processing.

17

http://groovy.dzone.com/articles/parallelize-your-arrays-with-j

def snallestSelfPortrait = images.parallel.filter{it.contains ne}.map{it.resize()}.mn{it.sizelnVB}

3.1.1 GParsPool
Use of GParsPool - the JSR-166y based concurrent collection processor

Usage of GParsPool

The GParsPool class enables a ParallelArray-based (from JSR-166y) concurrency DSL for collec

Examples of use:

// summari ze nunbers concurrently
GPar sPool . wi t hPool {
final Atomiclnteger result = new Aton clnteger(0)
[1, 2, 3, 4, 5].eachParallel {result.addAndGet (it)}
assert 15 == result

//multiply nunbers asynchronously
GPar sPool . wi t hPool {
final List result =[1, 2, 3, 4, 5].collectParallel {it * 2}
assert ([2, 4, 6, 8, 10].equals(result))

The passed-in closure takes an instance of a ForkJoinPool as a parameter, which can be then us
closure.

/I check whether all elenents within a collection neet certain criteria
GPar sPool . wi t hPool (5) {ForkJoi nPool pool ->
assert [1, 2, 3, 4, 5].everyParallel {it > 0}
assert I[1, 2, 3, 4, 5].everyParallel {it > 1}

The GParsPool.withPool() method takes optional parameters for number of threads in the create
unhandled exception handler.

wi t hPool (10) {...}
wi t hPool (20, exceptionHandler) {...}

The GParsPool.withExistingPool() takes an already existing ForkJoinPool instance to reuse. The
within the associated block of code and only for the thread that has called the withPool() or withE
The withPool() method returns only after all the worker threads have finished their tasks and the
destroyed, returning back the return value of the associated block of code. The withExistingPool(
for the pool threads to finish.

Alternatively, the GParsPool class can be statically imported import static groovyx.gpars.GParsP
allow omitting the GParsPool class name.

wi t hPool {
assert [1, 2, 3, 4, 5].everyParallel {it > 0}
assert ![1, 2, 3, 4, 5].everyParallel {it > 1}

The following methods are currently supported on all objects in Groovy:

18

© eachParallel()

© eachWithindexParallel()
© collectParallel()

© collectManyParallel()
© findAllParallel()

© findAnyParallel

© findParallel()

© everyParallel()

© anyParallel()

© grepParallel()

© groupByParallel()

© foldParallel()

© minParallel()

© maxParallel()

© sumParallel()

© gplitParallel()

© countParallel()

© foldParallel()

Meta-class enhancer

As an alternative you can use the ParallelEnhancer class to enhance meta-classes of any classe
instances with the parallel methods.

i nport groovyx. gpars. Paral | el Enhancer

def list =[1, 2, 3 4, 5 6, 7, 8, 9]
Par al | el Enhancer . enhancel nst ance(li st)
println list.collectParallel {it * 2}

def animals = ['dog', "ant', 'cat', 'whale']

Par al | el Enhancer . enhancel nstance ani nal s

println (aninals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')

println (aninmals.everyParallel {it.contains('a")} ? "All animals contain a : 'Sonme aninmals can |ive w thout &

When using the ParallelEnhancer class, you're not restricted to a withPool() block with the use ol
The enhanced classed or instances remain enhanced till they get garbage collected.

Exception handling

If an exception is thrown while processing any of the passed-in closures, the first exception gets
xxxParallel methods and the algorithm stops as soon as possible.

19

& The exception handling mechanism of GParsPool builds on the one built into the Forl
framework. Since Fork/Join algorithms are by nature hierarchical, once any part of thi
algorithm fails, there's usually little benefit from continuing the computation, since son
branches of the algorithm will never return a result.

Bear in mind that the GParsPool implementation doesn't give any guarantees about ii
behavior after a first unhandled exception occurs, beyond stopping the algorithm and
re-throwing the first detected exception to the caller. This behavior, after all, is consis
what the traditional sequential iteration methods do.

Transparently parallel collections

On top of adding new xxxParallel() methods, GPars can also let you change the semantics of the
methods. For example, you may be passing a collection into a library method, which will process
sequential way, let say using the collect() method. By changing the semantics of the collect() me
you can effectively parallelize the library sequential code.

GPar sPool . wi t hPool {

/1 The sel ectlnportant Nanes() will process the nane collections concurrently
assert ['ALICE, 'JASON] == selectlnportantNanes(['Joe', 'Alice', 'Dave', 'Jason'].nmakeConcurrent())

/**
* A function inplenmented using standard sequential collect() and findAl () nethods.
*
/
def sel ectl nportant Nanes(nanes) {
nanes. col | ect {it.toUpperCase()}.findAll{it.size() > 4}

The makeSequential() method will reset the collection back to the original sequential semantics.

inmport static groovyx.gpars. GParsPool . wi t hPool
def list =[1, 2, 3, 4, 5 6, 7, 8, 9]

println 'Sequential: '
list.each { print it +"'," }
println()

wi t hPool {

println 'Sequential: '
list.each { print it +"'," }
println()

i st. makeConcurrent ()

println 'Concurrent: '
list.each { print it +"'," }
println()

i st. makeSequenti al ()

println 'Sequential: '
list.each { print it +"'," }
println()

println 'Sequential: '
list.each { print it +"'," }
println()

The asConcurrent() convenience method will allow you to specify code blocks, in which the colle:
concurrent semantics.

20

inport static groovyx.gpars. GPar sPool . wi t hPool
def list =[1, 2, 3, 4, 5 6, 7, 8 9]

println 'Sequential: '
list.each { print it +"'," }
println()

wi t hPool {

println 'Sequential: '
list.each { print it +"'," }
println()

l'ist.asConcurrent {
println 'Concurrent: '

list.each { print it +"'," }
println()
println 'Sequential: '
list.each { print it +"'," }
println()

println 'Sequential: '
list.each { print it +"'," }
println()

Transparent parallelizm, including the makeConcurrent() , makeSequential() and asConcurrent()
available in combination with ParallelEnhancer .

/**
* A function inplenmented using standard sequential collect() and findAll () nethods.
*/
def sel ect| nportant Nanes(nanes) {
nanes. col l ect {it.toUpperCase()}.findAll{it.size() > 4}

def nanes = ['Joe', '"Alice', 'Dave', 'Jason']

Par al | el Enhancer . enhancel nst ance(nanes)

/1 The sel ect| nportant Names() will process the name coll ections concurrently
assert ['ALICE, 'JASON] == sel ectlnportant Nanmes(nanes. makeConcurrent ())

import groovyx.gpars. Parall el Enhancer
def list =[1, 2, 3, 4, 5 6, 7, 8, 9]

println 'Sequential: '
list.each { print it +"'," }
println()

Par al | el Enhancer . enhancel nst ance(li st)

println 'Sequential: '
list.each { print it +"',' }
println()

list.asConcurrent {
println 'Concurrent: '
list.each { print it +"'," }
println()

l'i st. makeSequenti al ()
println 'Sequential: '

list.each { print it +"'," }
println()

Avoid side-effects in functions

We have to warn you. Since the closures that are provided to the parallel methods like eachPara
may be run in parallel, you have to make sure that each of the closures is written in a thread-safe
must hold no internal state, share data nor have side-effects beyond the boundaries the single el
been invoked on. Violations of these rules will open the door for race conditions and deadlocks, t
enemies of a modern multi-core programmer.

Don't do this:

21

def thunbnails = []
i mages. eachParal | el {thunbnails << it.thunbnail} //Concurrently accessing a not-thread-safe collection of tht

At least, you've been warned.

3.1.2 GParsExecutorsPool

Use of GParsExecutorsPool - the Java Executors' based concurrent collection processor

Usage of GParsExecutorsPool

The GParsPool class enables a Java Executors-based concurrency DSL for collections and obje

The GParsExecutorsPool class can be used as a pure-JDK-based collection parallel processor. |
class, GParsExecutorsPool doesn't require jsr-166y jar file, but leverages the standard JDK exec
parallelize closures processing a collections or an object iteratively. It needs to be states, howev
performs typically much better than GParsExecutorsPool does.

Examples of use:

//multiply nunbers asynchronously
GPar sExecut or sPool . wi t hPool {
Col | ection<Future> result =[1, 2, 3, 4, 5].collectParallel{it * 10}
assert new HashSet ([10, 20, 30, 40, 50]) == new HashSet ((Collection)result*.get())

//mul tiply nunbers asynchronously using an asynchronous cl osure
GPar sExecut or sPool . wi t hPool {
def closure={it * 10}
def asyncC osure=cl osure. async()
Col | ection<Future> result =[1, 2, 3, 4, 5].collect(asyncd osure)
assert new HashSet ([10, 20, 30, 40, 50]) == new HashSet ((Collection)result*.get())

The passed-in closure takes an instance of a ExecutorService as a parameter, which can be thel
closure.

//find an el enent neeting specified criteria
GPar sExecut or sPool . wi t hPool (5) {Executor Service service ->
service. subm t ({ perforniongCal cul ation()} as Runnabl e)

The GParsExecutorsPool.withPool() method takes optional parameters for number of threads in
thread factory.

wi t hPool (10) {...}
wi t hPool (20, threadFactory) {...}

The GParsExecutorsPool.withExistingPool() takes an already existing executor service instance
valid only within the associated block of code and only for the thread that has called the withPool
method. The withPool() method returns only after all the worker threads have finished their tasks
service has been destroyed, returning back the return value of the associated block of code. The
method doesn't wait for the executor service threads to finish.

Alternatively, the GParsExecutorsPool class can be statically imported import static
groovyx.gpars.GParsExecutorsPool. * | which will allow omitting the GParsExecutorsPool class

22

wi t hPool {
def result =11, 2, 3, 4, 5].findParallel{Number nunber -> nunber > 2}
assert result in [3, 4, 5]

The following methods on all objects, which support iterations in Groovy, are currently supported
© eachParallel()
© eachWithindexParallel()
© collectParallel()
© findAllParallel()
© findParallel()
o allParallel()
© anyParallel()
© grepParallel()
© groupByParallel()

Meta-class enhancer

As an alternative you can use the GParsExecutorsPoolEnhancer class to enhance meta-classes
individual instances with asynchronous methods.

import groovyx. gpars. GPar sExecut or sPool Enhancer
def list =[1, 2, 3, 4, 5 6, 7, 8, 9
GPar sExecut or sPool Enhancer . enhancel nst ance(li st)
println list.collectParallel {it * 2}

def animals = ['dog', '"ant', 'cat', 'whale']

GPar sExecut or sPool Enhancer . enhancel nst ance ani nal s
println (aninals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')
println (aninals.allParallel {it.contains("a")} ? "All animals contain a' : 'Sonme aninmals can live w thout an

When using the GParsExecutorsPoolEnhancer class, you're not restricted to a withPool() block v
GParsExecutorsPool DSLs. The enhanced classed or instances remain enhanced till they get ga

Exception handling

If exceptions are thrown while processing any of the passed-in closures, an instance of AsyncEx
the original exceptions gets re-thrown from the xxxParallel methods.

Avoid side-effects in functions

Once again we need to warn you about using closures with side-effects effecting objects beyond
single currently processed element or closures which keep state. Don't do that! It is dangerous tc
the xxxParallel() methods.

3.1.3 Memoize

23

The memoize function enables caching of function's return values. Repeated calls to the memoiz
same argument values will, instead of invoking the calculation encoded in the original function, re
from an internal transparent cache. Provided the calculation is considerably slower than retrievin
the cache, this allows users to trade-off memory for performance. Checkout out the example, wh
multiple websites for particular content:

The memoize functionality of GPars has been contributed to Groovy in version 1.8 and if you run
later, it is recommended to use the Groovy functionality. Memoize in GPars is almost identical, e:
the memoize caches concurrently using the surrounding thread pool and so may give performant
scenarios.

& The GPars memoize functionality has been renamed to avoid future conflicts with the
functionality in Groovy. GPars now calls the methods with a preceding letter g , such
gmemoize().

Examples of use

GPar sPool . wi t hPool {
def urls = ["http://ww.dzone.coni, '"http://ww.theserverside.com, 'http://ww:.infoq.con]
Cl osure downl oad = {url ->
println "Downl oadi ng $url"
url.toURL().text.toUpper Case()

Cl osure cachi ngDownl oad = downl oad. gnenoi ze()

println 'Goovy sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(url).contains(' GROOVY')}
i 'Grails sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(url).contains(' GRAILS)}

thn
println 'Giffon sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(url).contains(' GRI FFON)}
println 'Gadle sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(url).contains(' GRADLE')}
println 'Concurrency sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(url).contai ns(' CONCURRE
println 'GPars sites today: ' + urls.findAllParallel {url -> cachi ngDownl oad(url).contains('GPARS')}

Notice closures are enhanced inside the GParsPool.withPool() blocks with a memoize() function,
closure wrapping the original closure with a cache. In the example we're calling the cachingDowr
several places in the code, however, each unique url gets downloaded only once - the first time i
values are then cached and available for subsequent calls. And also to all threads, no matter whi
came first with a download request for the particular url and had to handle the actual calculation/i

So, to wrap up, memoize shields a function by a cache of past return values. However, memoize
some algorithms adding a little memory may have dramatic impact on the computational comple:
Let's look at a classical example of Fibonacci numbers.

Fibonacci example

A purely functional, recursive implementation, following closely the definition of Fibonacci numbe
complex:

Cosure fib={n->n>1?call(n- 1) + call(n - 2) : n}

Try calling the fib function with numbers around 30 and you'll see how slow it is.

Now with a little twist and added memoize cache the algorithm magically turns into a linearly corn

24

Closure fib
fib={n->n>172fib(n- 1) + fib(n - 2) : n}.gnenoize()

The extra memory we added cut off all but one recursive branches of the calculation. And all sub
same fib function will also benefit from the cached values.

Also, see below, how the memoizeAtMost variant can reduce memory consumption in our examg
linear complexity of the algorithm.

Available variants

memoize

The basic variant, which keeps values in the internal cache for the whole lifetime of the memoize
the best performance characteristics of all the variants.

memoizeAtMost

Allows the user to set a hard limit on number of items cached. Once the limit has been reached, .
values will eliminate the oldest value from the cache using the LRU (Last Recently Used) strateg

So for our Fibonacci number example, we could safely reduce the cache size to two items:

Closure fib
fib={n->n>1?2fib(n- 1) + fib(n - 2) : n}.nmenoi zeAt Most (2)

Setting an upper limit on the cache size may have two purposes:
1. Keep the memory footprint of the cache within defined boundaries

2. Preserve desired performance characteristics of the function. Too large caches may take lor
cached value than it would have taken to calculate the result directly.

memoizeAtLeast

Allows unlimited growth of the internal cache until the JVM's garbage collector decides to step in
SoftReferences, used by our implementation, from the memory. The single parameter value to th
method specifies the minimum number of cached items that should be protected from gc eviction
shrink below the specified number of entries. The cache ensures it only protects the most recentl
eviction using the LRU (Last Recently Used) strategy.

memoizeBetween

Combines memoizeAtLeast and memoizeAtMost and so allowing the cache to grow and shrink ir
the two parameter values depending on available memory and the gc activity, yet the cache size
upper size limit to preserve desired performance characteristics of the cache.

25

3.2 Map-Reduce

The Parallel Collection Map/Reduce DSL gives GPars a more functional flavor. In general, the M
be used for the same purpose as the xxxParallel() family methods and has very similar semantic:
Map/Reduce can perform considerably faster, if you need to chain multiple methods to process &
multiple steps:

println ' Nunber of occurrences of the word GROOVY today: ' + urls.parallel
.map {it.toURL().text.toUpperCase()}
filter {it.contains(' ")}
.map{it.split()}
.rmﬁ%i)t.findAll{word -> word. contains ' GROOVY'}.size()}
. su

The xxxParallel() methods have to follow the contract of their non-parallel peers. So a collectPar:
return a legal collection of items, which you can again treat as a Groovy collection. Internally the
builds an efficient parallel structure, called parallel array, performs the required operation concuri
returning destroys the Parallel Array building the collection of results to return to you. A potential
findAllParallel() on the resulting collection would repeat the whole process of construction and de
Array instance under the covers.

With Map/Reduce you turn your collection into a Parallel Array and back only once. The Map/Re:
do not return Groovy collections, but are free to pass along the internal Parallel Arrays directly. Ir
property on a collection will build a Parallel Array for the collection and return a thin wrapper arot
instance. Then you can chain all required methods like:

© map()

© reduce()
© filter()

© size()

© sum()

© min()

© max()

© sort()

© groupBy()

© combine()

Returning back to a plain Groovy collection instance is always just a matter of retrieving the colle

def nyNunmbers = (1..1000).parallel.filter{it %2 == 0}.nmap{Math.sqrt it}.collection

Avoid side-effects in functions

Once again we need to warn you. To avoid nasty surprises, please, keep your closures, which yc
Map/Reduce functions, stateless and clean from side-effects.

26

Availability

This feature is only available when using in the Fork/Join-based GParsPool , not in GParsExecut

Classical Example

A classical example, inspired by http://github.com/thevery, counting occurrences of words in a sti

inmport static groovyx.gpars. GParsPool . wi t hPool

def words = "This is just a plain text to count words in"
print count (words)

def count(arg) {
wi t hPool {
return arg.parallel
-mep{[it, 1]}
.groupBy{it[0]}.getParallel()
.map {it.value=it.value.size();it}
.sort{-it.value}.collection

The same example, now implemented the more general combine operation:

def words = "This is just a plain text to count words in"
print count (words)

def count(arg) {
wi t hPool {
return arg. parallel
~map{[it, 1]}
.conbi ne(0) {sum value -> sum + val ue}.getParallel ()
.sort{-it.value}.collection

Combine

The combine operation expects on its input a list of tuples (two-element lists) considered to be ke
[keyl, valuel, key2, value2, key1, value3, key3, value4 ...]) with potentially repeating keys. Wh
merges the values for identical keys using the provided accumulator function and produces a ma
(unigue) keys to their accumulated values. E.g. [a, b, c, d, a, e, c, f] will be combined into a : b+e
operation on the values needs to be provided by the user as the accumulation closure.

The accumulation function argument needs to specify a function to use for combining (accumulal
belonging to the same key. An initial accumulator value needs to be provided as well. Since the «
processes items in parallel, the initial accumulator value will be reused multiple times. Thus the
allow for reuse. It should be either a cloneable or immutable value or a closure returning a fres
each time requested. Good combinations of accumulator functions and reusable initial values inc

accunul at or
accunul at or

nt sum int value -> sum + val ue} initial Val ue
hoppi ngCart cart, Itemvalue -> cart.addltenm val

accunul at or Li st acc, value -> acc << value} initialValue = []
accunul at or List acc, value -> acc << value} initialValue = { [1
accumnul at or int sum int value -> acc + value} initialValue =

1 =

S |

o n
e
D~ OV

- }
-> 0}
ue)} initialValue = {-> new Shoppi ngCart ()}

The return type is a map. E.g. ['he’, 1, 'she’, 2, 'he’, 2, 'me’, 1, 'she, 5, 'he’, 1 with the initial value |
combined into 'he': 4, 'she': 7,'he’, : 2,'me': 1

27

& The keys will be mutually compared using their equals and hashCode methods. Cons
@Canonical or @EqualsAndHashCode to annotate classes that you use as keys. Jut
all hash maps in Groovy, be sure you're using a String not a GString as a key!

For more involved scenarios when you combine() complex objects, a good strategy here is to ha
used as a key for the common use cases and apply different keys for uncommon cases.

import groovy.transform ToString
import groovy.transform Tupl eConstructor

inmport static groovyx.gpars. GParsPool . wi t hPool

Tupl eConstructor ToString

class PricedCar inplenents C oneable {
String nodel
String col or
Doubl e price

bool ean equal s(final o) {
if (this.is(o)) return true
if (getClass() != o.class) return false

final PricedCar pricedCar = (PricedCar) o

if (color !'= pricedCar.color) return false
if (nmodel != pricedCar.nodel) return false

return true

int hashCode() {
int result
result = (nodel !'= null ? nodel.hashCode() : 0)
result = 31 * result + (color !'= null ? color.hashCode() : 0)
return result

@verride
protected Cbject clone()
return super.clone()

{

}

def cars = [new PricedCar (' F550', 'blue', 2342.223),
new PricedCar (' F550', 'red', 234.234),
new PricedCar('Da', 'white', 2222.2),
new PricedCar('Da', 'white', 1111.1)]

wi t hPool {
/| Conbi ne by nodel
def result =
cars.parallel.mp {
[it.nodel, it]
}. conbi ne(new PricedCar('', "NNA", 0.0)) {sum value ->
sum nodel = val ue. nodel
sum price += val ue. price
sum
}. val ues()

println result

/| Conbi ne by nodel and color (the PricedCar's equals and hashCode))
result =
cars. parallel.mp {
[it, it]
}. conbi ne(new PricedCar('', "NNA, 0.0)) {sum value ->
sum nodel = val ue. nodel
sum col or = val ue. col or
sum price += val ue. price
sum
}. val ues()

println result

3.3 Parallel Arrays

As an alternative, the efficient tree-based data structures defines in JSR-166y can be used direct
property on any collection or object will return a jsr166y.forkjoin.ParallelArray instance holding th
original collection, which then can be manipulated through the jsr166y API. Please refer to the jsi
for the API details.

28

i nport groovyx. gpars.extral66y. Ops

groovyx. gpars. GPar sPool . wi t hPool {

assert 15 == [1, 2, 3, 4, 5].parallelArray.reduce({a, b -> a + b} as Ops. Reducer, 0)
[/ summari ze

assert 55 == [1, 2, 3, 4, 5].parallelArray.w thMapping({it ** 2} as Ops. O).reduce({a, b -> a + b} as Ops.
[/ sunmari ze squares

assert 20 == [1, 2, 3, 4, 5].parallelArray.withFilter({it %2 == 0} as Ops. Predicate)

// summari ze squares of even nunbers
.wi thMapping({it ** 2} as Ops.Op)
.reduce({a, b -> a + b} as Ops. Reducer, 0)

assert 'aa:bb:cc:dd:ee' == 'abcde'.parallelArray
/ /I concat enate duplicated characters wi th separator
.wi thMapping({it * 2} as Ops. Op)
.reduce({a, b -> "$a:$b"} as Ops. Reducer, "")

3.4 Asynchronous Invocation

Running long-lasting tasks in the background belongs to the activities, the need for which arises
main thread of execution wants to initialize a few calculations, downloads, searches or such, how
not be needed immediately. GPars gives the developers the tools to schedule the asynchronous
processing in the background and collect the results once they're needed.

Usage of GParsPool and GParsExecutorsPool asynchronous proces:

Both GParsPool and GParsExecutorsPool provide almost identical services in this domain, altho
different underlying machinery, based on which of the two classes the user chooses.

Closures enhancements

The following methods are added to closures inside the GPars(Executors)Pool.withPool() blocks

© async() - Creates an asynchronous variant of the supplied closure, which when invoked retu
potential return value

© callAsync() - Calls a closure in a separate thread supplying the given arguments, returning a
return value,

Examples:

GPar sPool . wi t hPool () {

Cl osure | onglLastingCal cul ation = {cal culate()}

Closure fastCal cul ation = | ongLasti ngCal cul ati on.async() //create a new closure, which starts the origine
pool

Future resul t=fastCal cul ati on() //returns al nost i medi ately

//do stuff while calculation perfornms ...

println result.get()

GPar sPool . wi t hPool () {
/**

* The cal | Async() nethod is an asynchronous variant of the default call() nmethod to invoke a closure.
* It will return a Future for the result val ue.

*/

assert 6 == {it * 2}.call(3)

assert 6 == {it * 2}.callAsync(3).get()

Timeouts

29

The callTimeoutAsync() methods, taking either a long value or a Duration instance, allow the use
calculation cancelled after a given time interval.

{->
while(true) {
Thread. sl eep 1000 //Sinulate a bit of interesting calcul ation
if (Thread.currentThread().islnterrupted()) break; //W' ve been cancelled

}
}.cal | Ti meout Async(2000)

In order to allow cancellation, the asynchronously running code must keep checking the interrupt
thread and cease the calculation once the flag is set to true.

Executor Service enhancements

The ExecutorService and jsr166y.forkjoin.ForkJoinPool class is enhanced with the << (leftShift) ¢
tasks to the pool and return a Future for the result.

Example:

GPar sExecut or sPool . wi t hPool {Execut or Servi ce executor Servi ce ->
executorService << {println '"Inside parallel task'}

Running functions (closures) in parallel

The GParsPool and GParsExecutorsPool classes also provide handy methods executeAsync() &
executeAsyncAndWait() to easily run multiple closures asynchronously.

Example:

GPar sPool . wi t hPool {
assert [10, 20] == GParsPool . execut eAsyncAndWai t ({cal cul ateA()}, {calculateB()} /Iwaits for result
assert [10, 20] == GParsPool . execut eAsync({cal cul ateA()}, {calculateB()})*.get() //returns Futures instee
results to be cal cul ated

3.5 Composable Asynchronous Functions

Functions are to be composed. In fact, composing side-effect-free functions is very easy. Much €
composing objects, for example. Given the same input, functions always return the same result, -
their behavior unexpectedly nor they break when multiple threads call them at the same time.

Functions in Groovy

We can treat Groovy closures as functions. They take arguments, do their calculation and return
don't let your closures touch anything outside their scope, your closures are well-behaved pure fi
that you can combine for a better good.

def sum = (0..100000).inject(0, {a, b ->a + b})

For example, by combining a function adding two numbers with the inject function, which iterates
collection, you can quickly summarize all items. Then, replacing the adding function with a compi
immediately give you a combined function calculating maximum.

30

31

def max = myNunbers.inject(0, {a, b -> a>b?a:b})

You see, functional programming is popular for a reason.

Are we concurrent yet?

This all works just fine until you realize you're not utilizing the full power of your expensive hardw
plain sequential. No parallelism in here. All but one processor core do nothing, they're idle, totally

&y Those paying attention would suggest to use the Parallel Collection techniques descr
earlier and they would certainly be correct. For our scenario described here, where w
a collection, using those parallel methods would be the best choice. However, we're r
looking for a generic way to create and combine asynchronous functions , which
help us not only for collection processing but mostly in other more generic cases, like
right below.

To make things more obvious, here's an example of combining four functions, which are suppose
particular web page matches the contents of a local file. We need to download the page, load the
of both and finally compare the resulting numbers.

Cl osure download = {String url ->
url.toURL().text
}

Closure loadFile = {String fil eNane ->
.. I/load the file here
}

Cl osure hash = {s -> s. hashCode()}

Closure conpare = {int first, int second ->

first == second
def result = conpare(hash(downl oad(' http://ww.gpars.org')), hash(loadFile('/cool Stuff/gpars/website/index.htr
println "The result of conparison: " + result

We need to download the page, load up the file, calculate hashes of both and finally compare the
Each of the functions is responsible for one particular job. One downloads the content, second lo
calculates the hashes and finally the fourth one will do the comparison. Combining the functions
their calls.

Making it all asynchronous

The downside of our code is that we don't leverage the independence of the download() and the
Neither we allow the two hashes to be run concurrently. They could well run in parallel, but our w
functions restricts any parallelism.

Obviously not all of the functions can run concurrently. Some functions depend on results of othe
before the other function finishes. We need to block them till their parameters are available. The
a string to work on. The compare() function needs two numbers to compare.

So we can only parallelize some functions, while blocking parallelism of others. Seems like a cha

Things are bright in the functional world

Luckily, the dependencies between functions are already expressed implicitly in the code. There'
duplicate the dependency information. If one functions takes parameters and the parameters nee
by another function, we implicitly have a dependency here. The hash() function depends on the |
the download() functions in our example. The inject function in our earlier example depends on tt
addition functions invoked gradually on all the elements of the collection.

& However difficult it may seem at first, our task is in fact very simple. We only need to-
functions to return promises of their future results. And we need to teach the other fur
accept those promises as parameters so that they wait for the real values before they
work. And if we convince the functions to release the threads they hold while waiting
values, we get directly to where the magic can happen.

In the good tradition of GPars we've made it very straightforward for you to convince any functior
functions' promises. Call the asyncFun() function on a closure and you're asynchronous.

wi t hPool {
def maxProm se = nunbers.inject(0, {a, b -> a>b?a:b}.asyncFun())
println "Look Ma, | can talk to the user while the math is being done for ne!"

println maxProm se. get ()

The inject function doesn't really care what objects are being returned from the addition function,
surprised that each call to the addition function returns so fast, but doesn't moan much, keeps ite
returns the overall result to you.

Now, this is the time you should stand behind what you say and do what you want others to do. [
and just accepts that you got back just a promise. A promise to get the result delivered as soon
done. The extra heat coming out of your laptop is an indication the calculation exploits natural pa
functions and makes its best effort to deliver the result to you quickly.

&y The promise is a good old DataflowVariable , so you may query its status, register no
hooks or make it an input to a Dataflow algorithm.

wi t hPool {
def sunPromise = (0..100000).inject(0, {a, b -> a + b}.asyncFun())
println "Are we done yet? " + sunProm se. bound
sunProm se. whenBound {sum -> println sun}

}

& The get() method has also a variant with a timeout parameter, if you want to avoid the
waiting indefinitely.

Can things go wrong?

Sure. But you'll get an exception thrown from the result promise get() method.

try {
sunPromi se. get ()
} catch (MyCal cul ati onException e) {
println "Cuess, things are not ideal today."

32

This is all fine, but what functions can be really combined?

There are no limits. Take any sequential functions you need to combine and you should be able
asynchronous variants as well.

Back to our initial example comparing content of a file with a web page, we simply make all the ft
by calling the asyncFun() method on them and we are ready to set off.

Cl osure download = {String url ->
url.toURL().text
}. asyncFun()

Closure loadFile = {String fil eNane ->
. Ilload the file here
}. asyncFun()

Cl osure hash = {s -> s. hashCode()}.asyncFun()

Closure conpare = {int first, int second ->
first == second
}. asyncFun()

def result = conpare(hash(downl oad(' http://ww.gpars.org')), hash(loadFile('/cool Stuff/gpars/website/index.htr
println "Alowed to do sonething el se now
println "The result of conparison: " + result.get()

Calling asynchronous functions from within asynchronous functions

Another very valuable characteristics of asynchronous functions is that their result promises can

inmport static groovyx.gpars. GParsPool . wi t hPool

wi t hPool {
Closure plus = {Integer a, Integer b ->
sl eep 3000
println "Addi ng nunbers’
a+b
}. asyncFun()

Closure multiply = {Integer a, Integer b ->
sl eep 2000
a*b
}.asyncFun()

Cl osure neasureTinme = {->
sl eep 3000
4

}.asyncFun()

Closure distance = {Integer initial Distance, Integer velocity, Integer tine ->
plus(initial Distance, multiply(velocity, tinge))
}.asyncFun()

Closure chattyDi stance = {Integer initial D stance, |Integer velocity, Integer time ->
println "Al paraneters are now ready - starting'
println 'About to call another asynchronous function'
def innerResultPronise = plus(initialDistance, multiply(velocity, tine))
println 'Returning the pronise for the inner calculation as ny own result'
return i nnerResul t Prom se
}.asyncFun()

println "Distance = " + di stance(100, 20, neasureTine()).get() + ' ni
println "ChattyDi stance = " + chattyDi stance(100, 20, neasureTine()).get() + ' ni

If an asynchronous function (e.f. the distance function in the example) in its body calls another as
(e.g. plus) and returns the the promise of the invoked function, the inner function's (plus) result
with the outer function's (distance) result promise. The inner function (plus) will now bind its re
function's (distance) promise, once the inner function (plus) finishes its calculation. This ability ¢
allows functions to cease their calculation without blocking a thread not only when waiting for par
whenever they call another asynchronous function anywhere in their body.

33

Methods as asynchronous functions

Methods can be referred to as closures using the .& operator. These closures can then be transf
into composable asynchronous functions just like ordinary closures.

cl ass Downl oadHel per {
String downl oad(String url) {
url.toURL().text

int scanFor(String word, String text) {
text.findAl I (word). size()
}

String lower(s) {
s. t oLower Case()
}

}

/I now we' Il make the nmethods asynchronous

wi t hPool {
final Downl oadHel per d = new Downl oadHel per ()
Cl osure downl oad = d. &lownl oad. asyncFun()
Cl osure scanFor = d. &scanFor.asyncFun()
Closure | ower = d. & ower.asyncFun()

/' asynchr onous processing
def result = scanFor (' groovy', |ower(download('http://ww:.infoqg.com)))
println "Alowed to do sonething el se now
println result.get()

Using annotation to create asynchronous functions

Instead of calling the asyncFun() function, the @AsyncFun annotation can be used to annotate C
The fields have to be initialized in-place and the containing class needs to be instantiated withing

inmport static groovyx.gpars. GParsPool . wi t hPool
import groovyx.gpars. AsyncFun

cl ass Downl oadi ngSear ch {
@syncFun C osure download = {String url ->
url.toURL().text
}

@syncFun C osure scanFor = {String word, String text ->
text. findAll (word). size()
}

@syncFun Closure lower = {s -> s.toLower Case()}

void scan() {
def result = scanFor('groovy', |ower(download('http://ww.infoq.com))) //synchronous processing
printin "Allowed to do sonething el se now
println result.get()

}

wi t hPool {
new Downl oadi ngSear ch() . scan()

Alternative pools

The AsyncFun annotation by default uses an instance of GParsPool from the wrapping withPool
however, specify the type of pool explicitly:

@\syncFun(GPar sExecut orsPool Util) def sumb = {a, b ->a + b}

Blocking functions through annotations

The AsyncFun also allows the user to specify, whether the resulting function should have blockin
non-blocking (false - default) semantics.

@\syncFun(bl ocki ng = true)
def sum={a, b->a + b}

Explicit and delayed pool assignment

When using the GPars(Executors)PoolUtil.asyncFun() function directly to create an asynchronou
two additional options to assign a thread pool to the function.

1. The thread pool to use by the function can be specified explicitly as an additional argument ¢

2. The implicit thread pool can be obtained from the surrounding scope at invocation rather at ¢

When specifying the thread pool explicitly, the call doesn't need to be wrapped in an withPool() b

Closure sPlus = {Integer a, Integer b ->
a+hb
}

Closure sMultiply = {Integer a, Integer b ->
sl eep 2000
a* b
}
println "Synchronous result: " + sMultiply(sPlus(10, 30), 100)
final pool = new FJPool ()

Closure aPlus = GParsPool Util.asyncFun(sPl us, pool)
Closure aMiltiply = GParsPool Util.asyncFun(sMiltiply, pool)

def result = aMultiply(aPlus(10, 30), 100)

println "Tine to do sonething el se while the calculation is running"
println "Asynchronous result: " + result.get()

With delayed pool assignment only the function invocation must be surrounded with a withPool()

Cl osure aPlus = GParsPool Uil .asyncFun(sPl us)
Closure aMil tiply = GParsPool Util.asyncFun(sMltiply)

wi t hPool {
def result = aMultiply(aPlus(10, 30), 100)

println "Tine to do sonething else while the calculation is running"
println "Asynchronous result: " + result.get()

On our side this is a very interesting domain to explore, so any comments, questions or suggesti
asynchronous functions or hints about its limits are welcome.

3.6 Fork-Join
Fork/Join or Divide and Conquer is a very powerful abstraction to solve hierarchical problems.

The abstraction

When talking about hierarchical problems, think about quick sort, merge sort, file system or gene
such.

35

© Fork / Join algorithms essentially split a problem at hands into several smaller sub-problems
the same algorithm to each of the sub-problems.

© Once the sub-problem is small enough, it is solved directly.

© The solutions of all sub-problems are combined to solve their parent problem, which in turn |
parent problem.

& Check out the fancy interactive Fork/Join visualization demo , which will show you ho
cooperate to solve a common divide-and-conquer algorithm.

The mighty JSR-166y library solves Fork / Join orchestration pretty nicely for us, but leaves a co
which can hurt you, if you don't pay attention enough. You still deal with threads, pools or synchr

The GPars abstraction convenience layer

GPars can hide the complexities of dealing with threads, pools and recursive tasks from you, yet
powerful Fork/Join implementation in jsr166y.

inmport static groovyx.gpars. GParsPool . runForkJoi n
inmport static groovyx.gpars. GParsPool . wi t hPool

wi t hPool () {
println """Nunmber of files: ${
runFor kJoi n(new File("./src")) {file ->
long count = 0
file.eachFile {
if (it.isDrectory()) {
println "Forking a child task for $it"
forkOFfChild(it) /lfork a child task
} else {
count ++

}
return count + (childrenResults.sunm(0))
/luse results of children tasks to calculate and store own result

The runForkJoin() factory method will use the supplied recursive code together with the provided
hierarchical Fork/Join calculation. The number of values passed to the runForkJoin() method mu:
expected parameters of the closure as well as the number of arguments passed into the forkOffC
runChildDirectly() methods.

def qui cksort (nunbers) {

wi t hPool {
runFor kJoi n(0, nunbers) {index, list ->
def groups = list.groupBy {it <=> list[list.size().intdiv(2)]}
if ((list.size() <2) || (groups.size() == 1)) {
) return [index: index, list: list.clone()]
(-1..1).each {forkOfChild(it, groups[it] ?: [])}
return [index: index, list: childrenResults.sort {it.index}.sum{it.list}]
}.olist

36

http://blog.krecan.net/2011/03/27/visualizing-forkjoin/

& The important piece of the puzzle that needs to be mentioned here is that forkOffChils
walit for the child to run. It merely schedules it for execution some time in the future. If
fails by throwing an exception, you should not expect the exception to be fired from tt
forkOffChild() method itself. The exception ise likely to happen long after the parent h
returned from the call to the forkOffChild() method.

It is the getChildrenResults() method that will re-throw exceptions that happened in tr
sub-tasks back to the parent task.

Alternative approach

Alternatively, the underlying mechanism of nested Fork/Join worker tasks can be used directly. C
workers can eliminate the performance overhead associated with parameter spreading imposed
generic workers. Also, custom workers can be implemented in Java and so further increase the
algorithm.

public final class FileCounter extends AbstractForkJoi nWorker<Long> {
private final File file;

def FileCounter(final File file) {
this.file =file

@verride
protected Long conputeTask() {
long count = O;
file.eachFile {
if (it.isDrectory()) {
println "Forking a thread for $it"
forkOf f Chil d(new Fil eCounter(it)) //fork a child task
} else {
count ++

return count + ((childrenResults)?.sun{) ?: 0) //use results of children tasks to calculate and store

}

wi t hPool (1) {pool -> //feel free to experinent with the nunber of fork/join threads in the pool
println "Nunber of files: ${runForkJoin(new FileCounter(new File("..")))}"

The AbstractForkJoinWorker subclasses may be written both in Java or Groovy, giving you the o
for execution speed, if row performance of the worker becomes a bottleneck.

Fork / Join saves your resources

Fork/Join operations can be safely run with small number of threads thanks to internally using the
synchronize the threads. While a thread is blocked inside an algorithm waiting for its sub-problen
thread is silently returned to the pool to take on any of the available sub-problems from the task ¢
them. Although the algorithm creates as many tasks as there are sub-directories and tasks wait f
tasks to complete, as few as one thread is enough to keep the computation going and eventually
result.

Mergesort example

37

inport static groovyx.gpars. GPar sPool . runFor kJoi n
inmport static groovyx.gpars. GParsPool . wi t hPool

/**

* Splits a list of nunbers in half
*/

def split(List<Integer> list) {

int listSize = list.size()
int mddlelndex = |istSize / 2
def listl = list[0..<m ddl el ndex]
def list2 = list[mddlelndex..listSize - 1]
return [listl, list2]
}
/**

* Merges two sorted |lists into one
*/

Li st<l nteger> nerge(List<lnteger> a, List<lnteger> b) {
int i =0 j =0
final int newSize = a.size() + b.size()
Li st<Integer> result = new ArrayLi st<Integer>(newSi ze)

while ((i < a.size()) & (j < b.size())) {
if (a[i] <= Db[j]) result << a[i ++]
el se result << b[]++]

if (i <a.size()) result.addAll(a[i..-1])
el se result.addAl |l (b[j..-1])
return result

final def numbers =1[1, 5 2, 4, 3, 8 6, 7, 3, 4 5 2,2, 9,8 7,6, 7 8 1, 4 1, 7, 5 8, 2, 3, 9, 5 7

wi thPool (3) { //feel free to experinment with the nunber of fork/join threads in the pool
println """Sorted nunbers: ${
runFor kJoi n(nunbers) {nuns ->
println "Thread ${Thread. current Thread().nanme[-1]}: Sorting $nuns"
switch (nuns.size())

case 0..1:

return nunms //store own result
case 2:

if (nums[0] <= nuns[1]) return nuns //store own result

el se return nuns[-1..0] //store own result
defaul t:

def splitList =s
[splitList[0], sp
return nmerge(* ch

(nuns)

pli
lit
ild

}
or

t
List[1]].each {forkOifChild it} //fork a child task
renResul ts) //use results of children tasks to calculate and stor

Mergesort example using a custom-tailored worker class

38

public final class SortWrker extends Abstract For kJoi nWor ker <Li st <I nt eger >> {
private final List nunbers

def SortWorker(final List<lnteger> nunbers) {
t hi s. nunbers = nunbers. asl mut abl e()

}
/**
* Splits a list of nunbers in half
*/
def split(List<lInteger> list) {
int ||stS|ze—||st si ze()
int mddl elndex = listSize / 2
def listl = I|st[0..<m'ddle|ndex]
def list2 = list[mddlelndex..listSize - 1]
return [list 1, I'1st2]
}
/**

* Merges two sorted lists into one
*/

Li st <I nteger> mer ge(Li st<Integer> a, List<lInteger> b) {
int i =0, j =
final int neWSlze—aS|ze() + b.size()
Li st<Integer> result = new ArrayLi st<Integer>(newsSi ze)

while ((i < a.size()) & (j < b.size())) {
if (a[i] <= b[j]) result << a[i++]
el se result << b[j++]

}

if (i <a.size()) result.addAll(a[i..-1])
el se result.addAl | (b[j..-1])
return result

}
/**
* Sorts a small list or delegates to two children, if the |list contains nore than two el enents.
*/
@verride
protected Li st<| nt eger > conput eTask() {
println "Thread ${Thread.currentThread().name[-1]}: Sorting $nunbers"
switch (nunbers.size()) {
case 0..1:
return nunbers //store own result
case 2:
if (nunbers[0] <= nurrbers[l]) return nunbers //store own result
el se return nunbersJ- 0] //store own result
defaul t:
def splitList = split(nunbers)
[new SortWorker (splitList[0]), new SortWorker(splitList[1])].each{forkOifChild it}
) return nerge(* childrenResults) /luse results of children tasks to calculate and store ov
}
}

wi thPool (1) { //feel free to experinment with the number of fork/join threads in the pool
println "Sorted nunbers: ${runForkJoi n(new SortWorker (nunbers))}"

final def nunbers =[1, 5, 2, 4, 3, 8 6, 7, 3, 4, 5 2, 2,9, 8, 7,6, 7, 8 1, 4, 1, 7, 5 8, 2, 3, 9, 5 7,

Running child tasks directly

The forkOffChild() method has a sibling - the runChildDirectly() method, which will run the child te
immediately within the current thread instead of scheduling the child task for asynchronous proce
pool. Typically you'll call _forkOffChild() on all sub-tasks but the last, which you invoke directly wi
overhead.

Closure fib = {nunber ->
if (number <= 2) {
return 1
}
forkO f Chil d(nunber - 1) /1 This task will run asynchronously, probabl
final def result = runChildDirectly(nunber - 2) /1 This task is run directly within the curre
return (Integer) getChildrenResults().sum() + result
}
wi t hPool {
assert 55 == runForkJoi n(10, fib)
}
Availability

39

This feature is only available when using in the Fork/Join-based GParsPool , not in GParsExecut

3.7 Parallel Speculations

With processor cores having become plentiful, some algorithms might benefit from brutal-force p.
Instead of deciding up-front about how to solve a problem, what algorithm to use or which locatio
run all potential solutions in parallel.

Parallel speculations

Imagine you need to perform a task like e.g. calculate an expensive function or read data from a
internet. Luckily, you know of several good ways (e.g. functions or urls) to achieve your goal. Ho\
equal. Although they return back the same (as far as your needs are concerned) result, they may
amount of time to complete and some of them may even fail (e.g. network issues). What's worse
you which path gives you the solution first nor which paths lead to no solution at all. Shall | run qt
on my list? Which url will work best? Is this service available at its primary location or should | us

GPars speculations give you the option to try all the available alternatives in parallel and so get tl
fastest functional path, silently ignoring the slow or broken ones.

This is what the speculate() methods on GParsPool and GParsExecutorsPool() can do.

def nunbers =
def qui ckSort
def mergeSort
def sortedNunbers = specul ate(qui ckSort, nergeSort)

Here we're performing both quick sort and merge sort concurrently, while getting the result of th
parallel resources available these days on mainstream hardware, running the two functions in pa
dramatic impact on speed of calculation of either one, and so we get the result in about the same
solely the faster of the two calculations. And we get the result sooner than when running the slow
have to know up-front, which of the two sorting algorithms would perform better on our data. Thu

Similarly, downloading a document from multiple sources of different speed and reliability would |

inmport static groovyx.gpars. GParsPool . specul at e
inmport static groovyx.gpars. GParsPool . wi t hPool

def alternativel = {
"http://ww. dzone. conl | i nks/index. htm'.toURL().text

def alternative2 = {
"http://ww.dzone. conl'.toURL().text

def alternative3 = {
"http://ww. dzzzzzone. com'.toURL().text //wong url

def alternative4 = {
"http://dzone. com ' .toURL().text

wi t hPool (4) {
println speculate([alternativel, alternative2, alternative3, alternative4]).contains('groovy')

& Make sure the surrounding thread pool has enough threads to process all alternative:s
parallel. The size of the pool should match the number of closures supplied.

40

Alternatives using dataflow variables and streams

In cases, when stopping unsuccessful alternatives is not needed, dataflow variables or streams r
the result value from the winning speculation.

&y Please refer to the Dataflow Concurrency section of the User Guide for details on Dai
variables and streams.

i mport groovyx. gpars. dat af | ow. Dat af | owQueue
inmport static groovyx.gpars.datafl ow Datafl ow. task

def alternativel = {
"http://ww. dzone. conl | i nks/index. htm'.toURL().text

def alternative2 = {
"http://ww. dzone. con’'.toURL().text

def alternative3d = {
"http://ww. dzzzzzone. com ' . toURL().text //will fail due to wong url

def alternative4 = {
"http://dzone.com'.toURL().text

}
/1 Pick either one of the followi ng, both will work:
final def result = new Datafl owQueue()
/1 final def result = new Datafl owari abl e()
[alternativel, alternative2, alternative3, alternative4].each {code ->
task {
try {

result << code()
} catch (ignore) { } //We deliberately ignore unsuccessful urls

}

println result.val.contains('groovy')

41

4 Groovy CSP

The CSP (Communicating Sequential Processes) abstraction builds on independent composable
exchange messages in a synchronous manner. GPars leverages the JCSP library developed at
UK.

Jon Kerridge, the author of the CSP implementation in GPars, provides exhaustive examples on
his website:

&y The GroovyCSP implementation leverages JCSP, a Java-based CSP library, which is
under LGPL. There are some differences between the Apache 2 license, which GPar
and LGPL. Please make sure your application conforms to the LGPL rules before ens
use of JCSP in your code.

If the LGPL license is not adequate for your use, you might consider checking out the Dataflow C
this User Guide to learn about tasks , selectors and operators , which may help you resolve conc
similar to the CSP approach. In fact the dataflow and CSP concepts, as implemented in GPars, ¢
each other.

&y By default, without actively adding an explicit dependency on JCSP in your build file ¢
downloading and including the JCSP jar file in your project, the standard
commercial-software-friendly Apache 2 License terms apply to your project. GPars di
depends on software licensed under licenses compatible with the Apache 2 License.

The CSP model principles

In essence, the CSP model builds on independent concurrent processes, which mutually commu
channels using synchronous (i.e. rendezvous) message passing. Unlike actors or dataflow opera
around the event-processing pattern, CSP processes place focus the their activities (aka sequen
communication to stay mutually in sync along the way.

Since the addressing is indirect through channels, the processes do not need to know about one
typically consist of a set of input and output channels and a body. Once a CSP process is startec
from a thread pool and starts processing its body, pausing only when reading from a channel or\
Some implementations (e.g. GoLang) can also detach the thread from the CSP process when bl

CSP programs are deterministic. The same data on the program's input will always generate the
irrespective of the actual thread-scheduling scheme used. This helps a lot when debugging CSP
analyzing deadlocks.

Determinism combined with indirect addressing result in a great level of composability of CSP pr:
combine small CSP processes into bigger ones just by connecting their input and output channel
them by another, bigger containing process.

The CSP model introduces non-determinism using Alternatives . A process can attempt to read ¢
channels at the same time through a construct called Alternative or Select . The first value that b
any of the channels involved in the Select will be read and consumed by the process. Since the (
received through a Select depends on unpredictable conditions during program run-time, the val
non-deterministic.

42

http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://www.soc.napier.ac.uk/~cs10/#_Toc271192596

CSP with GPars dataflow

GPars provides all the necessary building blocks to create CSP processes.

© CSP Processes can be modelled through GPars tasks using a Closure , a Runnable or a C
actual implementation of the process

© CSP Channels should be modelled with SyncDataflowQueue and SyncDataflowBroadcast ¢

© CSP Alternative is provided through the Select class with its select and prioritySelect methc

Processes

To start a process simply use the task factory method.

i nport groovyx. gpars. group. Def aul t PG oup
i nport groovyx. gpars. schedul er. Resi zeabl ePool

group = new Def aul t PG oup(new Resi zeabl ePool (true))
def t = group.task {
println "I ama process"

t.join()

&y Since each process consumes a thread for its lifetime, it is advisable to use resizeabl
pools as in the example above.

A process can also be created from a Runnable or Callable object:

i mport groovyx.gpars. group. Def aul t PG oup
i mport groovyx. gpars. schedul er. Resi zeabl ePool

group = new Def aul t PG oup(new Resi zeabl ePool (true))
class MyProcess inplenments Runnable {
@verride

void run() {
println "I ama process"

def t = group.task new MyProcess()

t.join()

Using Callable allows for values to be returned through the get() method:

i nport groovyx. gpars. group. Def aul t PGr oup
import groovyx. gpars.schedul er. Resi zeabl ePool

inmport java.util.concurrent.Callable
group = new Def aul t PG oup(new Resi zeabl ePool (true))
cl ass MyProcess inplenents Cal |l abl e<String> {
@verride

String call () {

println "I ama process"
return "CSP is great!"

def t = group.task new MyProcess()

println t.get()

43

Channels

Processes typically need channels to communicate with the other processes as well as with the «

i nport groovy. transform Tupl eConstruct or

i nport groovyx. gpars. dat af | ow. Dat af | owReadChannel

i nport groovyx. gpars. dat af | ow. Dat af | owW i t eChannel
i mport groovyx.gpars. group. Def aul t PG oup

import groovyx. gpars. schedul er. Resi zeabl ePool

inmport java.util.concurrent.Callable
import groovyx. gpars. datafl ow. SyncDat af | owQueue

group = new Def aul t PG oup(new Resi zeabl ePool (true))

@rupl eConst ruct or

class Geeter inplenents Callabl e<String> {
Dat af | owReadChannel nanes
Dat af | owW i t eChannel greetings

@verride
String call () {
whi | e(! Thread. current Thread().islnterrupted()) {
String name = nanes.val
greetings << "Hello " + nane

}
return "CSP is great!"

}
}
def a = new SyncDat af | owQueue()
def b = new SyncDat af | owQueue()

group.task new Greeter(a, b)

a << "Joe"
a << "Dave"
println b.val
println b.val

& The CSP model uses synchronous messaging, however, in GPars you may consider
asynchronous channels as well as synchronous ones. You can also combine these tv
of channels within the same process.

Composition

Grouping processes is then just a matter of connecting them with channels:

group = new Def aul t PG oup(new Resi zeabl ePool (true))

@rupl eConst ruct or

class Formatter inplenents Callabl e<String> {
Dat af | ownReadChannel rawNanes
Dat af | owW i t eChannel formattedNanmes

@verride
String call () {
whi | e(! Thread. current Thread().islnterrupted()) {
String nane = rawNanes. val
format t edNanmes << nane. t oUpper Case()

}
}

@rupl eConst ruct or

class Greeter inplenents Callable<String> {
Dat af | owReadChannel namnes
Dat af | oW i t eChannel greetings

@verride
String call () {
whi | e(! Thread. current Thread().islnterrupted()) {
String name = nanes.val
greetings << "Hello " + nane

}
}
def a = new SyncDat af | owQueue()
def b = new SyncDat af | owQueue()
def ¢ = new SyncDat af | owQueue()

group. task new Formatter(a, b)
group. task new Geeter(b, c)

a << "Joe"
a << "Dave"
println c.val
println c.val

45

Alternatives

To introduce non-determinist GPars offers the Select class with its select and prioritySelect meth

i nport groovy. transform Tupl eConstruct or

import groovyx. gpars. dat af | ow. SyncDat af | owQueue

i mport groovyx. gpars. dat af | ow. Dat af | owReadChannel
import groovyx. gpars. dat af | ow. Dat af | owW i t eChannel
i mport groovyx. gpars. dat af | ow. Sel ect

i mport groovyx.gpars. group. Def aul t PG oup

import groovyx. gpars. schedul er. Resi zeabl ePool

inmport static groovyx.gpars.datafl ow Datafl ow. sel ect
group = new Def aul t PG oup(new Resi zeabl ePool (true))

@rupl eConst ruct or
cl ass Receptionist inplements Runnable {
Dat af | owReadChannel enmils
Dat af | owReadChannel phoneCal |l s
Dat af | onReadChannel tweets
Dat af | owW i t eChannel forwardedMessages

private final Select incom ngRequests = sel ect([phoneCalls, enmils, tweets]) //prioritySelect() would give hi
phone calls

@verride
void run() {
whi | e(! Thread. current Thread().islnterrupted()) {
String nsg = i ncom ngRequests. sel ect ()
f or war dedMessages << nsg. t oUpper Case()

}
}
}
def a = new SyncDat af | owQueue()
def b = new SyncDat af | owQueue()
def ¢ = new SyncDat af | owQueue()
def d = new SyncDat af | owQueue()

group. task new Receptionist(a, b, c, d)

a << "ny emil"
b << "ny phone cal | "
c << "ny tweet"

/1 The val ues conme in random order since the process uses a Select to read its input
3. ti mes{
println d.val.val ue

Components

CSP processes can be composed into larger entities. Suppose you already have a set of CSP pr
Runnable/Callable classes), you can compose them into a larger process:

final class Prefix inplenments Callable {
private final DataflowChannel inChannel
private final DataflowChannel outChannel
private final def prefix

def Prefix(final inChannel, final outChannel, final prefix) {
this.inChannel = inChannel;
t hi s. out Channel = out Channel ;
this.prefix = prefix

public def call() {
out Channel << prefix
while (true) {
sl eep 200
out Channel << inChannel.va

46

final class Copy inplenents Callable {
private final DataflowChannel inChannel
private final DataflowChannel outChannel 1
private final DataflowChannel outChannel 2

def Copy(final inChannel, final outChannel 1, final outChannel2) {
t hi s. i nChannel = inChannel ;
t hi s. out Channel 1 = out Channel 1;
t hi s. out Channel 2 = out Channel 2;
}

public def call()
final PG oup group = Dataflow. retrieveCurrent DFPG oup()
while (true) {
def i = inChannel.val
group. task {
out Channel 1 << i
out Channel 2 << i

}.join()

i mport groovyx. gpars. dat af | ow. Dat af | owChannel
i mport groovyx. gpars. dataf | ow. SyncDat af | owQueue
i mport groovyx.gpars. group. Def aul t PG oup

group = new Def aul t PG oup(6)

def fib(DataflowChannel out) {
group. task {

def a = new SyncDat af | owQueue()
def b = new SyncDat af | owQueue()
def ¢ = new SyncDat af | owQueue()
def d = new SyncDat af | owQueue()

[new Prefix(d, a, OL), new Prefix(c, d, 1L), new Copy(a, b, out),

}

final SyncDatafl owQueue ch = new SyncDat af | owQueue()
group. task new Print (' Fibonacci nunbers', ch)
fib(ch)

sl eep 10000

new St at ePai rs(b,

c)].each { group.t

47

5 Actors

The actor support in GPars was originally inspired by the Actors library in Scala, but has since gc
Scala offers as standard.

Actors allow for a message passing-based concurrency model: programs are collections of indeg.
that exchange messages and have no mutable shared state. Actors can help developers avoid i<
deadlock, live-lock and starvation, which are common problems for shared memory based appro
way of leveraging the multi-core nature of today's hardware without all the problems traditionally
shared-memory multi-threading, which is why programming languages such as Erlang and Scals
model.

A nice article summarizing the key concepts behind actors was written recently by Ruben Verme
guarantee that at most one thread processes the actor's body at any one time and also, unde
memory gets synchronized each time a thread gets assigned to an actor so the actor's state can
by code in the body without any other extra (synchronization or locking) effort . Ideally actor
be invoked directly from outside so all the code of the actor class can only be executed by the tt
received message and so all the actor's code is implicitly thread-safe . If any of the actor's metl
called by other objects directly, the thread-safety guarantee for the actor's code and state are no

Types of actors

In general, you can find two types of actors in the wild - ones that hold implicit state and those,
you both options. Stateless actors, represented in GPars by the DynamicDispatchActor and the
classes, keep no track of what messages have arrived previously. You may thing of these as flat
which process messages as they come. Any state-based behavior has to be implemented by the

The stateful actors, represented in GPars by the DefaultActor class (and previously also by the ,
class), allow the user to handle implicit state directly. After receiving a message the actor moves
different ways to handle future messages. To give you an example, a freshly started actor may o
of messages, e.g. encrypted messages for decryption, only after it has received the encryption ki
allow to encode such dependencies directly in the structure of the message-handling code. Impli
however, comes at a slight performance cost, mainly due to the lack of continuations support on

Actor threading model

Since actors are detached from the system threads, a great number of actors can share a relativ:
This can go as far as having many concurrent actors that share a single pooled thread. This arch
avoid some of the threading limitations of the JVM. In general, while the JVM can only give you &
threads (typically around a couple of thousands), the number of actors is only limited by the avail
actor has no work to do, it doesn't consume threads.

Actor code is processed in chunks separated by quiet periods of waiting for new events (messag
naturally modeled through continuations . As JVM doesn't support continuations directly, they ha
the actors frameworks, which has slight impact on organization of the actors' code. However, the
outweigh the difficulties.

http://ruben.savanne.be/articles/concurrency-in-erlang-scala

49

i nport groovyx. gpars.actor.Actor
i mport groovyx. gpars. act or. Def aul t Act or

cl ass GaneMast er extends Defaul t Actor {
int secret Num

void afterStart() {
secret Num = new Randon{() . next | nt (10)
}

void act() {
I oop {
react { int num->
if (num > secret Num
reply 'too large'
else if (num < secretNum
reply "too snall’
el se {
reply 'you win'
term nate()

}
}

cl ass Pl ayer extends Defaul t Actor {
String nane
Actor server
int myNum

void act() {
I oop {

nmyNum = new Randon() . next | nt (10)

server.send nyNum

react {

switch (it) {

case 'too large': println "$nane: $nyNum was too |arge"; break
case 'too small': println "$nane: $nyNum was too small"; break
case 'you win': println "$name: | won $nyNuni; term nate(); break

}
}
}
}
def master = new GaneMaster().start()
def player = new Pl ayer(nane: 'Player', server: master).start()

//this forces main thread to live until both actors stop
[master, player]*.join()

example by Jordi Campos i Miralles, Departament de Matem tica Aplicada i An lisi, MAIA Faculta

Universitat de Barcelona

Usage of Actors

Gpars provides consistent Actor APIs and DSLs. Actors in principal perform three specific operat
receive messages and create new actors. Although not specifically enforced by GPars message:
or at least follow the hands-off policy when the sender never touches the messages after the me
off.

Sending messages

Messages can be sent to actors using the send() method.

def passiveActor = Actors.actor{
I oop {
react { nmsg -> println "Received: $nsg"; }

passi veActor. send ' Message 1
passi veActor << ' Message 2' /lusing the << operator
passi veActor ' Message 3' //lusing the inplicit call() nethod

Alternatively, the << operator or the implicit call() method can be used. A family of sendAndWait(
to block the caller until a reply from the actor is available. The reply is returned from the sendAnc
return value. The sendAndWait() methods may also return after a timeout expires or in case of te
actor.

def replyingActor = Actors. actor{
I oop {
react { nsg ->
println "Received: $nsg"
reply "I've got $msg"

}

def replyl = replyingActor.sendAndWait (' Message 4')
def reply2 = replyingActor.sendAndWai t (' Message 5', 10, Ti neUnit. SECONDS)
use (TinmeCategory) {

def reply3 = replyingActor.sendAndWi t (' Message 6', 10.seconds)

The sendAndContinue() method allows the caller to continue its processing while the supplied clc
reply from the actor.

friend. sendAndContinue '|I need noney!', {noney -> pocket npney}
println 'l can continue while ny friend is collecting noney for nme

The sendAndPromise() method returns a Promise (aka Future) to the final reply and so allows th
processing while the actor is handling the submitted message.

Proni se | oan = friend. sendAndPromi se '| need noney!'

println 'l can continue while ny friend is collecting noney for ne'

| oan. whenBound {noney -> pocket noney} //asynchronous waiting for a reply
println "Received ${loan.get()}" //synchronous waiting for a reply

All send() , sendAndWait() or sendAndContinue() methods will throw an exception if invoked on ¢

Receiving messages

50

Non-blocking message retrieval

Calling the react() method, optionally with a timeout parameter, from within the actor's code will c
message from the actor's inbox, potentially waiting, if there is no message to be processed imme

println "Witing for a gift'
react {gift ->
if (myWfe.likes gift) reply ' Thank you!"'

Under the covers the supplied closure is not invoked directly, but scheduled for processing by an
pool once a message is available. After scheduling the current thread will then be detached from
process any other actor, which has received a message already.

To allow detaching actors from the threads the react() method demands the code to be written in
Continuation-style.

Actors. actor {

I oop {
println "Vaiting for a gift'
react {gift ->
if (nyWfe.likes gift) reply ' Thank you!'
el se {
reply 'Try again, please'
react {anotherGft ->
if (myChildren.like gift) reply ' Thank you!"'

println ' Never reached'

}
println ' Never reached'

println ' Never reached

The react() method has a special semantics to allow actors to be detached from threads when nc
available in their mailbox. Essentially, react() schedules the supplied code (closure) to be execut
arrival and returns. The closure supplied to the react() methods is the code where the computatic
Thus continuation style .

Since actor has to preserve the guarantee of at most one thread active within the actor's body, tr
cannot be handled before the current message processing finishes. Typically, there shouldn't be
after calls to react() . Some actor implementations even enforce this, however, GPars does not fc
reasons. The loop() method allows iteration within the actor body. Unlike typical looping construc
loops, loop() cooperates with nested react() blocks and will ensure looping across subsequent m

Sending replies

The reply/replylfExists methods are not only defined on the actors themselves, but for AbstractP«
available in DefaultActor , DynamicDispatchActor nor ReactiveActor classes) also on the process
themselves upon their reception, which is particularly handy when handling multiple messages in
cases reply() invoked on the actor sends a reply to authors of all the currently processed messac
whereas reply() called on messages sends a reply to the author of the particular message only.

See demo here

The sender property

51

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=blob_plain;f=src/test/groovy/groovyx/gpars/samples/actors/stateful/DemoMultiMessage.groovy;hb=HEAD

Messages upon retrieval offer the sender property to identify the originator of the message. The |
inside the Actor's closure:

react {tweet ->
if (isSpam(tweet)) ignoreTweetsFrom sender
sender.send 'Never wite ne again!'

Forwarding

When sending a message, a different actor can be specified as the sender so that potential repli
be forwarded to the specified actor and not to the actual originator.

def decryptor = Actors.actor {
react {nmessage ->
reply nessage. reverse()
I sender. send nessage. reverse() //An alternative way to send replies

}

def console = Actors.actor { //This actor will print out decrypted nessages, since the replies are forwarded
react {
println 'Decrypted nessage: ' + it

}

decryptor.send 'lellarap si yvoorG, console //Specify an actor to send replies to
consol e.joi n()

Creating Actors

Actors share a pool of threads, which are dynamically assigned to actors when the actors need t
sent to them. The threads are returned to back the pool once a message has been processed ar
waiting for some more messages to arrive.

For example, this is how you create an actor that prints out all messages that it receives.

def console = Actors. actor {
I oop {
react {
println it

Notice the loop() method call, which ensures that the actor doesn't stop after having processed tt

Here's an example with a decryptor service, which can decrypt submitted messages and send th
back to the originators.

52

final def decryptor = Actors.actor {
I oop {

react {String nessage ->
if ('stopService' == nessage) {
println ' Stopping decryptor'
stop()
el se reply nessage. reverse()
}
}

}

Actors. actor {
decryptor.send 'lellarap si yvoorG
react {
println 'Decrypted nessage: ' + it
decryptor.send 'stopService'

}.join()

Here's an example of an actor that waits for up to 30 seconds to receive a reply to its message.

def friend = Actors.actor {

react {
//this doesn't reply -> caller won't receive any answer in tinme
println it
/lreply "Hello'" //unconment this to answer conversation
react {
println it
}

def me = Actors.actor {
friend. send(' H ")
/lwait for answer 1lsec
react (1000) {nsg ->
if (msg == Actor.TIMEQUT) {
friend.send('|l see, busy as usual. Never mnd."')
stop()
} else {
/] continue conversation
println “Thank you for $nmsg"

}
}

ne. join()

Undelivered messages

Sometimes messages cannot be delivered to the target actor. When special action needs to be t
messages, at actor termination all unprocessed messages from its queue have their onDeliveryE
The onDeliveryError() method or closure defined on the message can, for example, send a notifi
original sender of the message.

53

final DefaultActor ne
me = Actors.actor {
def nmessage = 1

nessage. net aCl ass. onDel i veryError = {->
//send nessage back to the caller
me << "Coul d not deliver $del egate"

}
def actor = Actors.actor {
react {
//wait 2sec in order next call in denp can be enmtted
Thr ead. sl eep(2000)
//stop actor after first nessage
stop()
}
}

actor << nmessage
actor << nmessage

react {
//print whatever comes back
println it

}

ne. join()

Alternatively the onDeliveryError() method can be specified on the sender itself. The method can
dynamically

final DefaultActor nme

nme = Actors.actor {
def nessagel
def nessage2

2

def actor = Actors.actor {
react {
//wait 2sec in order next call in denb can be emtted
Thr ead. sl eep(2000)
//stop actor after first nessage
stop()

}

ne. net aCl ass. onDel i veryError = {nmsg ->
/Il cal | back on actor inaccessibility
println "Could not deliver nessage $nsg"

actor << messagel
actor << nessage2
actor.join()

}

ne. join()

and statically in actor definition:

class MyActor extends Defaul t Actor {
public void onDeliveryError(nsg) {
println "Could not deliver nessage $nsg"

Joining actors

Actors provide a join() method to allow callers to wait for the actor to terminate. A variant acceptil
available. The Groovy spread-dot operator comes in handy when joining multiple actors at a time

def master = new GaneMaster().start()
def player = new Player(nane: 'Player', server: nmaster).start()

[master, player]*.join()

Conditional and counting loops

The loop() method allows for either a condition or a number of iterations to be specified, optionall
closure to invoke once the loop finishes - After Loop Termination Code Handler .

The following actor will loop three times to receive 3 messages and then prints out the maximum
messages.

final Actor actor = Actors.actor {
def candidates = []
def printResult = {-> println "The best offer is ${candidates. max()}"}

loop(3, printResult) {
react {
candi dates << it

}
}

actor 10
actor 30
actor 20
actor.join()

The following actor will receive messages until a value greater then 30 arrives.

final Actor actor = Actors.actor {
def candidates = []
final Cosure printResult = {-> println "Reached best offer - ${candi dates. max()}"}

| oop({-> candi dates. max() < 30}, printResult) {
react
candi dates << it

}
}

actor 10
actor 20
actor 25
actor 31
actor 20
actor.join()

& The After Loop Termination Code Handler can use actor's react{} but not loop() .

& DefaultActor can be set to behave in a fair on non-fair (default) manner. Depending o
strategy chosen, the actor either makes the thread available to other actors sharing tt
parallel group (fair), or keeps the thread fot itself until the message queue gets empty
Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the fairActor() factory method or the actor's makeFair() method.

Custom schedulers

55

Actors leverage the standard JDK concurrency library by default. To provide a custom thread sct
appropriate constructor parameter when creating a parallel group (PGroup class). The supplied ¢
orchestrate threads in the group's thread pool.

Please also see the numerous Actor Demos .

5.1 Actors Principles

Actors share a pool of threads, which are dynamically assigned to actors when the actors need t
sent to them. The threads are returned back to the pool once a message has been processed ar
waiting for some more messages to arrive. Actors become detached from the underlying threads
small thread pool can serve potentially unlimited number of actors. Virtually unlimited scalability i
the main advantage of event-based actors , which are detached from the underlying physical thre

Here are some examples of how to use actors. This is how you create an actor that prints out all
receives.

i mport static groovyx.gpars.actor.Actors. actor

def console = actor {
I oop {
react {
println it

Notice the loop() method call, which ensures that the actor doesn't stop after having processed ti

As an alternative you can extend the DefaultActor class and override the act() method. Once yoL
you need to start it so that it attaches itself to the thread pool and can start accepting messages.
method will take care of starting the actor.

cl ass Cust omAct or extends Defaul t Actor {
@verride
protected void act() {
| oop {
react {
println it

}
}
}

def consol e=new Cust omAct or ()
consol e.start ()

Messages can be sent to the actor using multiple methods

consol e. send(' Message')

consol e ' Message'

consol e. sendAndWait ' Message' /
consol e. sendAndConti nue ' Message', {reply -> println "I received reply: $reply"} /

Wait for a reply
Forward the reply to a fur

——

Creating an asynchronous service

56

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=tree;f=src/test/groovy/groovyx/gpars/samples;h=f9a751689a034a1d3de13c4874f4f4e839cb1026;hb=HEAD

57

inport static groovyx.gpars.actor.Actors. actor

final def decryptor = actor {
I oop {
react {String nessage->
reply nmessage.reverse()

}
}

def console = actor {
decryptor.send 'lellarap si yvoorG
react {
println 'Decrypted nessage: ' + it

}

consol e.joi n()

As you can see, you create new actors with the actor() method passing in the actor's body as a ¢
Inside the actor's body you can use loop() to iterate, react() to receive messages and reply() to s
actor, which has sent the currently processed message. The sender of the current message is al
the actor's sender property. When the decryptor actor doesn't find a message in its message que
react() is called, the react() method gives up the thread and returns it back to the thread pool for
up. Only after a new message arrives to the actor's message queue, the closure of the react() m
for processing with the pool. Event-based actors internally simulate continuations - actor's work i
run chunks, which get invoked once a message is available in the inbox. Each chunk for a single
performed by a different thread from the thread pool.

Groovy flexible syntax with closures allows our library to offer multiple ways to define actors. For
example of an actor that waits for up to 30 seconds to receive a reply to its message. Actors allo
org.codehaus.groovy.runtime.TimeCategory class to be used for timeout specification to the reac
the user wraps the call within a TimeCategory use block.

def friend = Actors.actor {

react {
//this doesn't reply -> caller won't receive any answer in tine
println it
/[lreply "Hello'" //uncomrent this to answer conversation
react {

println it
}

def me = Actors.actor {
friend.send('H ")
/Iwait for answer lsec
react (1000) {nsg ->
if (msg == Actor.TI MEQUT) {
friend.send('| see, busy as usual. Never mind.")
stop()
} else {
// continue conversation
println "Thank you for $nsg"

}
}

me. join()

When a timeout expires when waiting for a message, the Actor. TIMEOUT message arrives inste.
onTimeout() handler is invoked, if present on the actor:

def friend = Actors.actor {
react {

//this doesn't reply -> caller won't receive any answer in tine
println it
/lreply 'Hello'" //uncomment this to answer conversation
react {
println it

}
}

def me = Actors.actor {
friend. send(' H ")

del egat e. net adl ass. onTi meout = {->
friend.send('l see, busy as usual. Never mnd.")
stop()

//wait for answer 1sec
react (1000) {nsg ->
if (msg !'= Actor.TI MEQUT) {
// conti nue conversation
println "Thank you for $nsg"

}
}

ne. join()

Notice the possibility to use Groovy meta-programming to define actor's lifecycle notification met|
) dynamically. Obviously, the lifecycle methods can be defined the usual way when you decide tc
your actor.

cl ass MyActor extends DefaultActor {
public void onTineout () {

}

protected void act() {

}
}

Actors guarantee thread-safety for non-thread-safe code

Actors guarantee that always at most one thread processes the actor's body at a time and also u
memory gets synchronized each time a thread gets assigned to an actor so the actor's state can
by code in the body without any other extra (synchronization or locking) effort .

cl ass MyCount er Act or extends Defaul t Actor {
private Integer counter = 0

protected void act() {

count er ++

Ideally actor's code should never be invoked directly from outside so all the code of the actor cl:
executed by the thread handling the last received message and so all the actor's code is implicit
of the actor's methods is allowed to be called by other objects directly, the thread-safety guarantse
and state are no longer valid .

Simple calculator

58

A little bit more realistic example of an event-driven actor that receives two numeric messages, s
sends the result to the console actor.

i nport groovyx. gpars. group. Def aul t PGr oup

/I not necessary, just showi ng that a single-threaded pool can still handle multiple actors
def group = new Def aul t PG oup(1);

final def console = group.actor {
I oop {
react {
println "Result: ' + it

}
}

final def calculator = group.actor {
react {a ->
react {b ->
consol e. send(a + b)

}
}

cal cul ator.send 2
cal cul ator.send 3

cal cul ator. join()
gr oup. shut down()

59

Notice that event-driven actors require special care regarding the react() method. Since event_di
split the code into independent chunks assignable to different threads sequentially and continua
supported on JVM, the chunks are created artificially. The react() method creates the next mess:
as the current message handler finishes, the next message handler (continuation) gets schedule

Concurrent Merge Sort Example

For comparison I'm also including a more involved example performing a concurrent merge sort «
using actors. You can see that thanks to flexibility of Groovy we came pretty close to the Scala ir
miss Scala pattern matching for message handling.

i nport groovyx. gpars. group. Def aul t PGr oup
inmport static groovyx.gpars.actor.Actors. actor

Cl osure createMessageHandl er (def parentActor) {

return {
react {List<lnteger> nessage ->
assert nessage != null
switch (nessage. size()) {
case 0..1:
par ent Act or. send(nessage)
br eak
case 2:

el se parentActor.send(nessage[-1..0])
br eak

defaul t:
def splitList = split(nmessage)

def childl = actor(createMessageHandl er (del egate))

chil dl. send(splitList[0])
chil d2. send(splitList[1])

react {nmessagel ->
react {nessage2 ->

}
}
}
}
}
def consol e = new Defaul t PGroup(1).actor {
react {
println "Sorted array:t${it}"
Systemexit O
}

def sorter = actor(createMessageHandl er (consol e))
sorter.send([1, 5, 2, 4, 3, 8 6, 7, 3, 9, 5 3])
consol e.joi n()

def split(List<linteger> list) {

int listSize = list.size()
int mddlelndex = listSize / 2
def listl = list[0..<nm ddl el ndex]
def list2 = list[mddlelndex..listSize - 1]
return [listl, |ist2]
}
Li st<Integer> nerge(List<Integer> a, List<Integer> b) {

int i =0, j =0
final int newSize = a.size() + b.size()
Li st<Integer> result = new ArrayLi st<Integer>(newSi ze)

while ((i < a.size()) & (j < b.size())) {
if (a[i] <= Db[j]) result << a[i++]
el se result << b[j++]

if (i <a.size()) result.addAll(a[i..-1])
el se result.addAl |l (b[j..-1])
return result

if (message[0] <= nessage[1l]) parentActor.send(nessage)

def child2 = actor(createMssageHandl er (del egate))

parent Act or. send nerge(nessagel, nessage2)

Since actors reuse threads from a pool, the script will work with virtually any size of a thread po

many actors are created along the way.

Actor lifecycle methods

Each Actor can define lifecycle observing methods, which will be called whenever a certain lifecy

60

afterStart() - called right after the actor has been started.

afterStop(List undeliveredMessages) - called right after the actor is stopped, passing in all th
messages from the queue.

oninterrupt(InterruptedException e) - called when the actor's thread gets interrupted. Thread
in the stopping the actor in any case.

onTimeout() - called when no messages are sent to the actor within the timeout specified for
react method.

onException(Throwable e) - called when an exception occurs in the actor's event handler. A
return from this method.

You can either define the methods statically in your Actor class or add them dynamically to the a

}

cl ass MyActor extends Defaul t Actor {

public void afterStart() {

}
public void onTineout () {

}

protected void act() {

}

def nmyActor = actor {

del egat e. net aCl ass. onException = {
I og.error (' Exception occurred', it)

&% To help performance, you may consider using the silentStart() method instead of star
starting a DynamicDispatchActor or a ReactiveActor . Calling silentStart() will by-pass
the start-up machinery and as a result will also avoid calling the afterStart() method. [
stateful nature, DefaultActor cannot be started silently.

Pool management

Actors can be organized into groups and as a default there's always an application-wide pooled ¢
And just like the Actors abstract factory can be used to create actors in the default group, custorr
as abstract factories to create new actors instances belonging to these groups.

}

}

def nmyG oup = new Def aul t PG oup()
def actorl = nyG oup.actor {

def actor2 = nyG oup.actor {

61

The parallelGroup property of an actor points to the group it belongs to. It by default points to the
which is Actors.defaultActorPGroup , and can only be changed before the actor is started.

cl ass MyActor extends StaticDi spatchActor<Integer> {
private static PG oup group = new Defaul t PG oup(100)

MyActor (...) {
this.parallel Goup = group

}
}

The actors belonging to the same group share the underlying thread pool of that group. The pc
n + 1 threads, where n stands for the number of CPUs detected by the JVM. The pool size can
either by setting the gpars.poolsize system property or individually for each actor group by specit
constructor parameter.

def nmyG oup = new Defaul t PG oup(10) //the pool will contain 10 threads

The thread pool can be manipulated through the appropriate DefaultPGroup class, which delega
interface of the thread pool. For example, the resize() method allows you to change the pool size
resetDefaultSize() sets it back to the default value. The shutdown() method can be called wheny
finish all tasks, destroy the pool and stop all the threads in order to exit JVM in an organized mar

...(n+1 threads in the default pool after startup)

Act ors. def aul t Act or PGroup.resize 1 //use one-thread pool
...(1 thread in the pool)

Act or s. def aul t Act or PGr oup. reset Def aul t Si ze()

...(n+1 threads in the pool)

Act or s. def aul t Act or PGr oup. shut down()

As an alternative to the DefaultPGroup , which creates a pool of daemon threads, the NonDaem
used when non-daemon threads are required.

def daenonG oup = new Def aul t PGroup()

def actorl = daenmonG oup. actor {

}

def nonDaenonG oup = new NonDaenonPG oup()
def actor2 = nonDaenonG oup. actor {

}

class MyActor {
def MyActor() {
this. parall el G oup = nonDaenonG oup

i/oid act() {...}

Actors belonging to the same group share the underlying thread pool. With pooled actor group:
actors to leverage multiple thread pools of different sizes and so assign resources to different col
system and tune their performance.

62

def coreActors = new NonDaenonPG oup(5) //5 non-daenon threads pool
def hel per Actors = new Defaul t PG oup(l) //1 daenon thread pool

def priceCal cul ator = coreActors. actor {
def paynent Processor = coreActors. actor {
def email Notifier = hel perActors. actor {

def cl eanupActor = hel perActors. actor {

/'lincrease size of the core actor group
coreActors.resize 6

// shut down the group's pool once you no |onger need the group to release resources
hel per Act or s. shut down()

Do not forget to shutdown custom pooled actor groups, once you no longer need them and their
system resources.

The default actor group

Actors that didn't have their parallelGroup property changed or that were created through any of -
the Actors class share a common group Actors.defaultActorPGroup . This group uses a resizeak
an upper limit of 1000 threads . This gives you the comfort of having the pool automatically adju:
actors. On the other hand, with a growing number of actors the pool may become too big an ineff
group your actors into your own PGroups with fixed size thread pools for all but trivial application

Common trap: App terminates while actors do not receive messages

Most likely you're using daemon threads and pools, which is the default setting, and your main th
actor.join() on any, some or all of your actors would block the main thread until the actor terminat
your actors running. Alternatively use instances of NonDaemonPGroup and assign some of your
groups.

def nonDaenpnG oup = new NonDaenmonPG oup()
def nyActor = nonDaenonG oup.actor {...}

alternatively

def nonDaenonG oup = new NonDaenonPG oup()

cl ass MyActor extends DefaultActor {
def MyActor() {
this. paral |l el G oup = nonDaenonG oup

i/oid act() {...}

def myActor = new MyActor ()

Blocking Actors

63

Instead of event-driven continuation-styled actors, you may in some scenarios prefer using block
actors hold a single pooled thread for their whole life-time including the time when waiting for me
some of the thread management overhead, since they never fight for threads after start, and alsc
straight code without the necessity of continuation style, since they only do blocking message re:
method. Obviously the number of blocking actors running concurrently is limited by the number o
the shared pool. On the other hand, blocking actors typically provide better performance compart
actors, especially when the actor's message queue rarely gets empty.

def decryptor = bl ocki ngActor {
while (true) {
recei ve {nessage ->
if (message instanceof String) reply nessage.reverse()
el se stop()
}
}
}

def consol e = bl ocki ngActor {
decryptor.send 'lellarap si yvoorG
printlin 'Decrypted nessage: ' + receive()
decryptor.send fal se

[decryptor, console]*.join()

Blocking actors increase the number of options to tune performance of your applications. They
good candidates for high-traffic positions in your actor network.

5.2 Stateless Actors

Dynamic Dispatch Actor

The DynamicDispatchActor class is an actor allowing for an alternative structure of the message
general DynamicDispatchActor repeatedly scans for messages and dispatches arrived message:
onMessage(message) methods defined on the actor. The DynamicDispatchActor leverages the (
method dispatch mechanism under the covers. Since, unlike DefaultActor descendants, a Dynan
ReactiveActor (discussed below) do not need to implicitly remember actor's state between subse
receptions, they provide much better performance characteristics, generally comparable to other
e.g. Scala Actors.

i nport groovyx.gpars.actor.Actors
import groovyx.gpars. actor. Dynam cDi spat chAct or

final class M/Actor extends Dynanmi cDi spatchActor {

voi d onMessage(String nessage) {
println 'Received string'

voi d onMessage(| nt eger nessage) {
println 'Received integer'
reply ' Thanks!"'

voi d onMessage(Obj ect nessage) {
println ' Received object’
sender . send ' Thanks!"'

}

voi d onMessage(Li st nessage) {
println 'Received |ist'

stop()

}
final def nyActor = new MyActor().start()

Actors. actor {
myActor 1
nmyActor "'
myActor 1.0
myAct or (new ArraylList())
~ nmyActor.join()
}.join()

In some scenarios, typically when no implicit conversation-history-dependent state needs to be p
the dynamic dispatch code structure may be more intuitive than the traditional one using nested |
statements.

The DynamicDispatchActor class also provides a handy facility to add message handlers dynam
construction time or any time later using the when handlers, optionally wrapped inside a become

final Actor nyActor = new Dynani cDi spat chActor (). becone {
when {String msg -> println "A String'; reply 'Thanks'}
when {Double nsg -> println 'A Double'; reply 'Thanks'}
when {nsg -> println 'A sonething ..."'; reply 'Wiat was that?';stop()}

}
nyActor.start ()
Actors. actor {
nmyActor ' Hell o'
myAct or 1.0d
myActor 10 as Bi gDeci nmal
~ myActor.join()
}.join()

Obviously the two approaches can be combined:

final class MyDDA extends Dynam cDi spat chActor {

voi d onMessage(String nessage) {
println 'Received string'

voi d onMessage(| nt eger nessage) {
println 'Received integer'

voi d onMessage(Qbj ect nessage) {
println ' Received object’

voi d onMessage(Li st nmessage) {
println 'Received |ist'
stop()

}

final def myActor = new MyDDA(). becomne {
when {Bi gDeci mal num-> println 'Received Bi gDecinal "'}
when {Float num-> println 'Got a float'}
}.start()
Actors. actor {
nyActor ' Hell o'
nyAct or 1. 0f
nyActor 10 as Bi gDeci mal
nmyAct or. send([])
nmyAct or.j oin()
}.join()

The dynamic message handlers registered via when take precedence over the static onMessage

& DynamicDispatchActor can be set to behave in a fair on non-fair (default) manner. De
on the strategy chosen, the actor either makes the thread available to other actors sh
same parallel group (fair), or keeps the thread fot itself until the message queue gets
(non-fair). Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the fairMessageHandler() factory method or the actor's makeFair() methoc

def fairActor = Actors.fairMessageHandler {...}

Static Dispatch Actor

65

While DynamicDispatchActor dispatches messages based on their run-time type and so pays ex
penalty for each message, StaticDispatchActor avoids run-time message checks and dispatches
based on the compile-time information.

final class MyActor extends StaticDi spatchActor<String> {
voi d onMessage(String nessage) {
println 'Received string ' + nessage

switch (nessage) {
case 'hello':
reply "H!"
br eak
case 'stop':
stop()

Instances of StaticDispatchActor have to override the onMessage method appropriate for the act
parameter. The onMessage(T message) method is then invoked with every received message.

A shorter route towards both fair and non-fair static dispatch actors is available through the helpe

final actor = staticMessageHandl er {String nessage ->
println 'Received string ' + nmessage

switch (nessage) {
case 'hello':
reply "Hi!'
br eak
case 'stop':
stop()
}
}

println "Reply: ' + actor.sendAndWait('hello")
actor 'bye'

actor 'stop'

actor.join()

Although when compared to DynamicDispatchActor the StaticDispatchActor class is limited to a ¢
the simplified creation without any when handlers plus the considerable performance benefits sh
StaticDispatchActor your default choice for straightforward message handlers, when dispatching
run-time type is not necessary. For example, StaticDispatchActors make dataflow operators four
to when using DynamicDispatchActor .

Reactive Actor
The ReactiveActor class, constructed typically by calling Actors.reactor() or DefaultPGroup.react

event-driven like approach. When a reactive actor receives a message, the supplied block of coc
reactive actor's body, is run with the message as a parameter. The result returned from the code

66

67

final def group = new Defaul t PG oup()

final def doubler = group.reactor {
2 %t
}

group. actor {
println 'Double of 10 = ' + doubl er. sendAnd\Wai t (10)

group. actor {
println '"Double of 20 ="' + doubl er. sendAndWai t (20)

group. actor {

println 'Double of 30 ="' + doubl er.sendAndWai t (30)
for(i in (1..10)) {
println "Double of $i = ${doubler.sendAndVWait(i)}"

doubl er. st op()
doubl er.j oin()

Here's an example of an actor, which submits a batch of numbers to a ReactiveActor for process
results gradually as they arrive.

i nport groovyx.gpars. actor. Act or
i nport groovyx.gpars.actor.Actors

final def doubler = Actors.reactor {
2 % it
}

Actor actor = Actors.actor {
(1..10).each {doubler << it}
int i =0
I oop {
i +=1
if (i > 10) stop()
el se {
react {nmessage ->
println "Double of $i = $nessage"

}
}
}

actor.join()
doubl er. st op()
doubl er.j oi n()

Essentially reactive actors provide a convenience shortcut for an actor that would wait for messa
them and send back the result. This is schematically how the reactive actor looks inside:

public class ReactiveActor extends DefaultActor {
Cl osure body

void act () {
| oop {
react {message ->
reply body(nessage)

& ReactiveActor can be set to behave in a fair on non-fair (default) manner. Depending
strategy chosen, the actor either makes the thread available to other actors sharing tt
parallel group (fair), or keeps the thread fot itself until the message queue gets empty
Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the fairReactor() factory method or the actor's makeFair() method.

def fairActor = Actors.fairReactor {...}

5.3 Tips and Tricks

Structuring actor's code

When extending the DefaultActor class, you can call any actor's methods from within the act() me
react() or loop() methods in them.

cl ass MyDenpAct or extends Defaul t Actor {

protected void act() {
handl eA()

private void handl eA() {
react {a ->
handl eB(a)

}

private void handl eB(int a) {
react {b ->
println a + b
reply a + b

}
}

final def denpActor = new MyDenpAct or ()
denpActor. start ()

Actors. actor {
denoAct or 10
denoAct or 20
react {
println "Result: $it"

.
}-join()

Bear in mind that the methods handleA() and handleB() in all our examples will only schedule the
handlers to run as continuations of the current calculation in reaction to the next message arrivin

Alternatively, when using the actor() factory method, you can add event-handling code through tt
closures.

Act or denpActor = Actors.actor {
del egat e. net ad ass {
handl eA = {->
react {a ->
handl eB(a)

}

handl eB = {a ->
react {b ->
println a
reply a +

+ b
b

}
}

?andl eA()

Actors.actor {
denpAct or 10
denoAct or 20
react {
println "Result: $it"

-}
}.join()

Closures, which have the actor set as their delegate can also be used to structure event-handling

68

Cl osure handleB = {a ->
react {b ->
println a + b

reply a +

}

C osure handleA = {->
react {a ->
handl eB(a)

}

Act or denpActor = Actors.actor {
handl eA. del egat e = del egat e
handl eB. del egat e = del egat e

?andl eA()

Actors.actor {
denpAct or 10
denoAct or 20
react {
println "Result: $it"

.
}.join()

Event-driven loops

When coding event-driven actors you have to have in mind that calls to react() and loop() methoc
different semantics. This becomes a bit of a challenge once you try to implement any types of loc
the other hand, if you leverage the fact that react() only schedules a continuation and returns, yo
recursively without fear to fill up the stack. Look at the examples below, which respectively use tf
techniques for structuring actor's code.

A subclass of DefaultActor

cl ass MyLoopActor extends Defaul t Actor {

protected void act() {
out er Loop()

private void outerLoop() {
react {a ->
println 'Quter: ' + a
if (a!=0) innerLoop()
el se println ' Done'

}

private void innerLoop() {
react {b ->
println "lInner ' + b
if (b == 0) outerLoop()
el se i nner Loop()

}
}

final def actor = new MyLoopActor().start()
actor 10

actor 20

actor 0O

actor 0O

actor.join()

Enhancing the actor's metaClass

69

Actor actor = Actors.actor {

del egat e. net ad ass {
outerLoop = {->
react {a ->
println 'CQuter: ' + a
1f (a!'=0) innerLoop()
el se println ' Done'

}

i nnerLoop = {->
react {b ->
println "Inner ' + b
1 f (b==0) outerLoop()
el se innerLoop()

}
}

out er Loop()
}

actor 10
actor 20
actor 0
actor O
actor.join()

Using Groovy closures

Cl osure innerLoop

Cl osure outerlLoop = {->
react {a ->
println 'Quter: ' + a
if (al'=0) innerLoop()
el se println 'Done

}

i nnerLoop = {->
react {b ->
println ‘Inner ' + b
if (b==0) outerLoop()
) el se i nnerLoop()
}

Actor actor = Actors.actor {
out er Loop. del egate = del egate
i nner Loop. del egate = del egate

out er Loop()

actor 10
actor 20
actor 0O
actor O
actor.join()

Plus don't forget about the possibility to use the actor's loop() method to create a loop that runs v

terminates.

70

cl ass MyLoopi ngAct or extends Defaul t Actor {
protected void act() {
oop {

out er Loop()

}

private void outerLoop() {
react {a ->
println 'Quter: ' + a
if (a!'=0) innerLoop()
else printin 'Done for now, but will |oop again'

}

private void innerLoop() {
react {b ->
println 'Inner ' + b
if (b == 0) outerLoop()
el se innerLoop()

}
}

final def actor = new MyLoopi ngActor().start()
actor 10

actor 20

actor O

actor 0O

actor 10

actor.stop()

actor.join()

5.4 Active Objects

Active objects provide an OO facade on top of actors, allowing you to avoid dealing directly with
having to match messages, wait for results and send replies.

Actors with a friendly facade

i mport groovyx.gpars.activeobject.ActiveObject
i mport groovyx.gpars.activeobj ect. ActiveMethod

@Act i veObj ect
cl ass Decryptor {
@\cti veMet hod
def decrypt(String encryptedText) {
return encryptedText.reverse()

@\ct i veMet hod
def decrypt (I nteger encryptedNunber) {
return -1*encrypt edNunber + 142

}

final Decryptor decryptor = new Decryptor()

def partl decryptor.decrypt(' noitcA ni yvoorG)
decryptor. decrypt (140)
decryptor.decrypt('noitide dn')

def part2
def part3

print partl.get()
print part2.get()
println part3.get()

You mark active objects with the @ActiveObject annotation. This will ensure a hidden actor insta
instance of your class. Now you can mark methods with the @ActiveMethod annotation indicatin
method to be invoked asynchronously by the target object's internal actor. An optional boolean b
the @ActiveMethod annotation specifies, whether the caller should block until a result is availabl
the caller should only receive a promise for a future result in a form of a DataflowVariable and so
blocked waiting.

&y By default, all active methods are set to be non-blocking . However, methods, whick
their return type explicitly, must be configured as blocking, otherwise the compiler will
error. Only def , void and DataflowVariable are allowed return types for non-blocking

71

Under the covers, GPars will translate your method call to a message being sent to the interne
eventually handle that message by invoking the desired method on behalf of the caller and once
sent back to the caller. Non-blocking methods return promises for results, aka DataflowVariables

But blocking means we're not really asynchronous, are we?

Indeed, if you mark your active methods as blocking , the caller will be blocked waiting for the res
doing normal plain method invocation. All we've achieved is being thread-safe inside the Active c
access. Something the synchronized keyword could give you as well. So it is the non-blocking r
drive your decision towards using active objects. Blocking methods will then provide the usual sy
yet give the consistency guarantees across concurrent method invocations. The blocking methoc
useful when used in combination with non-blocking ones.

i nport groovyx. gpars.activeobject.ActiveMet hod
i nport groovyx. gpars. activeobject. Acti veQbj ect
i mport groovyx. gpars. dat af | ow. Dat af | owvar i abl e

@\ct i veObj ect
cl ass Decryptor
@\ct i veMet hod(bl ocki ng=t rue)
String decrypt(String encryptedText) {
encrypt edText . reverse()

@\ct i veMet hod(bl ocki ng=t r ue)
I nteger decrypt (Integer encryptedNunber) {
-1*encrypt edNunber + 142
}

}

final Decryptor decryptor = new Decryptor()
print decryptor.decrypt(' noitcA ni yvoorG)
print decryptor.decrypt (140)

println decryptor.decrypt('noitide dn")

Non-blocking semantics

Now calling the non-blocking active method will return as soon as the actor has been sent a mes
now allowed to do whatever he likes, while the actor is taking care of the calculation. The state o
polled using the bound property on the promise. Calling the get() method on the returned promis:
until a value is available. The call to get() will eventually return a value or throw an exception, dej
outcome of the actual calculation.

& The get() method has also a variant with a timeout parameter, if you want to avoid the
waiting indefinitely.

Annotation rules

There are a few rules to follow when annotating your objects:

72

The ActiveMethod annotations are only accepted in classes annotated as ActiveObject
Only instance (non-static) methods can be annotated as ActiveMethod

You can override active methods with non-active ones and vice versa

w0 N PF

Subclasses of active objects can declare additional active methods, provided they are thems
ActiveObject

5. Combining concurrent use of active and non-active methods may result in race conditions. I¢
active objects as completely encapsulated classes with all non-private methods marked as &

Inheritance

The @ActiveObject annotation can appear on any class in an inheritance hierarchy. The actor fie
in top-most annotated class in the hierarchy, the subclasses will reuse the field.

i nport groovyx. gpars. activeobject.Acti veQbj ect
i nport groovyx. gpars.activeobject.ActiveMet hod
i nport groovyx. gpars. dataf| ow. Dat af | owvari abl e

@Act i veObj ect
class A {
@\ct i veMet hod
def fooA(val ue) {

}
}

class B extends A {

@\cti venj ect
class C extends B {
@\ct i veMet hod
def fooC(val uel, value2) {

}
}

In our example the actor field will be generated into class A . Class C has to be annotated with @
holds the @ActiveMethod annotation on method fooC() , while class B does not need the annota
methods is active.

Groups

Just like actors can be grouped around thread pools, active objects can be configured to use thre
parallel groups.

@\ctiveObj ect ("groupl")
cl ass MyActiveObject {

}

The value parameter to the @ActiveObject annotation specifies a name of parallel group to bind
Only threads from the specified group will be used to run internal actors of instances of the class
need to be created and registered prior to creation of any of the active object instances belonging
specified explicitly, an active object will use the default actor group - Actors.defaultActorPGroup .

final DefaultPG oup group = new Defaul t PG oup(10)
Acti veObj ect Regi stry.instance.register("groupl", group)

73

Alternative names for the internal actor

You will probably only rarely run into name collisions with the default name for the active object's
May you need to change the default name internalActiveObjectActor , use the actorName param
@ActiveObject annotation.

@\cti ve(bj ect (actorName = "al ternativeAct or Nane")
class MyActiveObject {

}

*, Alternative names for internal actors as well as their desired groups cannot be overric
subclasses. Make sure you only specify these values in the top-most active objects ir
inheritance hierarchy. Obviously, the top most active object is still allowed to subclass
classes, just none of the predecessors must be an active object.

5.5 Classic Examples

A few examples on Actors use

Examples

© The Sieve of Eratosthenes

(©]

Sleeping Barber

(©]

Dining Philosophers
© Word Sort

(©]

Load Balancer

The Sieve of Eratosthenes

Problem description

74

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

i nport groovyx. gpars.actor.Dynam cDi spat chAct or
/**

* Denonstrates concurrent inplenentation of the Sieve of Eratosthenes using actors
*

* In principle, the algorithmconsists of concurrently run chained filters,

* each of which detects whether the current nunmber can be divided by a single prine nunber.

* (generate nuns 1, 2, 3, 4, 5, ...) -> (filter by nod 2) -> (filter by nmod 3) -> (filter by nod 5) -> (filte
by nod 11) -> (caution! Prines falling out here)

*/The chain is built (grows) on the fly, whenever a new prine is found.

*

int requestedPri neNunber Boundary = 1000
final def firstFilter = new FilterActor(2).start()

/**
* Cenerating candi date nunbers and sending themto the actor chain
*/
(2..request edPri neNunber Boundary) . each {
firstFilter it

}
firstFilter.sendAndWait ' Poison'
/**
* Filter out nunbers that can be divided by a single prine nunber
*/
final class FilterActor extends Dynam cDi spatchActor {
private final int nyPrine
private def follower

def FilterActor(final nmyPrinme) { this.nyPrime = nyPrine; }
/**
Try to divide the received nunber with the prine. If the nunber cannot be divided, send it along the ct

*

* |f there's no-one to send it to, I"'mthe last in the chain, the nunber is a prine and so | will create
* a new actor responsible for filtering by this newly found prine nunber.
*/

def onMessage(int val ue) {
if (value % nyPrine !'= 0)
if (follower) follower value
el se {
println "Found $val ue"
follower = new FilterActor(value).start()

[**

* Stop the actor on poisson reception
*/

def onMessage(def poisson) {
if (follower) {
def sender = sender
fol |l ower. sendAndCont i nue(poi sson, {this.stop(); sender?.send('Done')}) //Pass the poisson along ¢
} else { //I amthe last in the chain
stop()
reply ' Done'

Sleeping Barber

Problem description

i mport groovyx. gpars. group. Def aul t PG oup
i mport groovyx. gpars. actor. Def aul t Act or

i mport groovyx. gpars. group. Def aul t PG oup
i mport groovyx. gpars. actor. Act or

final def group = new Defaul t PG oup()

final def barber = group.actor {
final def random = new Randon{()
I oop {
react {nessage ->
sw tch (nessage) {
case Enter:
nessage. cust oner. send new Start ()
println "Barber: Processing custoner ${nessage.custoner.nane}"
doTheWor k(random)
nessage. cust oner. send new Done()
reply new Next ()
br eak
case Wiit:
println "Barber: No custoners. Going to have a sl eep"
br eak

75

http://en.wikipedia.org/wiki/Sleeping_barber_problem

private def doTheWsrk(Random random) {
Thread. sl eep(random next I nt (10) * 1000)
}

final Actor waitingRoom

wai ti ngRoom = group. actor {
final int capacity =5
final List<Custoner> waitingCustoners = []
bool ean barber Asl eep = true

I oop {
react {nmessage ->
swtch (nmessage) {
case Enter:
if (waitingCustoners.size() == capacity) {
reply new Full ()
} else {
wai ti ngCust oners << nmessage. cust omer
i f (barberAsl eep)
assert waitingCustoners.size() ==
bar ber Asl eep = fal se
wai ti ngRoom send new Next ()

el se reply new Wit ()

br eak
case Next:
if (waitingCustoners.size()>0)
def customer = waitingCustoners.renove(0)
bar ber.send new Enter (cust oner: cust oner)
} else {
bar ber.send new Wit ()
bar ber Asl eep = true

}

cl ass Custoner extends Defaul t Actor {
String nane
Act or | ocal Bar bers

void act() {
| ocal Bar bers << new Enter(custoner:this)
| oop {
react {nessage ->
sw tch (nessage) {
case Full:
println "Custonmer: $name: The waiting roomis full. | am]leaving."
stop()
br eak
case Wiit:
println "Custoner: $nane: | will wait."
br eak
case Start:
println "Custoner: $name: | am now bei ng served."
br eak
case Done:
println "Custoner: $nane: | have been served."
stop();
br eak

}

class Enter { Custoner custoner }
class Full {}

class Wit {}

cl ass Next

class Start {}

cl ass Done {}

def custonmers = []

custonmers << new Custoner (nane:'Joe', |ocal Barbers: waitingRoonm).start()
custonmers << new Custoner (nane: ' Dave', |ocal Barbers: waitingRoon).start()
custoners << new Custoner(nanme:' Alice', |ocal Barbers: waitingRoon).start()
sl eep 15000

customers << new Custoner(nane: 'Janes', |ocal Barbers: waitingRoom.start()
sl eep 5000

cust onmers*. j oi n()
bar ber . st op()
wai t i ngRoom st op()

Dining Philosophers

Problem description

76

http://en.wikipedia.org/wiki/Dining_philosophers_problem

i mport groovyx. gpars. actor. Def aul t Act or
i nport groovyx. gpars.actor.Actors

Act ors. def aul t Act or PGr oup. resi ze 5

final class Philosopher extends DefaultActor {
private Random random = new Randont)

String nane
def forks = []

void act() {
assert 2 == forks.size()
| oop {
t hi nk()
forks*.send new Take()
def nmessages = []
react {a ->
nessages << [a, sender]
react {b ->
messages << [b, sender]
if ([a, b].any {Rejected.isCase it}) {
println "$name: tOops, can't get ny forks! Gving up."
final def accepted = nessages.find {Accepted.isCase it[0]}
if (accepted!=null) accepted[1].send new Fini shed()
} else {
eat ()
reply new Fi ni shed()

}

voi d think() {
println "$nane: tl'mthinking"
Thread. sl eep random next | nt (5000)
println "$nane: tl'm done thinking"

void eat() {
println "$nane: tl'm EATI NG'
Thread. sl eep random next | nt (2000)
println "$nane: tl'm done EATI NG'

}
final class Fork extends Defaul t Actor {

String name
bool ean avail able = true

void act () {
1 oop {
react {message ->
sw tch (nessage) {
case Take:
if (available) {
avail able = fal se
reply new Accepted()
} else reply new Rejected()
br eak
case Fini shed:
assert !avail abl e
avail able = true
br eak

defaul t: throw new |11 egal Stat eException("Cannot process the nessage:

}

final class Take {}
final class Accepte
final class Rejecte
final class Finishe

def forks = [
new For k(nane:
new For k(nane:
new For k(nane:
new For k(nane:
new For k(nane:

(oL (oL (e
P]
B o

o

o

=
XXXXX
abwN e
—————

]

def phil osophers = [
new Phi | osopher (nane: ' Joe', forks:[forks[0], forks[1]]),
new Phi | osopher (nane: ' Dave', forks:[forks[1], forks[2]])
new Phi | osopher (nane: ' Alice', forks:[forks[2], forks[3]]
new Phi | osopher (nane: ' James', forks:[forks[3], forks[4]]
new Phi | osopher (nane: ' Phil', forks:[forks[4], forks[0]])

]

forks*.start ()
phi | osophers*.start()

sl eep 10000
forks*. stop()
phi | osophers*. st op()

$nessage")

77

Word sort

Given a folder name, the script will sort words in all files in the folder. The SortMaster actor creat
WordSortActors , splits among them the files to sort words in and collects the results.

Inspired by Scala Concurrency blog post by Michael Galpin

78

http://fupeg.blogspot.com/2009/06/scala-concurrency.html

/I Messages
private final class FileToSort {
private final class SortResult {

[/ \Wr ker actor
cl ass WordSort Act or extends Def aul t Act or

List<String> words = []
new Fil e(fileNane). splitEachLine(
return words

}
void act () {
| oop {
react {message ->
sw tch (nessage) {
case FileToSort:
println "Sorting
) reply new SortRes
}
}
}

}

// Mast er actor

String docRoot = '/'
int numActors = 1

Li st<Li st<String>> sorted = []
private Count DownLatch donelLatch

private void beginSorting() {
int cnt = sendTasksToWr kers()

}

private List createWrkers()
}
private int sendTasksToWorkers() {

int cnt =0
new Fi | e(docRoot) . eachFile {

cnt += 1

return cnt

}

public void waitUntil Done()
startupLatch. awai t ()
donelLat ch. awai t ()

{

}

void act() {
begi nSorting()
startupLat ch. count Down()

}
}

//start the actors to sort words

mast er. wai t Unti | Done()
println ' Done'

file.withPrintWiter { printer ->
}

String fil
String fil

{

f
u

eNane }
eNane; List<String> words }

private List<String> sortedWrds(String fileNanme) {
parseFil e(fileNane).sort {it.toLowerCase()}

private List<String> parseFile(String fileNanme) {

') {words.addAll (it)}

il e=${message. fil eNane} on thread ${Thread. current Thread().nanme}"
It(fileNanme: nessage.fileNanme, words: sortedWrds(nessage.fil eNane))

final class SortMaster extends DefaultActor {

private Count DownlLatch startuplLatch = new Count DownLat ch(1)

doneLat ch = new Count DownLat ch(cnt)
{
return (1..numActors).collect {new WrdSortActor().start()}

Li st <Actor> workers = createWrkers()

wor kers[cnt % numActors] << new Fil eToSort (fileNanme: it)

println "Received results for file=${it.fileNane}"

| oop {
react {
swtch (it) {
case SortResult:
sorted << it.words
donelLat ch. count Down()
}
}
}

def master = new SortMaster(docRoot: 'c:/tnp/Logs/', numActors: 5).start()

File file = new File("c:/tnp/Logs/sorted_words.txt")

master.sorted.each { printer.println it }

Load Balancer

Demonstrates work balancing among adaptable set of workers. The load balancer receives tasks

temporary task queue. When a worker finishes his assignment, it asks the load balancer for a ne

79

If the load balancer doesn't have any tasks available in the task queue, the worker is stopped. If 1
the task queue exceeds certain limit, a new worker is created to increase size of the worker pool.

80

i nport groovyx. gpars.actor.Actor
i mport groovyx. gpars. act or. Def aul t Act or
/**
* Denonstrates work bal anci ng anong adapt abl e set of workers.
* The | oad bal ancer receives tasks and queues themin a tenporary task queue.
* Wien a worker finishes his assignnent, it asks the |oad bal ancer for a new task.
* |f the | oad bal ancer doesn't have any tasks available in the task queue, the worker is stopped.
* |f the nunber of tasks in the task queue exceeds certain limt, a new worker is created
*
*

to increase size of the worker pool.
/

final class LoadBal ancer extends DefaultActor {
int workers = 0
Li st taskQueue = []
private static final QUEUE_SIZE TRI GGER = 10

void act() {
| oop {
react { nmessage ->
sw tch (nessage) {
case NeedMor eWr k:

if (taskQueue.size() == 0)
println 'No nore tasks in the task queue. Term nating the worker."'
reply DemoWorker. EXIT

workers -= 1
} else reply taskQueue. renove(0)
br eak

case Wr kToDo:
taskQueue << nessage
if ((workers == 0) || (taskQueue.size() >= QUEUE_SIZE TRI GGER)) {
println ' Need nore workers. Starting one.'
wor kers += 1
new DenmoWor ker (this).start ()

println "Active workers=${workers}tTasks in queue=${taskQueue. si ze()}"

}

final class DemoWorker extends Defaul t Actor {
final static Object EXIT = new Object()
private static final Randomrandom = new Randon{)

Act or bal ancer

def DermoWor ker (bal ancer) {
thi s. bal ancer = bal ancer
}

void act() {
I oop {
thi s. bal ancer << new NeedMor eWor k()
react {
switch (it) {
case WrkToDo:
processMessage(it)
br eak
case EXIT: term nate()

}

private void processMessage(nessage) {
synchroni zed (random {
Thr ead. sl eep random next | nt (5000)
}

}

}
final class WrkToDo {}
final class NeedMoreWrk {}

final Actor bal ancer = new LoadBal ancer().start()

/| produce tasks
for (i in 1..20)
Thread. sl eep 100
bal ancer << new Wor kToDo()

[/ produce tasks in a parallel thread
Thread. start {
for (i in 1..10) {
Thread. sl eep 1000
bal ancer << new Wor kToDo()

}

Thread. sl eep 35000 //let the queues get enpty
bal ancer << new Wor kToDo()

bal ancer << new Wr kToDo()

Thread. sl eep 10000

bal ancer. st op()
bal ancer. j oi n()

81

6 Agents

The Agent class, which is a thread-safe non-blocking shared mutable state wrapper implementat
in Clojure.

&y Aot of the concurrency problems disappear when you eliminate the need for Shared
State with your architecture. Indeed, concepts like actors, CSP or dataflow concurren
or isolate mutable state completely. In some cases, however, sharing mutable data is
inevitable or makes the design more natural and understandable. Think, for example,
shopping cart in a typical e-commerce application, when multiple AJAX requests may
cart with read or write requests concurrently.

Introduction

In the Clojure programing language you can find a concept of Agents, the purpose of which is to
that need to be shared across threads. Agents hide the data and protect it from direct access. CI
commands (functions) to the agent. The commands will be serialized and processed against the
turn. With the commands being executed serially the commands do not need to care about conci
assume the data is all theirs when run. Although implemented differently, GPars Agents, called A
behave like actors. They accept messages and process them asynchronously. The messages, h
commands (functions or Groovy closures) and will be executed inside the agent. After reception
run against the internal state of the Agent and the return value of the function is considered to be
of the Agent.

Essentially, agents safe-guard mutable values by allowing only a single agent-managed thread
to them. The mutable values are not directly accessible from outside, but instead requests ha'
agent and the agent guarantees to process the requests sequentially on behalf of the callers. Ag
sequential execution of all requests and so consistency of the values.

Schematically:

agent = new Agent (0) //created a new Agent wapping an integer with initial value O
agent.send {increnent()} //asynchronous send operation, sending the increnment() function

/Tafter some delay to process the nessage the internal Agent's state has been updated

assert agent.val == 1

To wrap integers, we can certainly use AtomicXXX types on the Java platform, but when the stat
object we need more support.

Concepts

GPars provides an Agent class, which is a special-purpose thread-safe non-blocking implements
Agents in Clojure.

An Agent wraps a reference to mutable state, held inside a single field, and accepts code (closur
messages, which can be sent to the Agent just like to any other actor using the '<<' operator, the
implicit call() method. At some point after reception of a closure / command, the closure is invoke
mutable field and can make changes to it. The closure is guaranteed to be run without interventic
and so may freely alter the internal state of the Agent held in the internal <i>data</i> field.

82

The whole update process is of the fire-and-forget type, since once the message (closure) is sen
caller thread can go off to do other things and come back later to check the current value with Ag
Agent.valAsync(closure).

Basic rules
© When executed, the submitted commands obtain the agent's state as a parameter.
© The submitted commands /closures can call any methods on the agent's state.
© Replacing the state object with a new one is also possible and is done using the updateValt
© The return value of the submitted closure doesn't have a special meaning and is ignored.
© If the message sent to an Agent is not a closure, it is considered to be a new value for the

© The val property of an Agent will wait until all preceding commands in the agent's queue are
safely return the value of the Agent.

© The valAsync() method will do the same without blocking the caller.
© The instantVal property will return an immediate snapshot of the internal agent's state.

© All Agent instances share a default daemon thread pool. Setting the threadPool property of ¢
allow it to use a different thread pool.

© Exceptions thrown by the commands can be collected using the errors property.

Examples

Shared list of members

The Agent wraps a list of members, who have been added to the jug. To add a new member a m
add a member) has to be sent to the jugMembers Agent.

i mport groovyx.gpars. agent. Agent
inmport java.util.concurrent.ExecutorService
inmport java.util.concurrent.Executors

| x*

* Create a new Agent wapping a |list of strings

*/
def jugMenbers = new Agent<List<String>>(['M']) //add M
jugMenbers. send {it.add 'Janes'} //add Janes

final Thread t1 = Thread.start {
jugMenbers.send {it.add 'Joe'} //add Joe

final Thread t2 = Thread.start
jugMenbers << {it.add 'Dave'} //add Dave
jugMenbers {it.add "Alice'} //add Alice (using the inplicit call() nethod)

[tl, t2]*.join()
println jugMenbers. val
j ugMenbers. val Async {println "Current nmenbers: $it"}

j ugMenbers. awai t ()

Shared conference counting number of registrations

The Conference class allows registration and un-registration, however these methods can only b
commands sent to the conference Agent.

83

i mport groovyx. gpars. agent. Agent
/**
* Conference stores nunber of registrations and allows parties to register and unregister.

* It inherits fromthe Agent class and adds the register() and unregister() private nethods,
* which callers may use it the conmands they submit to the Conference.
R/

cl ass Conference extends Agent<Long> {
def Conference() { super(0)
private def register(long num { data += num}
private def unregister(long num { data -= num}

final Agent conference = new Conference() //new Conference created
/**

* Three external parties will try to register/unregister concurrently
*/

final Thread t1 = Thread.start {
conference << {register(10L)} //send a command to register 10 attendees

final Thread t2 = Thread.start {
conference << {register(5L)} //send a conmand to register 5 attendees

final Thread t3 = Thread.start {
conference << {unregister(3L)} //send a conmand to unregister 3 attendees

[t1, t2, t3]*.join()

assert 12L == conference. val

Factory methods

Agent instances can also be created using the Agent.agent() factory method.

def jugMenbers = Agent.agent ['Me'] //add Me

Listeners and validators

Agents allow the user to add listeners and validators. While listeners will get notified each time th
changes, validators get a chance to reject a coming change by throwing an exception.

final Agent counter = new Agent ()

count er. addLi st ener {ol dVal ue, newalue -> println "Changi ng val ue from $ol dval ue to $newval ue"}
count er. addLi st ener {agent, ol dvalue, newalue -> println "Agent $agent changi ng val ue from $ol dval ue to $new\

count er. addVal i dat or {ol dval ue, newalue -> if (ol dvalue > newval ue) throw new ||| egal Argunent Exception("' Thi n¢
G oovy')}

count er. addVal i dator {agent, ol dvalue, newalue -> if (ol dvalue == newal ue) throw new ||| egal Argunent Excepti c
sanme for $agent')}

counter 10

counter 11

counter {updateVal ue 12}

counter 10 //WII be rejected

counter {updateValue it - 1} //WII be rejected
counter {updateValue it} //WII| be rejected
counter {updateValue 11} //WII| be rejected
counter 12 //WII be rejected

counter 20

counter.await ()

Both listeners and validators are essentially closures taking two or three arguments. Exceptions 1
validators will be logged inside the agent and can be tested using the hasErrors() method or retri
errors property.

assert counter. hasErrors()
assert counter.errors.size() == 5

Validator gotchas

With Groovy being not very strict on data types and immutability, agent users should be aware of
the road. If the submitted code modifies the state directly, validators will not be able to un-do the
validation rule violation. There are two possible solutions available:

1. Make sure you never change the supplied object representing current agent state

2. Use custom copy strategy on the agent to allow the agent to create copies of the internal ste

In both cases you need to call updateValue() to set and validate the new state properly.

The problem as well as both of the solutions are shown below:

// Create an agent storing nanes, rejecting 'Joe'
final Cosure rejectJoeValidator = {ol dval ue, newalue -> if ('Joe' in newalue) throw new ||| egal Argunent Exce
allowed to enter our list.")}

Agent agent = new Agent([])
agent . addVal i dat or rejectJoeVali dat or

agent {it << 'Dave'} /| Accept ed
agent {it << 'Joe'} /| Erroneously accepted, since by-passes the validation nechani sm
println agent.val

//Solution 1 - never alter the supplied state object
agent = new Agent([])
agent . addVal i dat or rejectJoeVal i dat or

agent {updateValue(['Dave', * it])} /| Accept ed
agent {updateValue(['Joe', * it])} /'l Rej ect ed
println agent.val

//Solution 2 - use custom copy strategy on the agent
agent = new Agent ([], {it.clone()})
agent . addVal i dat or rejectJoeVal i dat or

agent {updateValue it << 'Dave'} /| Accept ed
agent {updateValue it << 'Joe'} /I Rejected, since '"it' is now just a copy of the internal agent's stat
println agent.val

Grouping

By default all Agent instances belong to the same group sharing its daemon thread pool.

Custom groups can also create instances of Agent. These instances will belong to the group, wh
will share a thread pool. To create an Agent instance belonging to a group, call the agent() factor
group. This way you can organize and tune performance of agents.

final def group = new NonDaenonPG oup(5) //create a group around a thread pool
def jugMenbers = group.agent(['Me']) //add Me

85

& The default thread pool for agents contains daemon threads. Make sure that your cus
thread pools either use daemon threads, too, which can be achieved either by using
DefaultPGroup or by providing your own thread factory to a thread pool constructor, ¢
your thread pools use non-daemon threads, such as when using the NonDaemonPG
group class, make sure you shutdown the group or the thread pool explicitly by calling
shutdown() method, otherwise your applications will not exit.

Direct pool replacement

Alternatively, by calling the attachToThreadPool() method on an Agent instance a custom thread
for it.

def jugMenbers = new Agent<List<String>>(['M']) //add Me

final ExecutorService pool = Executors.newri xedThr eadPool (10)
j ugMenbers. att achToThr eadPool (new Def aul t Pool (pool))

& Remember, like actors, a single Agent instance (aka agent) can never use more than
thread at a time

The shopping cart example

i nport groovyx.gpars. agent . Agent

cl ass Shoppi ngCart {
private def cartState = new Agent([:])
N public methods below here -----------------o
public void addlten(String product, int quantity) {
cartState << {it[product] = quantity} //the << operator sends
/la nessage to the Agent
} public void renpvelten(String product) {
cartState << {it.renove(product)}
} public Cbject listContent() {
return cartState. val
} public void clearltens() {
cart State << perfornCl ear

}

public void increaseQuantity(String product, int quantityChange) {
cartState << this. &hangeQuantity.curry(product, quantityChange)

[leeeccszzczz2z=0 private nethods below here ----------------~-~-~--~-—~-------__-
private void changeQuantity(String product, int quantityChange, Map itens) {
items[product] = (itens[product] ?: 0) + quantityChange
} private Cosure perfornClear = { it.clear() }

e script code below here ----------ommmmmm
final ShoppingCart cart = new ShoppingCart ()

cart.addltem ' Pilsner', 10

cart.addl tem ' Budwei sser', 5

cart.addltem' Staropranen', 20

cart.renovel tem ' Budwei sser'
cart.addl tem ' Budwei sser', 15

println "Contents ${cart.listContent()}"

cart.increaseQuantity 'Budweisser', 3
println "Contents ${cart.listContent()}"

cart.clearltens()
println "Contents ${cart.listContent()}"

You might have noticed two implementation strategies in the code.

1. Public methods may internally just send the required code off to the Agent, instead of execu
functionality directly

And so sequential code like

public void addlten(String product, int quantity) {
cart State[product] =quantity

}

becomes

86

public void addlten{String product, int quantity) {
cartState << {it[product] = quantity}

2. Public methods may send references to internal private methods or closures, which hold the d
perform

public void clearltens() {
cartState << perfornC ear

private Closure perfornClear = { it.clear() }

Currying might be necessary, if the closure takes other arguments besides the current internal
the increaseQuantity method.

The printer service example

Another example - a not thread-safe printer service shared by multiple threads. The printer need:
document and quality properties set before printing, so obviously a potential for race conditions i
Callers don't want to block until the printer is available, which the fire-and-forget nature of actors

i mport groovyx. gpars. agent. Agent
/**

* A non-thread-safe service that slowy prints docunents on at a tine
*/

class PrinterService {
String docunent
String quality

public void printDocunent () {
println "Printing $docunent in $quality quality"
Thread. sl eep 5000
println "Done printing $docunent"

}
def printer = new Agent <Printer Servi ce>(new PrinterService())

final Thread threadl = Thread.start {
for (numin (1..3)) {
final String text = "docunent $nunt
printer << {printerService ->
printerService.docunent = text
printerService.quality = "'Hgh'
printerService. print Docunent ()

}
Thread. sl eep 200

}
println 'Thread 1 is ready to do sonething else. Al print tasks have been subnitted'

final Thread thread2 = Thread.start {
for (numin (1..4)) {
final String text = "picture $nunf
printer << {printerService ->
printerService.docunent = text
printerService.quality = "Mediun
printerService. print Docunent ()

}
Thread. sl eep 500

}
println 'Thread 2 is ready to do sonething else. Al print tasks have been subm tted'

[threadl, thread2]*.join()
printer.await ()

87

For latest update, see the respective Demos.

Reading the value

To follow the clojure philosophy closely the Agent class gives reads higher priority than to writes.
instantVal property your read request will bypass the incoming message queue of the Agent and
snapshot of the internal state. The val property will wait in the message queue for processing, jus
variant valAsync(Clojure cl) , which will invoke the provided closure with the internal state as a ps

You have to bear in mind that the instantVal property might return although correct, but randomly
the internal state of the Agent at the time of instantVal execution is hon-deterministic and depenc
that have been processed before the thread scheduler executes the body of instantVval .

The await() method allows you to wait for processing all the messages submitted to the Agent be
calling thread.

State copy strategy

To avoid leaking the internal state the Agent class allows to specify a copy strategy as the secon
argument. With the copy strategy specified, the internal state is processed by the copy strategy ¢
value of the copy strategy value is returned to the caller instead of the actual internal state. This i
val as well as to valAsync() .

Error handling

Exceptions thrown from within the submitted commands are stored inside the agent and can be ¢
errors property. The property gets cleared once read.

def jugMenbers = new Agent <Li st >()
assert jugMenbers.errors.enpty

jugMenbers. send {throw new ||| egal StateException('testl')}
j ugMenbers. send {throw new ||| egal Argunent Exception('test2')}
j ugMenbers. awai t ()

List errors = jugMenbers.errors
assert 2 == errors.size()
assert errors[0] instanceof II|egal StateException
assert 'testl' == errors[0].nessage
assert errors[1] instanceof IIIegal ArgunentException
assert 'test2' == errors[1].nessage

assert jugMenbers.errors. enpty

Fair and Non-fair agents

Agents can be either fair or non-fair. Fair agents give up the thread after processing each messa
keep a thread until their message queue is empty. As a result, non-fair agents tend to perform be
The default setting for all Agent instances is to be non-fair, however by calling its makeFair() me
be made fair.

def jugMenbers = new Agent<List>(['Me']) //add Me
J ugMenber s. makeFai r ()

88

7 Dataflow

Dataflow concurrency offers an alternative concurrency model, which is inherently safe and robu:

Introduction

Check out the small example written in Groovy using GPars, which sums results of calculations
concurrently run tasks:

inmport static groovyx.gpars. datafl ow. Datafl ow. task

final def x = new Datafl owvari abl e()
final def y = new Datafl owvari abl e()
final def z = new Datafl owvari abl e()
task {

z << x.val + y.val
}
task {

X << 10
task {

y << 5

println "Result: ${z.val}"

Or the same algorithm rewritten using the Dataflows class.

inport static groovyx.gpars. datafl ow Datafl ow. t ask
final def df = new Datafl ows()

task {
df .z = df . x + df.y
}

task {

df . x = 10
}
task {

df .y =5

}
println "Result: ${df.z}"

We start three logical tasks, which can run in parallel and perform their particular activities. The t
data and they do so using Dataflow Variables. Think of Dataflow Variables as one-shot channel
transferring data from producers to their consumers.

The Dataflow Variables have a pretty straightforward semantics. When a task needs to read a va
DataflowVariable (through the val property), it will block until the value has been set by another t:
the '<<' operator). Each DataflowVariable can be set only once in its lifetime. Notice that you doi
ordering and synchronizing the tasks or threads and their access to shared variables. The values
transferred among tasks at the right time without your intervention. The data flow seamlessly am:
without your intervention or care.

Implementation detail: The three tasks in the example do not necessarily need to be mappe
threads. Tasks represent so-called "green” or "logical" threads and can be mapped under the co
physical threads. The actual mapping depends on the scheduler, but the outcome of dataflow alc
depend on the actual scheduling.

89

& The bind operation of dataflow variables silently accepts re-binding to a value, which
an already bound value. Call bindUnique to reject equal values on already-bound var

Benefits

Here's what you gain by using Dataflow Concurrency (by Jonas Bonér):
© No race-conditions
© No live-locks
© Deterministic deadlocks
© Completely deterministic programs

© BEAUTIFUL code.

This doesn't sound bad, does it?

90

http://www.jonasboner.com

Concepts

Dataflow programming

Quoting Wikipedia

Operations (in Dataflow programs) consist of "black boxes" with inputs and outputs, all of which ¢
defined. They run as soon as all of their inputs become valid, as opposed to when the program e
Whereas a traditional program essentially consists of a series of statements saying "do this, now
program is more like a series of workers on an assembly line, who will do their assigned task as :
arrive. This is why dataflow languages are inherently parallel; the operations have no hidden stat
the operations are all "ready" at the same time.

Principles

With Dataflow Concurrency you can safely share variables across tasks. These variables (in Gro
DataflowVariable class) can only be assigned (using the '<<' operator) a value once in their lifetir
variables, on the other hand, can be read multiple times (in Groovy through the val property), eve
been assigned. In such cases the reading task is suspended until the value is set by another tasl
write your code for each task sequentially using Dataflow Variables and the underlying mechanic
get all the values you need in a thread-safe manner.

In brief, you generally perform three operations with Dataflow variables:
© Create a dataflow variable
© Wait for the variable to be bound (read it)

© Bind the variable (write to it)

And these are the three essential rules your programs have to follow:
© When the program encounters an unbound variable it waits for a value.
© It is not possible to change the value of a dataflow variable once it is bound.

© Dataflow variables makes it easy to create concurrent stream agents.

Dataflow Queues and Broadcasts

Before you go to check the samples of using Dataflow Variables, Tasks and Operators, you sf
streams and queues to have a full picture of Dataflow Concurrency. Except for dataflow variables
concepts of DataflowQueues and DataflowBroadcast that you can leverage in your code. You m:
thread-safe buffers or queues for message transfer among concurrent tasks or threads. Check o
producer-consumer demo:

91

inport static groovyx.gpars.datafl ow Datafl ow. t ask

def words = [' Groovy', 'fantastic', 'concurrency', 'fun', 'enjoy', 'safe', 'GPars', 'data', 'flow]
final def buffer = new Datafl owQueue()
task {

for (word in words) {
buffer << word.toUpperCase() //add to the buffer
}
}

task {
while(true) println buffer.val //read fromthe buffer in a |oop

Both DataflowBroadcasts and DataflowQueues , just like DataflowVariables , implement the Date
with common methods allowing users to write to them and read values from them. The ability to t
identically through the DataflowChannel interface comes in handy once you start using them to w
selectors together.

& The DataflowChannel interface combines two interfaces, each serving its purpose:

© DataflowReadChannel holding all the methods necessary for reading values fron
channel - getVal(), getValAsync(), whenBound(), etc.

© DataflowWriteChannel holding all the methods necessary for writing values into ¢
bind(), <<

You may prefer using these dedicated interfaces instead of the general DataflowChai
interface, to better express the intended usage.

Please refer to the APl doc for more details on the channel interfaces.

Point-to-point communication

The DataflowQueue class can be viewed as a point-to-point (1 to 1, many to 1) communication c
or more producers send messages to one reader. If multiple readers read from the same Dataflo
each consume different messages. Or to put it a different way, each message is consumed by e>
can easily imagine a simple load-balancing scheme built around a shared DataflowQueue with re
dynamically when the consumer part of your algorithm needs to scale up. This is also a useful de
connecting tasks or operators.

Publish-subscribe communication

The DataflowBroadcast class offers a publish-subscribe (1 to many, many to many) communicati
more producers write messages, while all registered readers will receive all the messages. Each
consumed by all readers with a valid subscription at the moment when the message is being writ
The readers subscribe by calling the createReadChannel() method.

Dat af | owW i t eChannel broadcast Stream = new Dat af | owBr oadcast ()
Dat af | ownReadChannel streaml = broadcast Stream cr eat eReadChannel ()
Dat af | onReadChannel strean? = broadcast Stream cr eat eReadChannel ()
br oadcast Stream << ' Messagel’

broadcast Stream << ' Message2'

broadcast St ream << ' Message3'

assert streanl.val == strean?.val
assert streantl.val == strean®.val
assert streanil.val == strean®.val

92

http://gpars.codehaus.org/API+doc

Under the hood DataflowBroadcast uses the DataflowStream class to implement the message d¢

DataflowStream

The DataflowStream class represents a deterministic dataflow channel. It is build around the con
gueue and so provides a lock-free thread-safe implementation for message passing. Essentially,
DataflowStream as a 1 to many communication channel, since when a reader consumes a mess
will still be able to read the message. Also, all messages arrive to all readers in the same order. !
is implemented as a functional queue, its API requires that users traverse the values in the streal
other hand DataflowStream offers handy methods for value filtering or transformation together wi
performance characteristics.

& The DataflowStream class, unlike the other communication elements, does not imple
DataflowChannel interface, since the semantics of its use is different. Use
DataflowStreamReadAdapter and DataflowStreamWriteAdapter classes to wrap inste
the DataflowChannel class in DataflowReadChannel or DataflowWriteChannel
implementations.

i mport groovyx. gpars. dat afl ow. st ream Dat af | owSt r eam
i mport groovyx. gpars. group. Def aul t PG oup
import groovyx. gpars.schedul er. Resi zeabl ePool

| **

* Denpnstrates concurrent inplenentation of the Sieve of Eratosthenes using dataflow tasks

* In principle, the algorithmconsists of a concurrently run chained filters,

* each of which detects whether the current nunber can be divided by a single prinme nunber.

* (generate nunms 1, 2, 3, 4, 5, ...) -> (filter by nod 2) -> (filter by nod 3) -> (filter by nod 5) -> (filte
by nmod 11) -> (caution! Prinmes falling out here)

*/The chain is built (grows) on the fly, whenever a new prinme is found
*

| **

* W need a resizeable thread pool, since tasks consune threads while waiting bl ocked for values at Datafl ow
*/

group = new Def aul t PG oup(new Resi zeabl ePool (true))

final int requestedPrimeNunber Count = 100
/**
* Cenerating candi date nunbers
*/
final DataflowStream candi dates = new Dat af | owSt r ean()
group. task {
candi dates. generate(2, {it + 1}, {it < 1000})
}

/**
* Chain a new filter for a particular prinme nunber to the end of the Sieve
* @aram i nChannel The current end channel to consume
* @aram prinme The prinme nunber to divide future prine candidates with
* @eturn A new channel ending the whole chain
*/
def filter(DataflowStreaminChannel, int prime) {
i nChannel . filter { nunber ->
group. task {
nunber % prime !'= 0
}

}

| **

* Consune Sieve output and add additional filters for all found prines
*/

def currentCutput = candi dates
request edPri neNunber Count . ti mes {
int prime = currentQutput.first
println "Found: $prine"
currentQutput = filter(currentQutput, prine)

93

For convenience and for the ability to use DataflowStream with other dataflow constructs, like e.c
wrap it with DataflowReadAdapter for read access or DataflowWriteAdapter for write access. The
is designed for single-threaded producers and consumers. If multiple threads are supposed to re
the stream, their access to the stream must be serialized externally or the adapters should be us

DataflowStream Adapters

Since the DataflowStream API as well as the semantics of its use are very different from the one
Dataflow(Read/Write)Channel , adapters have to be used in order to allow DataflowStreams to b
dataflow elements. The DataflowStreamReadAdapter class will wrap a DataflowStream with nec:
read values, while the DataflowStreamWriteAdapter class will provide write methods around the
DataflowStream .

& |tis important to mention that the DataflowStreamWriteAdapter is thread safe allowin
threads to add values to the wrapped DataflowStream through the adapter. On the ot
DataflowStreamReadAdapter is designed to be used by a single thread.

To minimize the overhead and stay in-line with the DataflowStream semantics, the
DataflowStreamReadAdapter class is not thread-safe and should only be used from v
single thread. If multiple threads need to read from a DataflowStream, they should ea
their own wrapping DataflowStreamReadAdapter .

Thanks to the adapters DataflowStream can be used for communication between operators or se
Dataflow(Read/Write)Channels .

import groovyx. gpars. dat af | ow. Dat af | owQueue
i mport groovyx. gpars. datafl ow. stream Dat af | owSt r eam
import groovyx. gpars. dat afl ow. st ream Dat af | owSt r eanReadAdapt er
i mport groovyx. gpars. dat afl ow. st ream Dat af | owSt r eanV i t eAdapt er
inmport static groovyx.gpars.datafl ow Datafl ow. sel ect or
inmport static groovyx.gpars.datafl ow Dataf | ow. oper at or
/**
* Denpnstrates the use of Datafl owStreamAdapters to allow datafl ow operators to use Datafl owSt r eans

*/

final DataflowStream a = new Dat af | owSt r ean()
final DataflowStreamb = new Dat af | owSt r ean()
def aw = new Dat af | owSt r eamWV i t eAdapt er (a)

def bw = new Dat af | owSt r eamWV i t eAdapt er (b)
def ar = new Dat af | owSt r eanReadAdapt er (a)
def br = new Dat af | owSt r eanReadAdapt er (b)

def result = new Dataf | owQueue()

def opl = operator(ar, bw) {
bi ndQut put it

}

def op2 = selector([br], [result]) {
result << it

}

aw << 1
aw << 2
aw << 3
, 2, 3] == [result.val, result.val, result.val])

Also the ability to select a value from multiple DataflowChannels can only be used through an ad
DataflowStream :

i nport groovyx. gpars. dataf | ow. Sel ect

import groovyx. gpars. datafl ow. st ream Dat af | owSt r eam

import groovyx. gpars. dat afl ow. st ream Dat af | owSt r eanReadAdapt er
i mport groovyx. gpars. dat af | ow. st ream Dat af | owSt r eanW i t eAdapt er
inmport static groovyx.gpars. datafl ow Dat af | ow. sel ect

inmport static groovyx.gpars. datafl ow. Datafl ow. task

| **

* Denonstrates the use of Datafl owStreamAdapters to all ow datafl ow select to select on Datafl owStreans
*/

final DataflowStreama = new Dat af | owSt r ean()
final DataflowStreamb = new Dat af | owSt r ean()
def aw = new Dat af | owSt r eanWW i t eAdapt er (a)
def bw = new Dat af | owSt r eamW i t eAdapt er (b)
def ar new Dat af | owSt r eanReadAdapt er (a)

def br new Dat af | owSt r eanReadAdapt er (b)

final Select<?> select = select(ar, br)
task {

aw << 1

aw << 2

aw << 3

assert 1 == select().value
assert 2 == select().value
assert 3 == select().value
task {

bw << 4

aw << 5

bw << 6

def result = (1..3).collect{select()}.sort{it.value}
assert result*.value == [4, 5, 6]
assert result*.index == [1, 0, 1]

& If you don't need any of the functional queue DataflowStream-special functionality, lik
generation, filtering or mapping, you may consider using the DataflowBroadcast class
which offers the publish-subscribe communication model through the DataflowChann
interface.

Bind handlers

def a = new Dat af | owari abl e()
a >> {println "The variable has just been bound to $it"}
a. whenBound {println "Just to confirmthat the variable has been really set to $it"}

Bind handlers can be registered on all dataflow channels (variables, queues or broadcasts) eithe
and the then() or the whenBound() methods. They will be run once a value is bound to the variak

Dataflow queues and broadcasts also support a wheneverBound method to register a closure or
run each time a value is bound to them.

def queue = new Dat af | owQueue()
queue. whenever Bound {printin "A value $it arrived to the queue"}

95

Obviously nothing prevents you from having more of such handlers for a single promise: They wi
once the promise has a concrete value:

Promi se booki ngPromi se = task {
final data = collectData()
return broker. makeBooki ng(dat a)

booki ngProm se. whenBound {booki ng -> print Agenda booki ng}
booki ngProni se. whenBound {booki ng -> sendMeAnEnai | To booki ng}
booki ngProni se. whenBound {booki ng -> updat eTheCal endar booki ng}

& Dataflow variables and broadcasts are one of several possible ways to implement Pa
Speculations . For details, please check out Parallel Speculations in the Parallel Colle
section of the User Guide.

Bind handlers grouping

When you need to wait for multiple DataflowVariables/Promises to be bound, you can benefit frol
whenAlIBound() function, which is available on the Dataflow class as well as on PGroup instance

final group = new NonDaenpnPG oup()

//Calling asynchronous services and receiving back prom ses for the reservations
Prom se flightRReservation = flightBookingService(' PRG <-> BRU)
Prom se hot el Reservati on = hot el Booki ngServi ce(' BRU: Feb 24 2009 - Feb 29 2009')
Prom se taxi Reservation = taxi Booki ngService(' BRU: Feb 24 2009 10: 31')

//when all reservations have been made we need to build an agenda for our trip
Prom se agenda = group. whenAl | Bound(flight Reservation, hotel Reservation, taxi Reservation) {flight, hotel,

"Agenda: $flight | $hotel | $taxi"
}

//since this is a deno, we will only print the agenda and block till it is ready
println agenda. val

If you cannot specify up-front the number of parameters the whenAlIBound() handler takes, use ¢
argument of type List :

Proni se nodul el = task {
conpi | e(nodul elSour ces)

Pronmi se nodul e2 = task {
conpi | e(nodul e2Sour ces)

/I We don't know the nunmber of nodules that will be jarred together, so use a List
final jarConpiledMdul es = {List nodules -> ...}

whenAl | Bound([nodul el, nodul e2], jar Conpil edModul es)

Bind handlers chaining

All dataflow channels also support the then() method to register a handler (a callback) that shouli
value becomes available. Unlike whenBound() the then() method allows for chaining, giving you -
result values between functions asynchronously.

& Notice that Groovy allows us to leave out some of the dots in the then() method chair

96

final Dataflowariable variable = new Dat afl owvari abl e()
final Dataflowariable result = new Dat af | owari abl e()

variable.then {it * 2} then {it + 1} then {result << it}
variable << 4
assert 9 == result.val

This could be nicely combined with Asynchronous functions

final Dataflowariable variable = new Datafl owari abl e()
final Dataflowariable result = new Datafl owari abl e()

final doubler = {it * 2}
final adder = {it + 1}

vari abl e. t hen doubl er then adder then {result << it}

Thread. start {variable << 4}
assert 9 == result.val

or ActiveObjects

@A\ct i veObj ect
cl ass ActiveDenpCal cul ator {
@\cti veMet hod
def doubler(int value) {
value * 2

@\ct i veMet hod
def adder(int value) {
value + 1

}

final Dataflowariable result = new Datafl owari abl e()

final calculator = new ActiveDenpCal cul ator();

cal cul at or. doubl er (4).then {cal cul ator.adder it}.then {result << it}
assert 9 == result.val

97

s Chaining can save quite some code when calling other asynchronous services from v
whenBound() handlers. Asynchronous services, such as Asynchronous Functions or
Methods , return Promises for their results. To obtain the actual results your handlers
either have to block to wait for the value to be bound, which would lock the current thi
unproductive state,

vari abl e. whenBound {val ue ->
Prom se prom se = asyncFunction(val ue)
println prom se.get()

or, alternatively, it would register another (nested) whenBound() handler, which woulc
unnecessarily complex code.

vari abl e. whenBound {val ue ->
asyncFuncti on(val ue). whenBound {
println it

For illustration compare the two following code snippets, one using whenBound() and
then() chaining. They ate both equivalent in terms of functionality and behavior.

final Dataflowariable variable = new Datafl owari abl e()

final doubler = {it * 2}
final inc = {it + 1}

/1 Usi ng whenBound()
vari abl e. whenBound {val ue ->
task {
doubl er (val ue)
}. whenBound {doubl edVal ue ->
task {
i nc(doubl edVal ue)
}. whenBound {i ncrenent edVal ue ->
println increnentedVal ue

}
}

/1 Using then() chaining
vari abl e.then doubler then inc then this.&println

Thread. start {variable << 4}

Chaining Promises solves both of these issues elegantly:

variabl e >> asyncFunction >> {println it}

The RightShift (>>) operator has been overloaded to call then() and so can be chained the sam

i nal Datafl owari abl e vari abl e = new Dat af | owvari abl e()
i nal Datafl owariable result = new Datafl owvari abl e()

inal doubler = {it * 2}
inal adder = {it + 1}

vari abl e >> doubl er >> adder >> {result << it}
Thread. start {variable << 4}

assert 9 == result.va

Error handling for Promise chaining

98

Asynchronous operations may obviously throw exceptions. It is important to be able to handle the
effort. GPars promises can implicitly propagate exceptions from asynchronous calculations acros

1. Promises propagate result values as well as exceptions. The blocking get() method re-throw
was bound to the Promise and so the caller can handle it.

2. For asynchronous notifications, the whenBound() handler closure gets the exception passec

3. The then() method accepts two arguments - a value handler and an optional error handler
depending on whether the result is a regular value or an exception. If no errorHandler is spe
re-thrown to the Promise returned by then() .

4. Exactly the same behavior as for then() holds true for the whenAllBound() method, which lisi
Promises to get bound

Proni se<lnteger> initial = new Datafl owvari abl e<l nt eger >()
Prom se<String> result = initial.then {it * 2} then {100 / it} /IW11 throw exception for
.then {println "Logging the value $it as it passes by"; return it} /1 Since no error handler i

will be ignored
/land silently re-thrown t
the chain
.then({"The result for $numis $it"}, {"Error detected for $num $it"}) //Here the exception is ce
initial << 0
println result.get()

ErrorHandler is a closure that accepts instances of Throwable as its only (optional) argument anc
should be bound to the result of the then() method call (the returned Promise). If an exception is
error handler, it is bound as an error to the resulting Promise.

prom se. then({it+1}) /l1nplicitly re-throws potential
prom se
promi se.then({it+1}, {e -> throw e}) /I Explicitly re-throws potenti al
prom se

promi se.then({it+1}, {e -> throw new Runti meException(' Error occurred', e}) //Explicitly re-throws a new exce
potential exception bound to pron se

Just like with regular exception handling in Java with try-catch statements, this behavior of GPar:
asynchronous invocations the freedom to handle exceptions at the place where it is most conver
ignore exceptions in your code and assume things just work, yet exceptions will not get accident:

task {
' gpars. codehaus. org' .toURL().text //should throw Mal fornmedURLException

.then {page -> page.toUpper Case()}
.then {page -> page. contains(' GROOVY')}
.then({nmentionsGoovy -> println "G oovy found: $nmentionsG oovy"}, {error -> println "Error: $error"}).join()

Handling concrete exception type

You may be also more specific about the handled exception type:

url .t hen(downl oad)
.then(cal cul at eHash, {Mal f or redURLException e -> return 0})
.then(fornat Resul t)
.then(printResult, printError)
.then(sendNotificati onEnmail);

Customer-site exception handling

99

You may also leave the exception completely un-handled and let the clients (consumers) handle

Proni se<oj ect> result = url.then(downl oad).then(cal cul at eHash).then(fornmat Result).then(printResult);
try {
result.get()
} catch (Exception e) {
/I handl e exceptions here
}

Putting it together

By combining whenAllIBound() and then (or >>) you can easily create large asynchronous scenai
way:

wi t hPool {
Cl osure download = {String url ->
sl eep 3000 //Sinmulate a web read
'web content'
}. asyncFun()

Closure loadFile = {String fil eNane ->
"file content' //sinmulate a local file read
}. asyncFun()

Closure hash = {s -> s. hashCode()}

Closure conpare = {int first, int second ->
first == second
}

Closure errorHandl er = {println "Error detected: $it"}

def all = whenAl | Bound([
downl oad("' http://ww. gpars.org') >> hash,
| oadFi | e('/cool Stuff/gpars/website/index.htm ') >> hash
], conpare).then({printlnit}, errorHandler)
all.join() //optionally block until the calculation is all done

4y Notice that only the initial action (function) needs to be asynchronous. The functions 1
down the pipe will be invoked asynchronously by the promise even if the are synchro

Lazy dataflow variables

Sometimes you may like to combine the qualities of dataflow variables with their lazy initializatior

Cl osure<String> downl oad = {url ->
println "Downl oadi ng"
url.toURL().text

}
def pageContent = new LazyDat af | owvari abl e(downl oad. curry("http://gpars. codehaus. org"))

Instances of LazyDataflowVariable have an initializer specified at construction time, which only g
someone asks for its value, either through the blocking get() method or using any of the non-bloc
methods, such as then() . Since LazyDataflowVariables preserve all the goodies of ordinary Date
can again chain them easily with other lazy or ordinary dataflow variables.

Example

100

This deserves a more practical example. Taking inspiration from
http://blog.jcoglan.com/2013/03/30/callbacks-are-imperative-promises-are-functional-nodes-bigg:
the following piece of code demonstrates use of LazyDataflowVariables to lazily and asynchrono
dependent components into memory. The components (modules) will be loaded in the order of tt
concurrently, if possible. Each module will only be loaded once, irrespective of the number of mo
it. Thanks to laziness only the modules that are transitively needed will be loaded. Our example t
"diamond" dependency scheme:

© DdependsonBandC
© CdependsonA
© B depends on A

When loading D, A will get loaded first. B and C will be loaded concurrently once A has been loau
once both B and C have been loaded.

def nodul eA = new LazyDat af | owari abl e({->
println "Loadi ng nodul eA i nto nenory"
sl eep 3000
println "Loaded nodul eA into nenory"
return "nodul eA"

19

def nodul eB = new LazyDat af | owari abl e({->
nmodul eA. then {
println "->Loadi ng nodul eB into nenory, since nodul eA is ready"
sl eep 3000
println " Loaded nodul eB i nto nenory"
return "nodul eB"

19

def nodul eC = new LazyDat af | owari abl e({->
nmodul eA. then {
println "->Loadi ng nodul eC i nto nmenory, since nodul eA is ready"
sl eep 3000
println " Loaded nodul eC i nto nenory"
return "nodul eC'
}
})

def nodul eD = new LazyDat af | owari abl e({->
whenAl | Bound(nmodul eB, nmoduleC { b, ¢ ->

println "-->Loadi ng nodul eD i nto nmenory, since nodul eB and nodul eC are ready"
sl eep 3000
println " Loaded nodul eD i nto nenory"

return "nodul eD

println "Nothing | oaded so far"

printin "

println "Load nodule: " + nodul eD. get ()
println

println "All requested npdul es | oaded"

Dataflow Expressions

Look at the magic below:

def initial Distance = new Dat af | owvari abl e()
def accel eration = new Dat af | owvari abl e()
def time = new Datafl owari abl e()

task {
initial Distance << 100
accel eration << 2
time << 10

}

def result = initial Distance + accel eration*0.5*ti ne**2
println 'Total distance ' + result.val

101

We use DataflowVariables that represent several parameters to a mathematical equation calcula
an accelerating object. In the equation itself, however, we use the DataflowVariables directly. We
values they represent and yet we are able to do the math correctly. This shows that DataflowVar
flexible.

For example, you can call methods on them and these methods will get dispatched to the bound

def nane = new Dat af | owVari abl e()
task {
name << ' adam

}
println nane.toUpperCase().trin().val

You can pass other DataflowVariables as arguments to such methods and the real values will be
instead:

def title = new Datafl owari abl e()
def searchPhrase = new Dat af | owvari abl e()
task {

title << ' Goovy in Action 2nd edition

task {
sear chPhrase << '2nd'

println title.trin().contains(searchPhrase).val

And you can also query properties of the bound value using directly the DataflowVariable:

def book = new Dat af | owari abl e()
def searchPhrase = new Dat af | owVari abl e()

task {
book << [
title:"Goovy in Action 2nd edition
aut hor: ' Di erk Koenig',
publ i sher:' Manni ng']
}
task {

sear chPhrase << ' 2nd'

book. title.trim().contains(searchPhrase).whenBound {println it} //Asynchronous waiting

println book.title.trim().contains(searchPhrase).val //Synchronous waiting

Please note that the result is still a DataflowVariable (DataflowExpression to be precise), which 'y
value from both synchronously and asynchronously.

Bind error notification
DataflowVariables offer the ability to send notifications to the registered listeners whenever a bin

getBindErrorManager() method allows for listener to be added and removed. The listeners get nc
failed attempt to bind a value (through bind(), bindSafely(), bindUnique() or leftShift()) or an error

102

final Dataflowariable variable = new Dat afl owari abl e()

vari abl e. get Bi ndEr r or Manager () . addBi ndError Li st ener (new Bi ndError Li stener () {
@verride
voi d onBi ndError (final Object ol dvalue, final Object failedValue, final boolean uniqueBind) {
println "Bind failed!"

@verride
voi d onBi ndError(final Object ol dvalue, final Throwable failedError) {
println "Binding an error failed!"
@verride
public void onBindError(final Throwable ol dError, final Cbject failedValue, final boolean uni queBi
println "Bind failed!"
@verride

public void onBindError(final Throwable ol dError, final Throwable failedError) {
println "Binding an error failed!"

1}

This allows you to customize reactions to attempts to binding of already bound dataflow variables
bindSafely() you do not get bind exceptions fired to the caller, but instead a registered BindErrorl

Further reading

Scala Dataflow library by Jonas Bonér
JVM concurrency presentation slides by Jonas Bonér
Dataflow Concurrency library for Ruby

7.1 Tasks

The Dataflow tasks give you an easy-to-grasp abstraction of mutually-independent logical tasks
run concurrently and exchange data solely through Dataflow Variables, Queues, Broadcasts and
tasks with their easy-to-express mutual dependencies and inherently sequential body could also
implementation of UML Activity Diagrams .

Check out the examples.

A simple mashup example

In the example we're downloading the front pages of three popular web sites, each in their own t:
separate task we're filtering out sites talking about Groovy today and forming the output. The out
automatically with the three download tasks on the three Dataflow variables through which the cc
is passed to the output task.

103

http://github.com/jboner/scala-dataflow/tree/f9a38992f5abed4df0b12f6a5293f703aa04dc33/src
http://jonasboner.com/talks/state_youre_doing_it_wrong/html/all.html
http://github.com/larrytheliquid/dataflow/tree/master

inport static groovyx.gpars. GPar sPool . wi t hPool
import groovyx.gpars. dat af | ow. Dat af | owvar i abl e
inmport static groovyx.gpars. datafl ow. Datafl ow. task

| **

* A sinple mashup sanpl e, downl oads content of three websites

* and checks how many of themrefer to G oovy.
*/

def dzone = new Dat af | owari abl e()
def jroller = new Datafl owari abl e()
def theserverside = new Dataf |l owvari abl e()

task {
println 'Started downl oadi ng from DZone'
dzone << "http://ww. dzone. com .t oURL() .t ext
println ' Done downl oadi ng from DZone'

task {
println 'Started downl oading from JRol |l er'
Jjroller << "http://ww.jroller.com.toURL().text
println 'Done downl oading from JRol |l er'

task {
println 'Started downl oadi ng from TheServer Si de'
theserverside << '"http://wwv.theserverside.com.toURL().text
println ' Done downl oadi ng from TheServer Si de'

task {

wi t hPool {
println "Nunber of G oovy sites today: " +
([dzone, jroller, theserverside].findAllParallel {
it.val.toUpperCase().contains '
) }).size()
}.join()

Grouping tasks

Dataflow tasks can be organized into groups to allow for performance fine-tuning. Groups provid
factory method to create tasks attached to the groups. Using groups allows you to organize tasks
different thread pools (wrapped inside the group). While the Dataflow.task() command schedules
thread pool (java.util.concurrent.Executor, fixed size=#cpu+1, daemon threads), you may prefer |
your own thread pool(s) to run your tasks.

i mport groovyx.gpars. group. Def aul t PG oup
def group = new Def aul t PG oup()
group.with {

task {

}
task {

}
}

& The default thread pool for dataflow tasks contains daemon threads, which means yo
application will exit as soon as the main thread finishes and won't wait for all tasks to
When grouping tasks, make sure that your custom thread pools either use daemon tr
too, which can be achieved by using DefaultPGroup or by providing your own thread
a thread pool constructor, or in case your thread pools use non-daemon threads, suc
using the NonDaemonPGroup group class, make sure you shutdown the group or the
pool explicitly by calling its shutdown() method, otherwise your applications will not e»

You may selectively override the default group used for tasks, operators, callbacks and other dat
a code block using the _Dataflow.usingGroup() method:

104

Dat af | ow. usi ngG oup(group) {
task
"http://gpars. codehaus.org' .toURL().text //should throw Ml fornedURLException

.then {page -> page.toUpperCase()}
.then {page -> page.contains(' GROOVY')}
.then({nenti onsG oovy -> println "G oovy found: $mentionsG oovy"}, {error -> println "Error: $error"}).joi

You can always override the default group by being specific:

Dat af | ow. usi ngG oup(group) {
anot her G oup. t ask {
"http://gpars. codehaus.org' .toURL().text //should throw Ml fornedURLException

.then(anot her G oup) {page -> page.toUpper Case()}
.then(anot her G oup) {page -> page.contains(' GROOVY')}.then(another G oup) {println Dataflow retrieveCurrent
.then(anot her Group, {nmentionsGoovy -> println "G oovy found: $nentionsG oovy"}, {error -> println "Error:

A mashup variant with methods

To avoid giving you wrong impression about structuring the Dataflow code, here's a rewrite of the
with a downloadPage() method performing the actual download in a separate task and returning
instance, so that the main application thread could eventually get hold of the downloaded conten
can obviously be passed around as parameters or return values.

package groovyx. gpars.sanpl es. dat af | ow

inmport static groovyx.gpars. GPar sExecut or sPool . wi t hPool
import groovyx. gpars. dat af | ow. Dat af | owvar i abl e
inmport static groovyx.gpars.datafl ow Datafl ow. task

| **

* A sinple mashup sanpl e, downl oads content of three websites and checks how many of themrefer to G oovy.
*

final List urls = ['"http://ww.dzone.com, '"http://ww.jroller.com, 'http://ww.theserverside.con]
task {

def pages = urls.collect { downl oadPage(it) }

wi t hPool {

println "Nunber of G oovy sites today: " +
(pages. findAl | Parallel {
it.val.toUpperCase().contains ' GROOVY
}).size()
.
}.join()
def downl oadPage(def url) {
def page = new Dat af | owari abl e()
task {
println "Started downl oadi ng from $url"

page << url.toURL().text
println "Done downl oading from $url "

return page

A physical calculation example

Dataflow programs naturally scale with the number of processors. Up to a certain level, the more
the faster the program runs. Check out, for example, the following script, which calculates param
physical experiment and prints out the results. Each task performs its part of the calculation and |
calculated by some other tasks as well as its result might be needed by some of the other tasks.
Concurrency you can split the work between tasks or reorder the tasks themselves as you like ar
mechanics will ensure the calculation will be accomplished correctly.

105

i nport groovyx. gpars. datafl ow. Dat af | owvari abl e
inmport static groovyx.gpars. datafl ow Datafl ow. task

final def nass = new Datafl owvari abl e()

final def radius = new Datafl owvari abl e()

final def volunme new Dat af | owvari abl e()

final def density = new Datafl owari abl e()

final def acceleration = new Datafl owari abl e()
final def tinme = new Datafl owvari abl e()

final def velocity = new Datafl owari abl e()

final def decel erationForce = new Datafl owari abl e()
final def deceleration = new Datafl owari abl e()
final def distance = new Datafl owvari abl e()

def t = task {
println """
Cal cul ating distance required to stop a noving ball.

The ball has a radius of ${radius.val} nmeters and is nade of a material with ${density.val} kg/nB density,

whi ch neans that the ball has a volunme of ${volune.val} nB and a nass of ${nmss.val} kg.

The ball has been accelerating with ${acceleration.val} ms2 fromO for ${tine.val} seconds and so reached a \
${velocity.val} nis.

G ven our ability to push the ball backwards with a force of ${decel erationForce.val} N (Newton), we can cause
of ${deceleration.val} ms2 and so stop the ball at a distance of ${distance.val} m

Thi s exanpl e has been cal cul ated asynchronously in nultiple tasks using GPars Datafl ow concurrency in G oovy.
Aut hor: ${aut hor. val }

Systemexit O

task {
mass << vol une.val * density.val
}
task {
vol ume << Math. Pl * (radius.val ** 3)
task {
radius << 2.5
density << 998. 2071 //water
accel eration << 9.80665 //free fall
decel erati onForce << 900
task {
println 'Enter your name:'
def nanme = new | nput StreanReader (System i n).readLi ne()
author << (nane?.trin()?.size()>0 ? nane : 'anonynous')
task {
time << 10
velocity << acceleration.val * tine.val
task
decel eration << decel erati onForce.val / nass.val
task {
di stance << deceleration.val * ((velocity.val/deceleration.val) ** 2) * 0.5
t.join()

Note: | did my best to make all the physical calculations right. Feel free to change the values and
distance you need to stop the rolling ball.

Deterministic deadlocks

If you happen to introduce a deadlock in your dependencies, the deadlock will occur each time yi
randomness allowed. That's one of the benefits of Dataflow concurrency. Irrespective of the actu
scheme, if you don't get a deadlock in tests, you won't get them in production.

task {
println a.val
b << 'H there'

}
task {

println b.val

a << 'Hello nan'
}

106

Dataflows map

As a handy shortcut the Dataflows class can help you reduce the amount of code you have to wr
Dataflow variables.

def df = new Datafl ows()
df . x = 'val uel’
assert df.x == 'val uel'

Dat af | ow. task {df.y = 'val ue2}

assert df.y == 'val ue2'

Think of Dataflows as a map with Dataflow Variables as keys storing their bound values as apprc
The semantics of reading a value (e.g. df.x) and binding a value (e.g. df.x = 'value') remain identi
plain Dataflow Variables (x.val and x << 'value' respectively).

Mixing Dataflows and Groovy with blocks

When inside a with block of a Dataflows instance, the dataflow variables stored inside the Dataflc
accessed directly without the need to prefix them with the Dataflows instance identifier.

new Dataflows().with {
x = 'val uel'
assert x == 'val uel'

Dat af | ow. task {y = 'val ue2}

assert y == 'val ue2'

Returning a value from a task

Typically dataflow tasks communicate through dataflow variables. On top of that, tasks can also |
through a dataflow variable. When you invoke the task() factory method, you get back an instanc
(implemented as DataflowVariable), through which you can listen for the task's return value, just
other Promise or DataflowVariable.

final Promise t1l = task {
return 10

final Promse t2 = task {
return 20

def results = [t1, t2]*.val
println 'Both sub-tasks finished and returned values: ' + results

Obviously the value can also be obtained without blocking the caller using the whenBound() met|

def task = task {
println 'The task is running and cal culating the return val ue'
30

}
task >> {value -> println "The task finished and returned $val ue"}

h2. Joining tasks

Using the join() operation on the result dataflow variable of a task you can block until the task fini

107

task {
final Promise tl1 = task {
println 'First sub-task running.'

final Promse t2 = task {
println 'Second sub-task running'

[t1, t2]*.join()
_ println 'Both sub-tasks finished'
}.join()

7.2 Selects

Frequently a value needs to be obtained from one of several dataflow channels (variables, queue
streams). The Select class is suitable for such scenarios. Select can scan multiple dataflow chan
channel from all the input channels, which currently have a value available for read. The value frc
read and returned to the caller together with the index of the originating channel. Picking the cha
or based on channel priority, in which case channels with lower position index in the Select consi
priority.

Selecting a value from multiple channels

i nport groovyx. gpars. dat af | ow. Dat af | owQueue

i nport groovyx. gpars. dat af| ow. Dat af | owvari abl e
inmport static groovyx.gpars.datafl ow Datafl ow. sel ect
inmport static groovyx.gpars. datafl ow. Datafl ow. task

/**
* Shows a basic use of Select, which nonitors a set of input channels for values and naekes these val ues

* available on its output irrespective of their original input channel.
* Note that datafl ow variables and queues can be conbined for Sel ect.
*
*

You might al so consider checking out the prioritySelect nethod, which prioritizes values by the index of tt
*/
def a
def b
def c

new Dat af | owari abl e()
new Dat af | owari abl e()
new Dat af | owQueue()

task {
sl eep 3000
a << 10

task {
sl eep 1000
b << 20

task {
sl eep 5000
c << 30

def select = select([a, b, c])
println "The fastest result is ${select().value}"

& Note that the return type from select() is SelectResult , holding the value as well as tr
originating channel index.

There are multiple ways to read values from a Select:

def sel = select(a, b, c, d)

def result = sel.select() /I Random sel ecti on

def result = sel () /I Random sel ection (a short-hand variant)

def result = sel.select([true, true, false, true]) /I Random sel ection with guards specified

def result = sel([true, true, false, true]) /I Random sel ection with guards specified (a st
def result = sel.prioritySelect() /IPriority selection

def result = sel.prioritySelect([true, true, false, true]) //Priority selection with guards specifies

108

By default the Select blocks the caller until a value to read is available. The alternative selectToF
prioritySelectToPromise() methods give you a way to obtain a promise for the value that will be s
the future. Through the returned Promise you may register a callback to get invoked asynchronol
value is selected.

def sel = select(a, b, c, d)

Proni se result = sel.sel ect ToPromn se() /| Random sel ecti on

Proni se result = sel.selectToProm se([true, true, false, true]) /I Random sel ection with guards sg
Pronise result = sel.prioritySel ectToProm se() /I Priority selection

Pronise result = sel.prioritySel ect ToProm se([true, true, false, true]) /I Priority selection with guards

Alternatively, Select allows to have the value sent to a provided MessageStream (e.g. an actor) v
caller.

def handler = actor {...}
def sel = select(a, b, c, d)

sel . sel ect (handl er) /| Random sel ecti on

sel (handl er) /I Random sel ection (a short-hand variant)

sel . sel ect (handl er, [true, true, false, true]) /I Random sel ection with guards specified

sel (handl er, [true, true, false, true]) /I Random sel ection with guards specified (a short-
sel . prioritySel ect(handl er) /I Priority selection

sel .prioritySel ect(handl er, [true, true, false, true]) /IPriority selection with guards specifies

Guards

Guards allow the caller to omit some input channels from the selection. Guards are specified as i
passed to the select() or prioritySelect() methods.

def sel = select(leaders, seniors, experts, juniors)
def teanmlead = sel ([true, true, false, false]).value //Only 'leaders' and 'seniors' qualify for becomr

A typical use for guards is to make Selects flexible to adopt to the changes in the user state.

i mport groovyx. gpars. dat af | ow. Dat af | owQueue
inmport static groovyx.gpars. datafl ow Datafl ow. sel ect
inmport static groovyx.gpars. datafl ow Datafl ow. task

/**

* Denonstrates the ability to enabl e/ di sabl e channel s during a val ue selection on a select by providing bool ¢
*/

final Datafl owQueue operations = new Dat af | owQueue()

final Datafl owQueue nunbers = new Dat af | owQueue()

def t = task {

final def select = select(operations, nunbers)
3.tinmes {

def instruction =

def numl = sel ect

def nun? = sel ect

final def formula

println "$fornula

lect([true, false]).value

al se, true]).val ue

al se, true]).val ue

"$nunl $i nstruction $nun"

${new G oovyShel | ().evaluate(formula)}"
}

}

task {
operations << '+
operations << '+
operations << '*'

task {
nunbers << 10
nunbers << 20
nunbers << 30
nunbers << 40
nunbers << 50
nunbers << 60

}
t.join()

109

Priority Select

When certain channels should have precedence over others when selecting, the prioritySelect m

instead.
/**

* Shows a basic use of Priority Select, which nonitors a set of input channels for values and nakes these val
* available on its output irrespective of their original input channel.
* Note that datafl ow variabl es, queues and broadcasts can be conbi ned for Select.
* Unlike plain select nmethod call, the prioritySelect call gives precedence to input channels with | ower inde
* Avail abl e nessages from high priority channels will be served before nessages from|ower-priority channels.
*

*
&l
def critical
def ordinary
def whoCares

task {
ordi nary
whoCar es
ordi nary

task {
ordi nary

ordi nary

task {
whoCar es
ordi nary
whoCar es
critical
whoCar es

}

def select =

sl eep 3000

<<

sl eep 5000

<<

<<
<<

<<

se

Messages received through a single input channel will have their nutual order preserved.

new Dat af | owari abl e()
new Dat af | owQueue()
new Dat af | owQueue()

"All working fine'
"I feel a bit tired'
"W are on target'

"l have just started nmy work. Busy. WII| cone back later...'

"I am done for now

"Huh, what is that noise'

'"Here | amto do sone cl ean-up work'

"1 wonder whet her unplugging this cable will elimnate that nasty sound.'
' The server room goes on UPS!'

' The sound has di sappear ed'

lect([critical, ordinary, whoCares])

println "Starting to nonitor our | T departnent'

10.times {println "Received: ${select.prioritySelect().value}"}

Collecting results of asynchronous computations

Asynchronous activities, no matter whether they are dataflow tasks , active objects' methods
functions , return Promises . Promises implement the SelectableChannel interface and so can t
selection together with other Promises as well as read channels . Similarly to Java's Completions
enables you to obtain results of asynchronous activities as soon as each of them becomes availe
employ Select to give you the first/fastest result of several computations running in parallel.

*/

group.w th {

}

i nport groovyx. gpars. datafl ow. Prom se

i nport groovyx. gpars. dat af | ow. Sel ect

i mport groovyx.gpars. group. Def aul t PG oup
/**

* Denpnstrates the use of dataflow tasks and selects to pick the fastest result of concurrently run calcul ati

final group = new Defaul t PG oup()

Prom se pl = task {
sl eep(1000)
10 * 10 + 1

Prom se p2 = task {
sl eep(1000)
5* 20 + 2

Prom se p3 = task {
sl eep(1000)
1 * 100 + 3

final alt = new Sel ect(group, pl, p2, p3)
def result = alt.select()
println "Result: " + result

110

Timeouts

The Select.createTimeout() method will create a DataflowVariable that gets bound to a value afte
This can be leveraged in Selects so that they unblock after a desired delay, if none of the other c
value before that moment. Just pass the timeout channel as another input channel to the Selec

import groovyx. gpars. dat afl ow. Prom se
i mport groovyx. gpars. dat af | ow. Sel ect
i mport groovyx.gpars. group. Def aul t PG oup
/**
* Denonstrates the use of dataflow tasks and selects to pick the fastest result of concurrently run calcul ati

*/

final group = new Def aul t PG oup()
group.w th {
Prom se pl = task {
sl eep(1000)
10 * 10 + 1

Prom se p2 = task {
sl eep(1000)
5* 20 + 2

Prom se p3 = task {
sl eep(1000)
1* 100 + 3

final tineoutChannel = Select.createTi meout (500)

final alt = new Sel ect(group, pl, p2, p3, tinmeoutChannel)
def result = alt.select()
println "Result: " + result

Cancellation

In case you need to cancel the other tasks once a value has been calculated or a timeout expire(
set a flag that the tasks periodically monitor. There's intentionally no cancellation machinery built
or Tasks .

import groovyx.gpars. dat afl ow. Prom se
i mport groovyx. gpars. dat af | ow. Sel ect
i mport groovyx.gpars. group. Def aul t PG oup

inport java.util.concurrent. atom c. At oni cBool ean
/**
* Denonstrates the use of dataflow tasks and selects to pick the fastest result of concurrently run calcul ati

* |t shows a waz to cancel the slower tasks once a result is known
&/

final group = new Def aul t PG oup()
final done = new Atom cBool ean()

group.w th {
Prom se pl = task {
sl eep(1000)
if (done.get()) return
10 * 10 + 1

Prom se p2 = task {
sl eep(1000)
if (done.get()) return
5* 20 + 2

Prom se p3 = task {
sl eep(1000)
if (done.get()) return
1* 100 + 3

}

final alt = new Sel ect(group, pl, p2, p3, Select.createTi neout(500))
def result = alt.select()
done. set (true)
println "Result: " + result

111

7.3 Operators

Dataflow Operators and Selectors provide a full Dataflow implementation with all the usual ceren

Concepts

Full dataflow concurrency builds on the concept of channels connecting operators and selectors,
values coming through input channels, transform them into new values and output the new value
channels. While Operators wait for all input channels to have a value available for read before th
Selectors are triggered by a value available on any of the input channels.

operator(inputs: [a, b, c], outputs: [d]) {x, vy, z ->

l'a'i'ndOJtput 0, x +y + 2z

| **

* CACHE
*

* Caches sites' contents. Accepts requests for url content, outputs the content. Qutputs requests for downl o
* if the site is not in cache yet.

*/

operator (inputs: [url Requests], outputs: [downl oadRequests, sites]) {request ->

if (!request.content) {
println "[Cache] Retrieving ${request.site}"
def content = cache[request.site]
if (content) {
println "[Cache] Found in cache"
bi ndQut put 1, [site: request.site, word:request.word, content: content]

} else {
def downl oads = pendi ngDownl oads[r equest . site]
if (downloads !'= null) {

println "[Cache] Awaiting downl oad"
downl oads << request

1} else {
pendi ngDownl oads[request.site] = []
println "[Cache] Asking for downl oad"
bi ndQut put 0, request

}

} else {

println "[Cache] Caching ${request.site}"

cache[request.site] = request.content

bi ndQut put 1, request

def downl oads = pendi ngDownl oads[r equest . site]

if (downloads !'= null) {

for (downl oadRequest in downl oads) {

println "[Cache] Wking up"
bi ndQut put 1, [site: downl oadRequest.site, word: downl oadRequest.word, content: request.content

}
pendi ngDownl oads. r enove(request.site)

112

& The standard error handling will print out an error message to the standard error outp
terminate the operator in case an uncaught exception is thrown from withing the oper
body. To alter the behavior, you can register your own event listener:

def listener = new Datafl owEvent Adapter () {
@verride
bool ean onException(final Datafl owProcessor processor, final Throwable e) {
| ogChannel << e
return false //Indicate whether to term nate the operator or not
}
}

op = group.operator(inputs: [a, b], outputs: [c], listeners: [listener]) {x, y ->

See the Operator lifecycle section for nore details

Types of operators

There are specialized versions of operators serving specific purposes:
© operator - the basic general-purpose operator
© selector - operator that is triggered by a value being available in any of its input channels

© prioritySelector - a selector that prefers delivering messages from lower-indexed input chanr
higher-indexed ones

© gplitter - a single-input operator copying its input values to all of its output channels

Wiring operators together

Operators are typically combined into networks, when some operators consume output by other «

operator(inputs:[a, b], outputs:[c, d]) {...}
splitter(c, [e, f])
selector(inputs:[e, d]: outputs:[]) {...}

You may alternatively refer to output channels through operators themselves:

def opl = operator(inputs:[a, b], outputs:[c, d]) {...}
def spl = splitter(opl.outputs[0], [e, f]) //takes the first output of opl
sel ector (i nputs:[spl.outputs[0], opl.outputs[1]]: outputs:[]) {...} //takes the first output of spl and the

Grouping operators

Dataflow operators can be organized into groups to allow for performance fine-tuning. Groups pr
operator() factory method to create tasks attached to the groups.

113

i nport groovyx. gpars. group. Def aul t PGr oup
def group = new Def aul t PG oup()

group.w th {
operator(inputs: [a, b, c], outputs: [d]) {x, vy, z ->

l'o'i'ndOJtput 0, x +y +z

& The default thread pool for dataflow operators contains daemon threads, which mean
application will exit as soon as the main thread finishes and won't wait for all tasks to
When grouping operators, make sure that your custom thread pools either use daem
threads, too, which can be achieved by using DefaultPGroup or by providing your ow
factory to a thread pool constructor, or in case your thread pools use non-daemon thr
such as when using the NonDaemonPGroup group class, make sure you shutdown tl
or the thread pool explicitly by calling its shutdown() method, otherwise your applicati
not exit.

You may selectively override the default group used for tasks, operators, callbacks and other dat
a code block using the _Dataflow.usingGroup() method:

Dat af | ow. usi ngG oup(group) {
operator(inputs: [a, b, c], outputs: [d]) {x, vy, z ->

k')'i'ndOJtput 0, x +y + 2z

You can always override the default group by being specific:

Dat af | ow. usi ngG oup(group) {
anot her G oup. operator (inputs: [a, b, c], outputs: [d]) {x, vy, z ->

k')'i'ndOJtput 0, x +y +z

Constructing operators
The construction properties of an operator, such as inputs , outputs , stateObject or maxForks ce

the operator has been build. You may find the groovyx.gpars.dataflow.ProcessingNode class hel
collecting channels and values into lists before you finally build an operator.

114

i nport groovyx. gpars. dat af | ow. Dat af | ow
import groovyx.gpars. dat af | ow. Dat af | owQueue
inmport static groovyx.gpars. datafl ow. Processi ngNode. node

| *x*

* Shows how to build operators using the ProcessingNode cl ass
*/

final Datafl owQueue aVal ues = new Dat af | owQueue()
final Datafl owQueue bVal ues = new Dat af | owQueue()
final Datafl owQueue results = new Dat af | onQueue()

/I Create a config and gradually set the required properties - channels, code, etc.
def adderConfig = node {val ueA valueB ->
bi ndQut put val ueA + val ueB

adder Confi g. i nputs << aVal ues
adder Confi g.inputs << bVal ues
adder Confi g. outputs << results

//Build the operator
final adder = adder Confi g. operat or (Dat af | ow. DATA_FLOW GROUP)

/I Now t he operator is running and processing the data
aVal ues << 10
aVal ues << 20
bVal ues << 1
bVal ues << 2

assert [11, 22] == (1..2).collect {
results. val
}

State in operators

Although operators can frequently do without keeping state between subsequent invocations, GF
to maintain state, if desired by the developer. One obvious way is to leverage the Groovy closure
close-over their context:

int counter = 0

operator(inputs: [a], outputs: [b]) {value ->
counter += 1

}

Another way, which allows you to avoid declaring the state object outside of the operator definitic
object into the operator as a stateObject parameter at construction time:

operator(inputs: [a], outputs: [b], stateCbject: [counter: 0]) {value ->
stateCbj ect.counter += 1
}

Parallelize operators

By default an operator's body is processed by a single thread at a time. While this is a safe settin
operator's body to be written in a non-thread-safe manner, once an operator becomes "hot" and
accumulate in the operator's input queues, you might consider allowing multiple threads to run th
concurrently. Bear in mind that in such a case you need to avoid or protect shared resources fror
access. To enable multiple threads to run the operator's body concurrently, pass an extra maxFc
creating an operator:

def op = operator(inputs: [a, b, c], outputs: [d, e], maxForks: 2) {x, y, z ->
bi ndQutput 0, x +y + z
bi ndQutput 1, x * y * z

115

The value of the maxForks parameter indicates the maximum of threads running the operator co
positive numbers are allowed with value 1 being the default.

& Please always make sure the group serving the operator holds enough threads to su
requested forks. Using groups allows you to organize tasks or operators around diffel
pools (wrapped inside the group). While the Dataflow.task() command schedules the
default thread pool (java.util.concurrent.Executor, fixed size=#cpu+1, daemon thread:
may prefer being able to define your own thread pool(s) to run your tasks.

def group = new Def aul t PG oup(10)
group. operator ((inputs: [a, b, c], outputs: [d, e], maxForks: 5) {x, y, z -> ...}

The default group uses a resizeable thread pool as so will never run out of threads.

Synchronizing the output

When enabling internal parallelization of an operator by setting the value for maxForks to a value
important to remember that without explicit or implicit synchronization in the operators' body race
Especially bear in mind that values written to multiple output channels are not guarantied to be w
same order to all the channels

operator (i nputs:[inputChannel], outputs:[a, b], maxForks:5) {nsg ->
bi ndQut put 0, nsg
bi ndQut put 1, nsg

I nput Channel <<
i nput Channel <<
i nput Channel <<
i nput Channel <<
i nput Channel <<

ahrWNE

May result in output channels having the values mixed-up something like:

a

->1, 3, 2, 4, 5
b->2 1, 3, 5 4

Explicit synchronization is one way to get correctly bound all output channels and protect operatc
state:

def | ock = new Object ()
operator (i nputs: [inputChannel], outputs:[a, b], maxForks:5) {nsg ->
doSt uf f That | sThr eadSaf e()

synchroni zed(| ock) {
doSonet hi ngThat Must Not BeAccessedByMul ti pl eThr eadsAt TheSaneTi ne()
bi ndQut put 0, nsg
bi ndQut put 1, 2*nsg
}
}

Obviously you need to weight the pros and cons here, since synchronization may defeat the purg
maxForks to a value greater than 1.

To set values of all the operator's output channels in one atomic step, you may also consider call
bindAllOutputsAtomically method, passing in a single value to write to all output channels or the
bindAllOutputsAtomically method, which takes a multiple values, each of which will be written to
the same position index.

116

operator (i nputs:[inputChannel], outputs:[a, b], maxForks:5) {nsg ->
doSt uf f That | sThr eadSaf e()
bi ndAl | Qut put Val uesAtom cal |y nsg, 2*nsg

& Using the bindAllOutputs or the bindAllOutputValues methods will not guarantee aton
writes across al the output channels when using internal parallelism. If preserving the
messages in multiple output channels is not an issue, bindAllOutputs as well as
bindAllOutputValues will provide better performance over the atomic variants.

Operator lifecycle
Dataflow operators and selectors fire several events during their lifecycle, which allows the intere

notifications and potential alter operator's behavior. The DataflowEventListener interface offers a
methods:

117

public interface Datafl owEventLi stener {
/**
* Invoked i medi ately after the operator starts by a pooled thread before the first nessage is obtained
*
* @aram processor The reporting dataflow operator/sel ector
*

voi d afterStart (Datafl owPr ocessor processor);
/**

* Invoked i medi ately after the operator term nates
*

* @aram processor The reporting datafl ow operator/sel ector
*/

voi d afterStop(Datafl owProcessor processor);
/**

I nvoked if an exception occurs.
If any of the listeners returns true, the operator will term nate.
Exceptions outside of the operator's body or listeners' nessageSentQut() handlers will ternminate the of

the listeners' votes.

*
*
*
i
*
* @aram processor The reporting datafl ow operator/sel ector

* @aram e The thrown exception

* @eturn True, if the operator should termnate in response to the exception, false otherw se.

bool ean onExcepti on(Dat af | owPr ocessor processor, Throwable e);
/**

I nvoked when a nessage becones available in an input channel.

*

*

* @aram processor The reporting datafl ow operator/sel ector

* @ar am channel The input channel hol ding the nessage

* @aram i ndex The index of the input channel within the operator

* @ar am nessage The i ncom ng nessage

* @eturn The original nmessage or a nessage that should be used instead

Obj ect nessageArri ved(Dat af | owPr ocessor processor, Datafl owReadChannel <Obj ect > channel, int index, Object
/**

I nvoked when a control nessage (instances of Control Message) becones available in an input channel.

*

*

* @aram processor The reporting datafl ow operator/sel ector

* @ar am channel The i nput channel hol ding the nessage

* @aram i ndex The index of the input channel within the operator

* @ar am nessage The incom ng nessage

* @eturn The original nmessage or a nessage that should be used instead

Obj ect control MessageArrived(Dat af | owPr ocessor processor, Datafl owReadChannel <Qbj ect > channel, int index,

| **

I nvoked when a nessage is being bound to an output channel.

*

*

* @aram processor The reporting datafl ow operator/sel ector

* @ar am channel The out put channel to send the nessage to

* @aram i ndex The index of the output channel within the operator
* @ar am nessage The nessage to send

* @eturn The original nmessage or a nessage that should be used instead

Obj ect nessageSent Qut (Dat af | owPr ocessor processor, Datafl owWiteChannel <Object> channel, int index, Object
/**
* | nvoked when all nessages required to trigger the operator becone available in the input channels.
*
* @aram processor The reporting datafl ow operator/sel ector
* @aram nessages The incom ng nessages
* @eturn The original |ist of nessages or a nodified/ new |list of nmessages that should be used instead
*/
Li st <hj ect > bef or eRun(Dat af | owPr ocessor processor, List<Cbject> nessages);
/**
I nvoked when the operator conpletes a single run

@ar am processor The reporting datafl ow operator/sel ector
@ar am nessages The incom ng nessages that have been processed
*/

*
*
*
*
voi d afterRun(Dat af | owPr ocessor processor, List<Object> nessages);
/**
* I nvoked when the fireCustonEvent() nethod is triggered nanually on a datafl ow operator/sel ector
*
* @aram processor The reporting datafl ow operator/sel ector
*
*

@ar am dat a The custom pi ece of data provided as part of the event
@eturn A value to return fromthe fireCustonEvent() nethod to the caller (event initiator)

Obj ect cust onEvent (Dat af | owPr ocessor processor, Object data);

A default implementation is provided through the DataflowEventAdapter class.

118

Listeners provide a way to handle exceptions, when they occur inside operators. A listener may t
exceptions, notify a supervising entity, generate an alternative output or perform any steps requir
situation. If there's no listener registered or if any of the listeners returns true the operator will ter|
contract of afterStop() . Exceptions that occur outside the actual operator's body, i.e. at the parar
phase before the body is triggered or at the clean-up and channel subscription phase, after the b
lead to operator termination.

The fireCustomEvent() method available on operators and selectors may be used to communica
between operator's body and the interested listeners:

final |istener = new Datafl owEvent Adapter () {
@verride
Obj ect cust onEvent (Dat af | owPr ocessor processor, Object data) {
println "Log: Getting quite high on the scal e $data"
) return 100 //The value to use instead
}

op = group.operator(inputs: [a, b], outputs: [c], listeners: [listener]) {x, y ->
final sum= x + vy
if (sum> 100) bindCQutput (fireCustonEvent(sun)) //Reporting that the sumis too high, binding the |owerec
el se bi ndQut put sum

}

Selectors

Selector's body should be a closure consuming either one or two arguments.

selector (inputs : [a, b, c], outputs : [d, e]) {value ->

}

The two-argument closure will get a value plus an index of the input channel, the value of which i
processed. This allows the selector to distinguish between values coming through different input

selector (inputs : [a, b, c], outputs : [d, e]) {value, index ->

}

Priority Selector

When priorities need to be preserved among input channels, a DataflowPrioritySelector should b

prioritySelector(inputs : [a, b, c], outputs : [d, e]) {value, index ->

}

The priority selector will always prefer values from channels with lower position index over values
channels with higher position index.

Join selector

A selector without a body closure specified will copy all incoming values to all of its output chann

def join = selector (inputs : [programers, analysis, nmanagers], outputs : [enployees, colleagues])

119

Internal parallelism

The maxForks attribute allowing for internal selectors parallelism is also available.

selector (inputs : [a, b, c], outputs : [d, e], maxForks : 5) {value ->

}

Guards

Just like Selects , Selectors also allow the users to temporarily include/exclude individual input cl
The guards input property can be used to set the initial mask on all input channels and the setGL
methods are then available in the selector's body.

i mport groovyx. gpars. dat af | ow. Dat af | owQueue
inmport static groovyx.gpars. datafl ow Datafl ow. sel ect or
inmport static groovyx.gpars.datafl ow Datafl ow. task

| **

* Denpnstrates the ability to enabl e/di sable channels during a value selection on a select by providing bool ¢
*/

final Datafl owQueue operations = new Dat af | owQueue()
final Datafl owQueue nunbers = new Dat af | owQueue()

def instruction
def nums = []

sel ector (inputs: [operations, nunbers], outputs: [], guards: [true, false]) {value, index -> //initial guarc
if (index == 0) {
instruction = val ue
set Guard(0, false) //setCuard() used here
set Guard(1, true)

el se nuns << val ue

if (nuns.size() == 2)
setQuards([true, f
final def formula
println "$fornul a
nuns. cl ear ()

| se]) /| set Guards() used here
"${nuns[0]} $instruction ${nunms[1]}"
${new G oovyShel | ().evaluate(formla)}"

nimno—

}
}

task {
operations << '+
operations << '+
operations <<

*

task {
nunbers << 10
nunbers << 20
nunbers << 30
nunbers << 40
nunbers << 50
nunbers << 60

& Avoid combining guards and maxForks greater than 1. Although the Selector is threa
won't be damaged in any way, the guards are likely not to be set the way you expect.
multiple threads running selector's body concurrently will tend to over-write each-othe
settings to the guards property.

7.4 Shutting Down Dataflow Networks

Shutting down a network of dataflow processors (operators and selectors) may sometimes be a 1
especially if you need a generic mechanism that will not leave any messages unprocessed.

Dataflow operators and selectors can be terminated in three ways:

120

1. by calling the terminate() method on all operators that need to be terminated
2. by sending a poisson message

3. by setting up a network of activity monitors that will shutdown the network after all messages

Check out the details on the ways that GPars provides.

&y Shutting down the thread pool

If you use a custom PGroup to maintain a thread pool for your dataflow network, you
forget to shutdown the pool once the network is terminated. Otherwise the thread poc
consume system resources and, in case of using non-daemon threads, it will prevent
exit.

Emergency shutdown

You can call terminate() on any operator/selector to immediately shut it down. Provided you keef.
processors, perhaps by adding them to a list, the fastest way to stop the network would be:

al | MyProcessors*.term nate()

This should, however, be treated as an emergency exit, since no guarantees can be given regar
processed nor finished work. Operators will simply terminate instantly leaving work unfinished an
messages in the input channels. Certainly, the lifecycle event listeners hooked to the operators/s
afterStop() event handlers invoked in order to, for example, release resources or output a note in

def opl = operator(inputs: [a, b, c], outputs: [d, e]) {x, y, z ->}

def op2 = selector(inputs: [d], outputs: [f, out]) { }

def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index ->}

[opl, op2, op3]*.termnate() //Term nate all operators by calling the term nate() nethod on them
opl.join()

op2.join()

op3.join()

& Shutting down the whole JVM through System.exit() will also obvisouly shutdown the
network, however, no lifecycle listeners will be invoked in such cases.

Stopping operators gently

Operators handle incoming messages repeatedly. The only safe moment for stopping an operatc
loosing any messages is right after the operator has finished processing messages and is just ak
messages in its incoming pipes. This is exactly what the terminateAfterNextRun() method does. |
operator for shutdown after the next set of messages gets handled.

121

The unprocessed messages will stay in the input channels, which allows you to handle them late
different operator/selector or in some other way. Using terminateAfterNextRun() you will not loos
This may be particularly handy when you use a group of operators/selectors to load-balance mes
channel. Once the work-load decreases, the terminateAfterNextRun() method may be used to sa
load-balancing operators.

& Detecting shutdown

Operators and electors offer a handy join() method for those who need to block until t
operator terminates.

al | MyProcessors*. join()

This is the easies way to wait until the whole dataflow network shuts down, irrespecti
shutdown method used.

PoisonPill

PoisonPill is a common term for a strategy that uses special-purpose messages to stop entities t
offers the PoisonPill class, which has exactly such effect or operators and selectors. Since Poiso
ControlMessage , it is invisible to operator's body and custom code does not need to handle it in
DataflowEventListeners may react to ControlMessages through the controlMessageArrived() har

def opl = operator(inputs: [a, b, c], outputs: [d, e]) {x, vy, z ->}

def op2 = selector(inputs: [d], outputs: [f, out]) { }

def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index ->}
a << PoisonPill.instance //Send the poisson

opl.join()

op2.join()

op3.join()

After receiving a poisson an operator terminates, right after it finishes the current calculation and
poisson is sent to all its output channels, so that the poisson can spread to the connected operat
operators typically wait for all inputs to have a value, in case of PoisonPills , the operator will tern
soon as a PoisonPill appears on any of its inputs. The values already obtained from the other chi
can be considered an error in the design of the network, if these messages were supposed to be
would need a proper value as their peer and not a PoisonPill in order to be processes normally.

Selectors, on the other hand, will patiently wait for PoisonPill to be received from all their input cr
it on the the output channels. This behavior prevents networks containing feed-back loops invo
being shutdown using PoisonPill . A selector would never receive a PoisonPill from the channel t
behind the selector. A different shutdown strategy should be used for such networks.

& Given the potential variety of operator networks and their asynchronous nature, a goc
termination strategy is that operators and selectors should only ever terminate thems
ways of terminating them from outside (either by calling the terminate() method or by
poisson down the stream) may result in messages being lost somewhere in the pipes
reading operators terminate before they fully handle the messages waiting in their ing
channels.

122

Immediate poison pill

Especially for selectors to shutdown immediately after receiving a poison pill, a notion of immedi
been introduced. Since normal, non-immediate poison pills merely close the input channel leavin
until at least one input channel remains open, the immediate poison pill closes the selector instar
unprocessed messages from the other selector's input channels will not be handled by the select
immediate poison pill.

With immediate poison pill you can safely shutdown networks with selectors involved in feedback

def opl = selector(inputs: [a, b, c], outputs: [d, e]) {value, index ->}
def op2 = selector(inputs: [d], outputs: [f, out]) { }
def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index ->}

a << Poi sonPill.imedi at el nstance

[opl, op2, op3]*.join()

Poison with counting

When sending a poison pill down the operator network you may need to be notified when all the «
specified number of them have been stopped. The CountingPoisonPill class serves exactly this

operator(inputs: [a, b, c], outputs: [d, e]) {x, vy, z ->}
sel ector(inputs: [d], outputs: [f, out]) { }
prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

/1 Send the poisson indicating the nunber of operators than need to be termi nated before we can continue
final pill = new CountingPoi sonPill (3)
a << pil

//Wait for all operators to term nate
pill.join()
/1At |east 3 operators should be term nated by now

The termination property of the CountingPoisonPill class is a regular Promise<Boolean> and so |
properties.

// Send the poisson indicating the nunber of operators than need to be term nated before we can continue

final pill = new CountingPoi sonPill (3)

pill.term nation.whenBound {println "Reporting asynchronously that the network has been stopped"}
a << pil

if (pill.term nation.bound) println "Ww, that was qui ck. W are done already!"

else println "Things are being slow today. The network is still running."

//Wait for all operators to term nate
assert pill.term nation.get()
/1 At |east 3 operators should be term nated by now

& An immediate variant of CountingPoisonPill is also available - ImmediateCountingPoi

def opl = selector(inputs: [a, b, c], outputs: [d, e]) {value, index ->}
def op2 = selector(inputs: [d], outputs: [f, out]) { }

def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index ->1}
final pill = new I nredi at eCount i ngPoi sonPi | | (3)

a << pil

pill.join()

ImmediateCountingPoisonPill will safely and instantly shutdown dataflow networks ev
selectors involved in feedback loops, which normal non-immediate poison pill would r
to.

123

Poison strategies

To correctly shutdown a network using PoisonPill you must identify the appropriate set of channe
to. PoisonPill will spread in the network the usual way through the channels and processors dow
the right channels to send PoisonPill to will be those that serve as data sources for the network.
to achieve for general cases or for complex networks. On the other hand, for networks with a pre
message flow PoisonPill provides a very straightforward way to shutdown the whole network gra

&y Load-balancing architectures, which use multiple operators reading messages off a s
channel (queue), will also prevent poison shutdown to work properly, since only one ¢
reading operators will get to read the poison message. You may consider using forke
operators instead, by setting the maxForks property to a value greater than 1. Anoth
alternative is to manually split the message stream into multiple channels, each of wh
be consumed by one of the original operators.

Termination tips and tricks

Notice that GPars tasks return a DataflowVariable , which gets bound to a value as soon as the t
'terminator’ operator below leverages the fact that DataflowVariables are implementations of the
interface and thus can be consumed by operators. As soon as both tasks finish, the operator will
down the g channel to stop the consumer as soon as it processes all data.

i mport groovyx. gpars. dat af | ow. Dat af | owQueue
import groovyx.gpars. group. NonDaenonPG oup

def group = new NonDaenonPG oup()
final Datafl owQueue g = new Dat af | owQueue()

/1 final destination
def custons = group.operator(inputs: [q], outputs: []) { value ->
println "Custons received $val ue"

/1 big producer
def green = group.task {
(1..100).each {
g << 'green channel ' + it
sl eep 10

}

/1 little producer
def red = group.task {
(1..10).each {
g << 'red channel " + it
sl eep 15

}

def term nator = group.operator(inputs: [green, red], outputs: []) { t1, t2 ->
g << PoisonPill.instance
}

custons. j oi n()
gr oup. shut down()

Keeping PoisonPill inside a given network

If your network passed values through channels to entities outside of it, you may need to stop the
on the network boundaries. This can be easily achieved by putting a single-input single-output filt
such channel.

124

oper at or (net wor kLeavi ngChannel , ot her Net wor kEnt eri ngChannel) {val ue ->
if (!(value instanceO PoisonPill)) bindCQutput it

The Pipeline DSL may be also helpful here:

net wor kLeavi ngChannel . filter { !(it instanceOf PoisonPill) } into otherNetworkEnteringChannel

& Check out the Pipeline DSL section to find out more on pipelines.

Graceful shutdown

GPars provides a generic way to shutdown a dataflow network. Unlike the previously mentioned
approach will keep the network running until all the messages get handled and than gracefully sk
letting you know when this happens. You have to pay a modest performance penalty, though. Th
we need to keep track of what's happening inside the network.

i nport groovyx. gpars. dat af | ow. Dat af | owBr oadcast

import groovyx.gpars. dat af | ow. Dat af | owQueue

import groovyx.gpars. dat afl ow. oper at or . conponent . G- acef ul Shut downLi st ener
import groovyx. gpars. dat af | ow. oper at or . conponent . Gr acef ul Shut downMbni t or
i mport groovyx.gpars. group. Def aul t PG oup

import groovyx.gpars. group. PG oup

PG oup group = new Defaul t PG oup(10)

final a = new Dat af | owQueue()

final b = new Dat af | owQueue()

final ¢ = new Dat af | owQueue()

final d = new Dat af | owQueue<Obj ect >()
final e = new Dat af | owBr oadcast <Chj ect >()
final f = new Datafl owQueue<Cbj ect >()
final result = new Datafl owQueue<Obj ect >()

final nonitor = new G acef ul Shut downMoni t or (100);

def opl = group.operator(inputs: [a, b], outputs: [c], listeners: [new G aceful ShutdownListener(monitor)]) {x,
sleep 5
bi ndQut put x + vy

def op2 = group.operator(inputs: [c], outputs: [d, e], listeners: [new G aceful ShutdownLi stener(nonitor)]) {x
sl eep 10
bi ndAl' | Qut puts 2*x

def op3 = group.operator(inputs: [d], outputs: [f], listeners: [new G aceful ShutdownLi stener(nonitor)]) {x ->
sleep 5
bi ndQut put x + 40
def op4 = group.operator(inputs: [e.createReadChannel (), f], outputs: [result], listeners: [new G aceful Shutdc
=3

sleep 5
bi ndQut put x + vy

100.ti mes{a << 10}

100. ti mes{b << 20}

final shutdownProni se = nonitor.shutdownNet wor k()
100. ti mes{assert 160 == result.val}

shut downPr oni se. get ()
[opl, op2, op3, op4]*.join()

gr oup. shut down()

First, we need an instance of GracefulShutdownMonitor , which will orchestrate the shutdown prc
instances of GracefulShutdownListener attached to all operators/selectors. These listeners obsel
processors together with their input channels and report to the shared GracefulShutdownMonitor
shutdownNetwork() is called on GracefulShutdownMonitor , it will periodically check for reported
state of operators as well as the number of messages in their input channels.

125

& Please make sure that no new messages enter the dataflow network after the shutdo
been initiated, since this may cause the network to never terminate. The shutdown pr
should only be started after all data producers have ceased sending additional messe
monitored network.

The shutdownNetwork() method returns a Promise so that you can do the usual set of tricks with
the network to terminate using the get() method, register a callback using the whenBound() meth
whole set of activities through the then() method.

& Limitations of graceful shutdown

1. For GracefulShutdownListener to work correctly, its messageArrived() event han
see the original value that has arrived through the input channel. Since some eve
listeners may alter the messages as they pass through the listeners it is advisabl
the GracefulShutdownListener first to the list of listeners on each dataflow proce:

2. Also, graceful shutdown will not work for those rare operators that have listeners
turn control messages into plain value messages in the controlMessageArrived()
handler.

3. Third and last, load-balancing architectures, which use multiple operators readini
messages off a shared channel (queue), will also prevent graceful shutdown to w
properly. You may consider using forked operators instead, by setting the maxkF
property to a value greater than 1. Another alternative is to manually split the me
stream into multiple channels, each of which would be consumed by one of the ¢
operators.

7.5 Application Frameworks

Dataflow Operators and Selectors can be successfully used to build high-level domain-specific fr
problems that naturally fit the flow model.

Building flow frameworks on top of GPars dataflow

GPars dataflow can be viewed as bottom-line language-level infrastructure. Operators, selectors
listeners can be very useful at language level to combine, for example, with actors or parallel coll
need comes for asynchronous handling of events that come through one of more channels, a da
small dataflow network could be a very good fit. Unlike tasks, operators are lightweight and relea
there's no message to process. Unlike actors, operators are addressed indirectly through channe
combine messages from multiple channels into one action.

Alternatively, operators can be looked at as continuous functions, which instantly and repeatedly
values into output. We believe that a concurrency-friendly general-purpose programming languag
type of abstraction.

At the same time, dataflow elements can be easily used as building blocks for constructing doma
workflow-like frameworks. These frameworks can offer higher-level abstractions specialized to a
domain, which would be inappropriate for a general-purpose language-level library. Each of the t
then mapped to (potentially several) GPars concepts.

126

For example, a network solving data-mining problems may consist of several data sources, data
categorization nodes, reporting nodes and others. Image processing network, on the other hand,
specialized in image compression and format transformation. Similarly, networks for data encryp
work-flow management as well as many other domains that would benefit from dataflow-based s
many aspects - the type of nodes in the network, the type and frequency of events, the load-bala
potential constraints on branching, the need for visualization, debugging and logging, the way us
networks and interact with them as well as many others.

The higher-level application-specific frameworks should put effort into providing abstractions bes
domain and hide GPars complexities. For example, the visual graph of the network that the user
screen should typically not show all the channels that participate in the network. Debugging or lo
rarely contribute to the core of the solution, are among the first good candidates to consider for e
channels and lifecycle-event listeners, which orchestrate aspects such as load balancing or grac
probably be not exposed to the user, although they will be part of the generated and executed ne
single channel in the domain-specific model will in reality translate into multiple channels perhaps
logging/transforming/filtering operators connecting them together. The function associated with a
be wrapped with some additional infrastructural code to form the operator's body.

GPars gives you the underlying components that the end user may be abstracted away complete
application-specific framework. This keeps GPars domain-agnostic and universal, yet useful at tr
level.

7.6 Pipeline DSL

A DSL for building operators pipelines

Building dataflow networks can be further simplified. GPars offers handy shortcuts for the commc
(mostly linear) pipelines of operators.

def toUpperCase = {s -> s.toUpperCase()}

final encrypt = new Dataf | owQueue()
final Datafl owReadChannel encrypted = encrypt | toUpperCase | {it.reverse()} | {'###encrypted### + it + '###

encrypt << "| need to keep this nessage secret!"
encrypt << "GPars can build |linear operator pipelines really easily"

println encrypted. val
println encrypted. val

This saves you from directly creating, wiring and manipulating all the channels and operators tha
pipeline. The pipe operator lets you hook an output of one function/operator/process to the input
like chaining system processes on the command line.

The pipe operator is a handy shorthand for a more generic chainWith() method:

def toUpperCase = {s -> s.toUpperCase()}

final encrypt = new Dataf | owQueue()
final Datafl owReadChannel encrypted = encrypt.chainWth toUpperCase chainWth {it.reverse()} chainWth {'###er
" HRE)

encrypt << "I need to keep this nessage secret!"
encrypt << "GPars can build linear operator pipelines really easily"

println encrypted. val
println encrypted. val

Combining pipelines with straight operators

127

Since each operator pipeline has an entry and an exit channel, pipelines can be wired into more
networks. Only your imagination can limit your ability to mix pipelines with channels and operator
definitions.

def toUpperCase = {s -> s.toUpperCase()}
def save = {text ->
/1 Just pretending to be saving the text to disk, database or whatever
i ext

println 'Saving ' + t
}

final toEncrypt = new Dat af | owQueue()
final Datafl owReadChannel encrypted = toEncrypt.chai nWth toUpperCase chainWth {it.reverse()} chainWth {'###
CHAE)

final Datafl owQueue forkl new Dat af | owQueue()
final Datafl owQueue fork2 new Dat af | owQueue()
splitter(encrypted, [forkl, fork2]) //Split the data flow

forkl.chainWth save //Hook in the save operation

// Hook in a sneaky decryption pipeline
final Datafl owReadChannel decrypted = fork2.chainWth {it[15..-4]} chainWth {it.reverse()} chainWth {it.toLc
.chainWth {' Goovy | eaks! Check out a decrypted secret nessage: ' + it}

toEncrypt << "I need to keep this nessage secret!"
toEncrypt << "GPars can build operator pipelines really easy"

println decrypted. va
println decrypted. va

& The type of the channel is preserved across the whole pipeline. E.g. if you start chain
synchronous channel, all the channels in the pipeline will be synchronous. In that cas
obviously, the whole chain blocks, including the writer who writes into the channel at |
someone reads data off the tail of the pipeline.

final SyncDatafl owmQueue queue = new SyncDat af | owQueue()
final result = queue.chainWth {it * 2}.chainWth {it + 1} chainWth {it * 100}

Thread. start {
5.tinmes {
println result.va

queue <<
queue <<
queue <<
queue <<
queue <<

QR WN R

Joining pipelines

Two pipelines (or channels) can be connected using the into() method:

final encrypt = new Dataf |l owQueue()
final Datafl owWiteChannel nessagesToSave = new Dat af | owQueue()
encrypt.chainWth toUpperCase chainWth {it.reverse()} into nessagesToSave

task {
encrypt << "I need to keep this nessage secret!"
encrypt << "GPars can build operator pipelines really easy"

task {
2. times {
println "Saving " + nessagesToSave.va

The output of the encryption pipeline is directly connected to the input of the saving pipeline (a si
case).

128

Forking the data flow

When a need comes to copy the output of a pipeline/channel into more than one following pipelir
method will help you:

final encrypt = new Dataf | owQueue()
final Datafl owWiteChannel nessagesToSave = new Dat af | owQueue()
final Datafl owViteChannel nessagesToLog = new Dat af | owQueue()

encrypt.chainWth toUpperCase chainWth {it.reverse()}.split(nessagesToSave, nessagesTolLog)

Tapping into the pipeline

Like split() the tap() method allows you to fork the data flow into multiple channels. Tapping, how
convenient in some scenarios, since it treats one of the two new forks as the successor of the piy

queue.chainWth {it * 2}.tap(logChannel).chainWth{it + 1}.tap(logChannel).into(PrintChannel)

Merging channels

Merging allows you to join multiple read channels as inputs for a single dataflow operator. The fu
second argument needs to accept as many arguments as there are channels being merged - eac
the corresponding channel.

mal eChannel . nerge(femal eChannel) {m f -> mmarry(f)}.into(nortgageCandi dat esChannel)

Separation

Separation is the opposite operation to merge . The supplied closure returns a list of values, eacl
output into an output channel with the corresponding position index.

queuel. separ at e([queue2, queue3, queued4]) {a -> [a-1, a, a+l]}

Choices

The binaryChoice() and choice() methods allow you to send a value to one out of two (or many) «
indicated by the return value from a closure.

queuel. bi nar yChoi ce(queue2, queue3d) {a -> a > 0}
queuel. choi ce([queue2, queue3d, queued]) {a -> a % 3}

Filtering

The filter() method allows to filter data in the pipeline using boolean predicates.

129

final Datafl owQueue queuel = new Dat af | owQueue()
final Datafl owQueue queue2 = new Dat af | owQueue()
final odd = {num-> num %2 != 0 }

queuel.filter(odd) into queue2
(1..5).each {queuel << it}

assert 1 == queue2.va

assert 3 == queue2.val

assert 5 == queue2.va
Null values

If a chained function returns a null value, it is normally passed along the pipeline as a valid value
operator that no value should be passed further down the pipeline, a NullObject.nullObject instar

final Datafl owQueue queuel = new Dat af | owQueue()
final Datafl owQueue queue2 = new Dat af | owQueue()
final odd = {num ->

if (num==15) return null //null values are normally passed on
if (num%2 !=0) return num
el se return Nul |l Object.null Goject //this value gets bl ocked

}
queuel. chainWth odd into queue2

(1..5).each {queuel << it}
assert 1 == queue2.val
assert == queue2.va
assert null == queue2.val

Customizing the thread pools

All of the Pipeline DSL methods allow for custom thread pools or PGroups to be specified:

channel | {it * 2}

channel . chai nW t h(cl osure)
channel . chai nWth(pool) {1t * 2}
channel . chai nWth(group) {it * 2}

channel . i nt o(ot her Channel)

channel . i nt o(pool , other Channel)
channel . i nto(group, otherChannel)

channel . split (ot her Channel 1, ot her Channel 2)
channel . split (ot her Channel s)

channel . split(pool, otherChannel 1, other Channel 2)
channel . split(pool, otherChannels)
channel . split(group, otherChannel 1, otherChannel 2)
channel . split(group, otherChannels)
channel . t ap(ot her Channel)

channel . t ap(pool , otherChannel)
channel . t ap(group, ot herChannel)

channel . mer ge(ot her Channel)

channel . ner ge(ot her Channel s)

channel . ner ge(pool, ot her Channel)
channel . mer ge(pool , ot her Channel s)
channel . mer ge(group, other Channel)
channel . mer ge(group, ot her Channel s)
channel . filter(otherChannel)
channel . filter(pool, otherChannel)
channel . filter(group, otherChannel)
channel . bi nar yChoi ce(trueBranch, fal seBranch)
channel . bi nar yChoi ce(pool, trueBranch, falseBranch)
channel . bi nar yChoi ce(group, trueBranch, fal seBranch)
channel . choi ce(branches)

channel . choi ce(pool, branches)
channel . choi ce(group, branches)

channel . separat e(out puts)

channel . separ at e(pool , out puts)
channel . separ at e(group, outputs)

130

Overriding the default PGroup

To avoid the necessity to specify PGroup for each Pipeline DSL method separately you may ove
default Dataflow PGroup.

Dat af | ow. usi ngG oup(gr oup) {
channel . choi ce(branches)

}
//1s identical to
channel . choi ce(group, branches)

The Dataflow.usingGroup() method resets the value of the default dataflow PGroup for the given
value specified.

The pipeline builder

The Pipeline class offers an intuitive builder for operator pipelines. The greatest benefit of using t
compared to chaining the channels directly is the ease with which a custom thread pool/group ca
operators along the constructed chain. The available methods and overloaded operators are ider
available on channels directly.

i nport groovyx. gpars. dat af | ow. Dat af | owQueue

i nport groovyx. gpars. dat af | ow. oper at or. Pi pel i ne
i nport groovyx. gpars. schedul er. Def aul t Poo

i nport groovyx. gpars. schedul er. Poo

final Datafl owQueue queue = new Dat af | owQueue()
final Datafl owQueue resultl = new Dat af | owQueue()
final Datafl owQueue result2 = new Dat af | owQueue()
final Pool pool = new DefaultPool (false, 2)

final negate = {-it}
final Pipeline pipeline = new Pipeline(pool, queue)

pipeline | {it * 2} | {it + 1} | negate
pipeline.split(resultl, result2)

queue << 1

queue << 2

queue << 3

assert -3 == resultl.va
assert -5 == resultl.va
assert -7 == resultl.va
assert -3 == result2.va
assert -5 == result2.va
assert -7 == result2.va

pool . shut down()

Passing construction parameters through the Pipeline DSL

You are likely to frequently need the ability to pass additional initialization parameters to the oper
listeners to attach or the value for maxForks . Just like when building operators directly, the Pipel
accept an optional map of parameters to pass in.

new Pi pel i ne(group, queuel).nerge([maxForks: 4, listeners: [listener]], queue2) {a, b ->a + b}.into queue3

7.7 Implementation

131

The Dataflow Concurrency in GPars builds on the same principles as the actor support. All of the
a thread pool and so the number threads created through Dataflow.task() factory method don't n¢
the number of physical threads required from the system. The PGroup.task() factory method can
created task to a group. Since each group defines its own thread pool, you can easily organize te
thread pools just like you do with actors.

Combining actors and Dataflow Concurrency

The good news is that you can combine actors and Dataflow Concurrency in any way you feel fit
problem at hands. You can freely you use Dataflow Variables from actors.

final Dataflowariable a = new Dat af | owari abl e()

final Actor doubler = Actors.actor {
react {message->
a << 2 * message
}
}

final Actor fakingDoubler = actor {
react {
doubler.send it //send a nunber to the doubler
println "Result ${a.val}" //wait for the result to be bound to 'a'

}
f aki ngDoubl er << 10

In the example you see the "fakingDoubler" using both messages and a DataflowVariable to conr
doubler actor.

Using plain java threads

The DataflowVariable as well as the DataflowQueue classes can obviously be used from any thr
not only from the tasks created by Dataflow.task() . Consider the following example:

import groovyx.gpars. dat af | ow. Dat af | owvar i abl e

final Dataflowariable a = new Datafl owari abl e<Stri ng>()
final Dataflowariable b = new Datafl owari abl e<Stri ng>()

Thread. start {
println "Received: $a.val"
Thread. sl eep 2000

) b << ' Thank you'

Thread. start {
Thread. sl eep 2000
a << 'An inportant message fromthe second thread
println "Reply: $b.val"

We're creating two plain java.lang.Thread instances, which exchange data using the two data flo
neither the actor lifecycle methods, nor the send/react functionality or thread pooling take effect i

7.8 Synchronous Variables and Channels

132

When using asynchronous dataflow channels, apart from the fact that readers have to wait for a-
for consumption, the communicating parties remain completely independent. Writers don't wait fc
get consumed. Readers obtain values immediately as they come and ask. Synchronous channel
can synchronize writers with the readers as well as multiple readers among themselves. This is
you need to increase the level of determinism. The writer-to-reader partial ordering imposed by a
communication is complemented with reader-to-writer partial ordering, when using synchronous
other words, you are guaranteed that whatever the reader did before reading a value from a sync
preceded whatever the writer did after writing the value. Also, with synchronous communication \
too far ahead of readers, which simplifies reasoning about the system and reduces the need to n
production speed in order to avoid system overload.

Synchronous dataflow queue

The SyncDataflowQueue class should be used for point-to-point (1:1 or n:1) communication. Eac
the queue will be consumed by exactly one reader. Writers are blocked until their message is cot
blocked until there's a value available for them to read.

i nport groovyx. gpars. dat af | ow. SyncDat af | owQueue
i nport groovyx. gpars. group. NonDaenonPG oup
/**

* Shows how synchronous dat af | ow queues can be used to throttle fast producer when serving data to a slow cor
* Unli ke when using asynchronous channel s, synchronous channels bl ock both the witer and the readers until ¢
exchange nessages

*/

def group = new NonDaenonPG oup()
final SyncDatafl owQueue channel = new SyncDat af | owQueue()

def producer = group.task {
(1..30).each {
channel << it
println "Just sent $it"

channel << -1

def consunmer = group.task {
while (true) {
sl eep 500 //simulating a slow consuner
final Object msg = channel . val
if (msg == -1) return
println "Received $nsg"

}
consuner. j oi n()

gr oup. shut down()

Synchronous dataflow broadcast

The SyncDataflowBroadcast class should be used for publish-subscribe (1:n or n:m) communica
written to the broadcast will be consumed by all subscribed readers. Writers are blocked until the
consumed by all readers, readers are blocked until there's a value available for them to read and
subscribed readers ask for the message as well. With SyncDataflowBroadcast you get all reader
message at the same time and waiting for one-another before getting the next one.

133

i nport groovyx. gpars. dat af | ow. SyncDat af | owBr oadcast
import groovyx.gpars. group. NonDaenonPG oup

/**

exchange nessages.
*/

def group = new NonDaenonPG oup()
final SyncDatafl owBr oadcast channel = new SyncDat af | owBr oadcast ()

def subscriptionl = channel.creat eReadChannel ()
def fastConsunmer = group.task {
while (true) {
sleep 10 //simulating a fast consuner
final Object nmsg = subscriptionl.val
if (msg == -1) return
println "Fast consuner received $nsg"

}

def subscription2 = channel . creat eReadChannel ()
def sl owConsuner = group.task
while (true) {
sl eep 500 //simulating a slow consuner
final Object nmsg = subscription2.val
if (mg == -1) return
println "Slow consuner received $nsg"

}

def producer = group.task {
(1..30).each {
println "Sending $it"
channel << it
println "Sent $it"

channel << -1

[fast Consuner, slowConsuner]*.join()

gr oup. shut down()

* Shows how synchronous dat af | ow broadcasts can be used to throttle fast producer when serving data to slow c
* Unli ke when using asynchronous channel s, synchronous channel s bl ock both the witer and the readers until ¢

Synchronous dataflow variable

Unlike DataflowVariable , which is asynchronous and only blocks the readers until a value is bou
SyncDataflowVariable class provides a one-shot data exchange mechanism that blocks the write

a specified number of waiting parties is reached.

import groovyx. gpars. dat af | ow. SyncDat af | owvar i abl e
import groovyx.gpars. group. NonDaenonPG oup

final NonDaenonPG oup group = new NonDaenonPG oup()

def writer = group.task {
println "Witer about to wite a val ue"
val ue << 'Hell o'
println "Witer has witten the val ue"

def reader = group.task {
println "Reader about to read a val ue"
println "Reader has read the value: ${value.val}"

}
def sl owReader = group.task {
sl eep 5000
println "Sl ow reader about to read a val ue"
) println "Slow reader has read the val ue: ${val ue.val}"

[reader, slowReader]*.join()

gr oup. shut down()

final SyncDatafl owari abl e val ue = new SyncDat af | owvari abl e(2) //two readers required to exchange the nessage

7.9 Kanban Flow

APIs: KanbanFlow | KanbanLink | KanbanTray | ProcessingNode

134

KanbanFlow

A KanbanFlow is a composed object that uses dataflow abstractions to define dependencies bet
concurrent producer and consumer operators.

Each link between a producer and a consumer is defined by a KanbanLink .

Inside each KanbanLink, the communication between producer and consumer follows the Kanba
described in The KanbanFlow Pattern (recommended read). They use objects of type KanbanTr:
downstream and signal requests for further products back to the producer.

The figure below shows a KanbanLink with one producer, one consumer and five trays numbere:
0 has been used to take a product from producer to consumer, has been emptied by the consum
back to the producer's input queue. Trays 1 and 2 wait carry products waiting for consumption, tr
used by producers.

A KanbanFlow object links producers to consumers thus creating KanbanLink objects. In the cou
second link may be constructed where the producer is the same object that acted as the consum
created link such that the two links become connected to build a chain.

Here is an example of a KanbanFlow with only one link, e.g. one producer and one consumer. Tl
sends the number 1 downstream and the consumer prints this number.

inport static groovyx.gpars. datafl ow. Processi ngNode. node
i nport groovyx. gpars. dat af | ow. KanbanF| ow

def producer = node { down -> down 1 }
def consuner = node { up -> println up.take() }

new KanbanFl ow().with {
I'ink producer to consuner
start()
// run for a while
stop()

For putting a product into a tray and sending the tray downstream, one can either use the send(
operator, or use the tray as a method object. The following lines are equivalent:

node { down -> down.send 1 }
node { down -> down << 1 }
node { down -> down 1 }

When a product is taken from the input tray with the t ake() method, the empty tray is automatic

% You should call t ake() only once!

If you prefer to not using an empty tray for sending products downstream (as typically the case w
ProcessingNode acts as a filter), you must release the tray in order to keep it in play. Otherwise,
the system decreases. You can release a tray either by calling the r el ease() method or by usi
(think "shake it off"). The following lines are equivalent:

node { down -> down.rel ease() }
node { down -> ~down }

135

http://people.canoo.com/mittie/kanbanflow.html

.
L]

& Trays are automatically released, if you call any of the t ake() or send() methods.

Various linking structures

In addition to a linear chains, a KanbanFlow can also link a single producer to multiple consumer
producers to a single consumer (collector) or any combination of the above that results in a direc
(DAG).

The KanbanFlowTest class has many examples for such structures, including scenarios where a
delegates work to multiple consumers with

© awork-stealing strategy where all consumers get their pick from the downstream,
© a master-slave strategy where a producer chooses from the available consumers, and

© a broadcast strategy where a producer sends all products to all consumers.

Cycles are forbidden by default but when enabled, they can be used as so-called generators. A
his own consumer that increases a product value in every cycle. The generator itself remains sta
is only stored as a product riding on a tray. Such a generator can be used for e.g. lazy sequence
"heartbeat" of a subsequent flow.

The approach of generator "loops" can equally be applied to collectors, where a collector does ni
state but sends a collection onto itself, adding products at each call.

Generally speaking, a ProcessingNode can link to itself for exporting state to the tray/product tha
Access to the product is then thread-safe by design.

Composing KanbanFlows

Just as KanbanLink objects can be chained together to form a KanbanFlow , flows themselves ci
to form new greater flows from existing smaller ones.

def firstFlow = new KanbanFl ow()

def producer = node(counter)

def consunmer = node(repeater)
firstFlow |ink(producer).to(consuner)
def secondFl ow = new KanbanFl ow()

def producer2 = node(repeater)

def consunmer2 = node(reporter)

secondFl ow. | i nk(producer 2).to(consuner2)
flow = firstFl ow + secondFl ow

flow start()

Customizing concurrency characteristics

The amount of concurrency in a kanban system is determined by the number of trays (sometime:
progress). With no trays in the streams, the system does nothing.

© With one tray only, the system is confined to sequential execution.
© With more trays, concurrency begins.

© With more trays than available processing units, the system begins to waste resources.

136

The number of trays can be controlled in various ways. They are typically set when starting the fl

fl ow. (0) // start without trays
flow start(1l) // start with one tray per link in the flow
flow. () // start with the optimal nunber of trays

In addition to the trays, the KanbanFlow may also be constrained by its underlying ThreadPool . .
example will not allow much concurrency.

KanbanFlows use a default pool that is dimensioned by the number of available cores. This can |
setting the pool edG oup property.

Test:

KanbanFlowTest

Demos:

DemoKanbanFlow
DemoKanbanFlowBroadcast

DemoKanbanFlowCycle
DemoKanbanLazyPrimeSequencelLoops

7.10 Classic Examples

The Sieve of Eratosthenes implementation using dataflow tasks

i mport groovyx. gpars. dat af | ow. Dat af | owQueue

inmport static groovyx.gpars.datafl ow Datafl ow. task

/**
* Denonstrates concurrent inplenentation of the Sieve of Eratosthenes using dataflow tasks
*/

final int requestedPrineNunber Count = 1000

final Datafl owQueue initial Channel = new Dat af | owQueue()

/**

* Cenerating candi date nunbers
*/

task {

(2..10000).each {
initial Channel << it

}
/*
* Chain a new filter for a particular prine number to the end of the Sieve
* @aram i nChannel The current end channel to consune
* @aramprinme The prinme nunber to divide future prine candidates wth
* @eturn A new channel ending the whole chain
*/
def filter(inChannel, int prinme) {
def out Channel = new Dat af | owQueue()

task {
while (true) {
def nunber = inChannel . val
if (number %oprinme !'= 0) {
) out Channel << nunber

}

return out Channel

/**
*/Oonsurre Si eve output and add additional filters for all found prines
*
def currentCQutput = initial Channel
request edPri meNunber Count . ti nmes {
int prime = current Qutput. val
println "Found: $prine"
currentQutput = filter(currentQutput, prine)

137

https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/dataflow/KanbanFlowTest.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanFlow.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanFlowBroadcast.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanFlowCycle.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanLazyPrimeSequenceLoops.groovy

The Sieve of Eratosthenes implementation using a combination of dataflow
operators

i mport groovyx. gpars. dat af | ow. Dat af | owQueue
import static groovyx.gpars. datafl ow. Dat af | ow. oper at or
import static groovyx.gpars. datafl ow Datafl ow. t ask

| **

* Denonstrates concurrent inplenentation of the Sieve of Eratosthenes using dataflow tasks and operatc
=)

final int requestedPrinmeNunber Count = 100
final DataflowQueue initial Channel = new Dat af | owQueue()

/**
* Generating candi date nunbers
*/
task {
(2..1000). each {
initial Channel << it
}
/**
* Chain a new filter for a particular prinme nunber to the end of the Sieve
* @aram i nChannel The current end channel to consune
* @aramprine The prinme nunber to divide future prine candidates with
* @eturn A new channel ending the whole chain
*/

def filter(inChannel, int prine)
def out Channel = new Dat af | owQueue()

operator ([inputs: [inChannel], outputs: [outChannel]]) {
if (it %prime !=0)
bi ndQut put it

}
return out Channel
}
/**
* Consune Sieve output and add additional filters for all found prines
*/
def currentQutput = initial Channel

request edPri neNunber Count . ti nmes {
int prime = currentQutput. val
println "Found: $prine"
currentQutput = filter(currentQutput, prine)

138

8 STM

Software Transactional Memory (STM) gives developers transactional semantics for accessing ir
multiple threads share data in memory, by marking blocks of code as transactional (atomic) the ¢
the responsibility for data consistency to the Stm engine. GPars leverages the Multiverse Stm en
details on the transactional engine at the Multiverse site

Running a piece of code atomically

When using Stm, developers organize their code into transactions. A transaction is a piece of cou
atomically - either all the code is run or none at all. The data used by the transactional code renr
irrespective of whether the transaction finishes normally or abruptly. While running inside a trans.
given an illusion of being isolated from the other concurrently run transactions so that changes t
transaction are not visible in the other ones until the transactions commit. This gives us the ACI |
characteristics of database transactions. The durability transactional aspect so typical for datab:i
mandated for Stm.

GPars allows developers to specify transaction boundaries by using the atomic closures.

import groovyx.gpars.stm GParsStm
import org.nultiverse. api.references. Txnl nt eger
inmport static org.nultiverse.api.StnUtils. newIxnl nteger

public class Account {
private final Txnlnteger anpbunt = newlxnl nt eger (0);

public void transfer(final int a) {
GParsStm atomi c {
anmount . i ncrenent (a) ;

}

public int getCurrentAnount () {
GParsStm atomi cWthlnt {
anmount . get () ;

There are several types of atomic closures, each for different type of return value:
© atomic - returning Object
© atomicWithint - returning int
© atomicWithLong - returning long
© atomicWithBoolean - returning boolean
© atomicWithDouble - returning double

© atomicWithVoid - no return value

Multiverse by default uses optimistic locking strategy and automatically rolls back and retries coll
Developers should thus restrain from irreversible actions (e.g. writing to the console, sending anc
missile, etc.) in their transactional code. To increase flexibility, the default Multiverse settings can
through custom atomic blocks .

Customizing the transactional properties

139

http://multiverse.codehaus.org/overview.html

Frequently it may be desired to specify different values for some of the transaction properties (e.
transactions, locking strategy, isolation level, etc.). The createAtomicBlock method will create a r
configured with the supplied values:

import groovyx.gpars.stm GParsStm
inmport org.nultiverse. api.Atom cBl ock
inmport org.nultiverse. api.PropagationLevel

final TxnExecutor block = GParsStm createTxnExecutor (nmaxRetries: 3000, fam|yNane: 'Custom, PropagationLevel:
Propagati onLevel . Requires, interruptible: false)
assert GParsStm at onmi cW t hBool ean(bl ock) {

true

The customized AtomicBlock can then be used to create transactions following the specified sett
instances are thread-safe and can be freely reused among threads and transactions.

Using the Transaction object

The atomic closures are provided the current Transaction as a parameter. The Txn objects repre
can then be used to manually control the transaction. This is illustrated in the example below, wh
method to block the current transaction until the counter reaches the desired value:

import groovyx.gpars.stm GParsStm
inmport org.nmultiverse. api.Propagati onLeve
inmport org.nultiverse. api . TxnExecut or

inport static org.nultiverse.api.Stntils.newlxnl nteger

final TxnExecutor block = GParsStm createTxnExecutor(naxRetries: 3000, fam|yNane: 'Custom, PropagationLevel
Propagati onLevel . Requires, interruptible: false)

def counter = newTlxnl nt eger (0)
final int max = 100
Thread. start {
while (counter.atom cGet() < max) {
count er. at om cl ncrenent AndGet (1)

sl eep 10
assert max + 1 == GParsStm atom cWthlnt(block) { tx ->
if (counter.get() == nmax) return counter.get() + 1

tx.retry()

Data structures

You might have noticed in the code examples above that we use dedicated data structures to ho
that normal Java classes do not support transactions and thus cannot be used directly, since Mu
able to share them safely among concurrent transactions, commit them nor roll them back. We n
know about transactions:

© TxnIntRef

© TxnLongRef

© TxnBooleanRef
© TxnDoubleRef
© TxnRef

You typically create these through the factory methods of the org.multiverse.api.StmuUltils class.

More information

140

We decided not to duplicate the information that is already available on the Multiverse website. F
Multiverse site and use it as a reference for your further Stm adventures with GPars.

141

http://multiverse.codehaus.org/overview.html

9 Google App Engine Integration

GPars can be run on the Google App Engine (GAE) . It can be made part of Groovy and Java G/
as a plugged into Gaelyk. The small GPars App Engine integration library provides all the necess
hook GAE services into GPars. Although you'll be running on GAE threads and leveraging GAE 1
high-level abstractions remain the same. With a few restrictions you can still use GPars actors, d
parallel collections and other handy concepts.

Please refer to the GPars App Engine library documentation for details on how to proceed with C

142

https://developers.google.com/appengine/
https://github.com/musketyr/gpars-appengine
https://github.com/musketyr/gpars-appengine

10 Tips

General GPars Tips

Grouping

High-level concurrency concepts, like Agents, Actors or Dataflow tasks and operators can be gro
thread pools. The PGroup class and its sub-classes represent convenient GPars wrappers arour
Objects created using the group's factory methods will share the group's thread pool.

def groupl = new Def aul t PG oup()
def group2 = new NonDaenonPG oup()
groupl.with {

task {...}

task {...}

def op = operator(...) {...}

def actor = actor{...}

def anot herActor = group2.actor{...} //will belong to group2
def agent = safe(0)

&% When customizing the thread pools for groups, consider using the existing GPars
implementations - the DefaultPool or ResizeablePool classes. Or you may create yoL
implementation of the groovyx.gpars.scheduler.Pool interface to pass to the DefaultP
NonDaemonPGroup constructors.

Java API

Most of GPars functionality can be used from Java just as well as from Groovy. Checkout the 2.€
GPars from Java section of the User Guide and experiment with the maven-based stand-alone J
Take GPars with you wherever you go!

10.1 Performance

Your code in Groovy can be just as fast as code written in Java, Scala or any other programing ¢
not be surprising, since GPars is technically a solid tasty Java-made cake with a Groovy DSL cre

Unlike in Java, however, with GPars, as well as with other DSL-friendly languages, you are very
useful kind of code speed-up for free, a speed-up coming from a better and cleaner design of yol
with a concurrency DSL will give you smaller code-base with code using the concurrency primitiv
constructs. So it is much easier to build robust concurrent applications, identify potential bottle-ne
eliminate them.

While this whole User Guide is describing how to use Groovy and GPars to create beautiful and |
code, let's use this chapter to highlight a few places, where some code tuning or minor design cc
you interesting performance gains.

Parallel Collections

143

http://gpars.codehaus.org/Demos

Methods for parallel collection processing, like eachParallel() , collectParallel() and such use Par
tree-like data structure behind the scenes. This data structure has to be built from the original col
call any of the parallel collection methods. Thus when chaining parallel method calls you might ci
map/reduce API instead or resort to using the ParallelArray API directly, to avoid the Parallel Arr:

GPar sPool . wi t hPool {

people.findAl | Parallel {it.isMale()}.collectParallel{it.nane}.any{it == "Joe'}
people.parallel .filter{it.isMale()}.map{it.nane}.filter{it == 'Joe'}.size() > 0
people.parallel Array.withFilter({it.isMale()} as Predicate).w thMapping({it.nane} as Mapper).any{it == "Jc

In many scenarios changing the pool size from the default value may give you performance bene
tasks perform IO operations, like file or database access, networking and such, increasing the nt
pool is likely to help performance.

GPar sPool . wi t hPool (50) {
}

Since the closures you provide to the parallel collection processing methods will get executed fre
concurrently, you may further slightly benefit from turning them into Java.

Actors

GPars actors are fast. DynamicDispatchActors and ReactiveActors are about twice as fast as the
they don't have to maintain an implicit state between subsequent message arrivals. The Default?
in performance with actors in Scala , which you can hardly hear of as being slow.

If top performance is what you're looking for, a good start is to identify the following patterns in yc

actor {
I oop {
react {nmsg ->
sw tch(nsg) {
case String: ...
case Integer: ...

and replace them with DynamicDispatchActor :

nmessageHandl er {
when{String nsg -> ...}
when{ | nteger nsg -> ...}

The loop and react methods are rather costly to call.

Defining a DynamicDispatchActor or ReactiveActor as classes instead of using the messageHan
factory methods will also give you some more speed:

cl ass MyHandl er extends Dynam cDi spat chActor {
public void handl eMessage(String nsg) {

}
public void handl eMessage(| nteger nsg) {

}
}

144

Now, moving the MyHandler class into Java will squeeze the last bit of performance from GPars.

Pool adjustment

GPars allows you to group actors around thread pools, giving you the freedom to organize actors
always worthwhile to experiment with the actor pool size and type. FJPool usually gives better cr
DefaultPool , but seems to be more sensitive to the number of threads in the pool. Sometimes us
or ResizeableFJPool could help performance by automatic eliminating unneeded threads.

def attacker Group
def defender G oup

= new Def aul t PGr oup(new Resi zeabl eFJPool (10))
= new Def aul t PGr oup(new Def aul t Pool (5))

def attacker
def def ender

attacker Group.actor {...}
def ender G oup. messageHandl er {...}

Agents

GPars Agents are even a bit faster in processing messages than actors. The advice to group age
thread pools and tune the pool sizes and types applies to agents as well as to actors. With agent
benefit from submitting Java-written closures as messages.

Share your experience

The more we hear about GPars uses in the wild the better we can adapt it for the future. Let us k
GPars and how it performs. Send us your benchmarks, performance comparisons or profiling reg
GPars for you.

10.2 Integration into hosted environment

Hosted environments, such as Google App Engine, impose additional restrictions on threading. F
with these environments better, the default thread factory and timer factory can be customized. T
class provides static initialization methods allowing third parties to register their own implementat
PoolFactory and TimerFactory interfaces, which will then be used to create default pools and tim
Dataflow and PGroups.

public final class GParsConfig {
private static volatile Pool Factory pool Factory;
private static volatile TinerFactory tinerFactory;

public static void setPool Factory(final Pool Factory pool)

public static Pool Factory get Pool Factory()

public static Pool retrieveDefaultPool ()

public static void setTinmerFactory(final TimerFactory tinerFactory)
public static TinerFactory getTi ner Factory()

public static Ceneral Tinmer retrieveDefaul tTimer(final String nane, final bool ean daenon)

The custom factories should be registered immediately after the application startup in order for A
be able to use them for their default groups.

Compatibility

145

Some further compatibility problems may occur when running GPars in a hosted environment. Tt
is probably the lack of ForkJoinThreadPool (aka jsr-166y) support in GAE. Functionality such as
GParsPool may thus not be available on some services as a result. However, GParsExecutorsP(
Agents and Stm should work normally even when using managed non-Java SE thread pools.

146

11 Conclusion

This was quite a wild ride, wasn't it? Now, after going through the User Guide, you're certainly re
robust and reliable concurrent applications. You've seen that there are many concepts you can ¢
has its own areas of applicability. The ability to pick the right concept to apply to a given problem
the rest of the system is key to being a successful developer. If you feel you can do this with GP«
User Guide has been accomplished.

Now, go ahead, use GPars and have fun!

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that each copy
contains this Copyright Notice, whether distributed in print or electronically. Tackling the
complexity of concurrent programming with Groovy.

147

