
Communicating Sequential Processes
The Whole GPars Team <gpars-developers@googlegroups.com>

Version 1.2.1, 2015-12-01

Table of Contents
CSP . 2

Here’s a concurrent implementation of the Sieve of Eratosthenes . 2

 To read this topic in the PDF format, please click here.

1

CSP.pdf

CSP
Communicating Sequential Processes (CSP) provides a formal concurrency model consisting of
synchronously communicating independent processes.

The model offers deterministic behavior plus it allows developers to combine the processes into
composable and reusable components.

Processes, in GPars called Tasks, are concurrently run independent activities, which communicate by
sending data through (typically synchronous) channels.

Here’s a concurrent implementation of the Sieve of
Eratosthenes

2

http://en.wikipedia.org/wiki/Communicating_sequential_processes

CSP Sample - Sieve of Eratosthenes

inal int requestedPrimeNumberCount = 1000
final DataflowQueue initialChannel = new DataflowQueue()
/**
 * Generating candidate numbers
 */
group.task {
 (2..10000).each {
 initialChannel << it
 }
 initialChannel << -1 //poisson
}

/**
 * Chain a new filter for a particular prime number to the end of the Sieve
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide future prime candidates with
 * @return A new channel ending the whole chain
 */
def filter(inChannel, int prime) {
 def outChannel = new DataflowQueue()

 group.task {
 while (true) {
 def number = inChannel.val
 if (number % prime != 0) {
 outChannel << number
 }
 if (number == -1) break //handle poisson and stop
 }
 }
 return outChannel
}

/**
 * Consume Sieve output and add additional filters for all found primes
 */
def currentOutput = initialChannel
requestedPrimeNumberCount.times {
 int prime = currentOutput.val
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
}

GPars tasks represent active computations. Indirect addressing through channels gives you enormous
flexibility in how and when you wire tasks together. The concept of Promises allows tasks to easily

3

signal events or values to other parts of your program in a thread-safe manner. CSP programms are
highly deterministic, which is a very useful quality of concurrent programs.

Tasks can be easily combined with other GPars concepts - with Agents to ease shared-state
management or with Dataflow Operators to process streamed data.

For further details, please refer to the Groovy CSP section of this User Guide.

4

./CSP.html

	Communicating Sequential Processes
	Table of Contents
	CSP
	Here’s a concurrent implementation of the Sieve of Eratosthenes

