
1

Groovy Parallel Systems

Table of contents

2

The GPars Framework - Reference Documentation
Authors: The Whole GPars Gang

Version: 1.1.0

Table of Contents

1 Introduction

1.1 Enter GPars

1.2 Credits

2 Getting Started

2.1 Downloading and Installing

2.2 A Hello World Example

2.3 Code conventions

2.4 Getting Set Up in an IDE

2.5 Applicability of Concepts

2.6 What's New

2.7 Java API - Using GPars from Java

3 Data Parallelism

3.1 Parallel Collections

3.1.1 GParsPool

3.1.2 GParsExecutorsPool

3.1.3 Memoize

3.2 Map-Reduce

3.3 Parallel Arrays

3.4 Asynchronous Invocation

3.5 Composable Asynchronous Functions

3.6 Fork-Join

3.7 Parallel Speculations

4 Groovy CSP

5 Actors

5.1 Actors Principles

5.2 Stateless Actors

5.3 Tips and Tricks

5.4 Active Objects

5.5 Classic Examples

6 Agents

7 Dataflow

7.1 Tasks

3

7.2 Selects

7.3 Operators

7.4 Shutting Down Dataflow Networks

7.5 Application Frameworks

7.6 Pipeline DSL

7.7 Implementation

7.8 Synchronous Variables and Channels

7.9 Kanban Flow

7.10 Classic Examples

8 STM

9 Google App Engine Integration

10 Tips

10.1 Performance

10.2 Integration into hosted environment

11 Conclusion

4

1 Introduction
The world of mainstream computing is changing rapidly these days. If you open the hood and look under the covers of
your computer, you'll most likely see a dual-core processor there. Or a quad-core one, if you have a high-end
computer. We all now run our software on multi-processor systems. The code we write today and tomorrow will
probably never run on a single processor system: parallel hardware has become standard. Not so with the software
though, at least not yet. People still create single-threaded code, even though it will not be able to leverage the full
power of current and future hardware. Some developers experiment with low-level concurrency primitives, like threads,
and locks or synchronized blocks. However, it has become obvious that the shared-memory multi-threading approach
used at the application level causes more trouble than it solves. Low-level concurrency handling is usually hard to get
right, and it's not much fun either. With such a radical change in hardware, software inevitably has to change
dramatically too. Higher-level concurrency and parallelism concepts like map/reduce, fork/join, actors and dataflow
provide natural abstractions for different types of problem domains while leveraging the multi-core hardware.

1.1 Enter GPars
Meet - an open-source concurrency and parallelism library for Java and Groovy that gives you a number ofGPars
high-level abstractions for writing concurrent and parallel code in Groovy (map/reduce, fork/join, asynchronous
closures, actors, agents, dataflow concurrency and other concepts), which can make your Java and Groovy code
concurrent and/or parallel with little effort. With GPars your Java and/or Groovy code can easily utilize all the available
processors on the target system. You can run multiple calculations at the same time, request network resources in
parallel, safely solve hierarchical divide-and-conquer problems, perform functional style map/reduce or data parallel
collection processing or build your applications around the actor or dataflow model.

The project is open sourced under the . If you're working on a commercial, open-source, educationalApache 2 License
or any other type of software project in Groovy, download the binaries or integrate them from the Maven repository and
get going. The way to writing highly concurrent and/or parallel Java and Groovy code is wide open. Enjoy!

1.2 Credits
This project could not have reached the point where it stands currently without all the great help and contribution of
many individuals, who have devoted their time, energy and expertise to make GPars a solid product. First, it is the
people in the core team who should be mentioned:

Václav Pech

Dierk Koenig

Alex Tkachman

Russel Winder

Paul King

Jon Kerridge

Over time, many people have contributed their ideas, provided useful feedback or helped GPars in one way or another.
There are many people in this group, too many to name them all, but let's list at least the most active:

http://gpars.codehaus.org
http://gpars.codehaus.org/License

5

Hamlet d'Arcy

Hans Dockter

Guillaume Laforge

Robert Fischer

Johannes Link

Graeme Rocher

Alex Miller

Jeff Gortatowsky

Jií Kropáek

Many thanks to everyone!

6

1.

2.

3.

4.

5.

1.

1.

2.

3.

2.

1.

2.

3.

4.

3.

1.

2.

2 Getting Started
Let's set out a few assumptions before we get started:

You know and use Groovy and Java: otherwise you'd not be investing your valuable time studying a concurrency
and parallelism library for Groovy and Java.

You definitely want to write your codes employing concurrency and parallelism using Groovy and Java.

If you are not using Groovy for your code, you are prepared to pay the inevitable verbosity tax of using Java.

You target multi-core hardware with your code.

You appreciate that in concurrent and parallel code things can happen at any time, in any order, and more likely
with than one thing happening at once.

With those assumptions in place, we get started.

It's becoming more and more obvious that dealing with concurrency and parallelism at the thread/synchronized/lock
level, as provided by the JVM, is far too low a level to be safe and comfortable. Many high-level concepts, such as
actors and dataflow have been around for quite some time: parallel computers have been in use, at least in data
centres if not on the desktop, long before multi-core chips hit the hardware mainstream. Now then is the time to adopt
these higher-level abstractions in the mainstream software industry. This is what enables for the Groovy andGPars
Java languages, allowing Groovy and Java programmers to use higher-level abstractions and therefore make
developing concurrent and parallel software easier and less error prone.

The concepts available in can be categorized into three groups:GPars

 Constructs that can be applied to small parts of the code-base such as individual algorithms orCode-level helpers
data structures without any major changes in the overall project architecture

Parallel Collections

Asynchronous Processing

Fork/Join (Divide/Conquer)

 Constructs that need to be taken into account when designing the project structureArchitecture-level concepts

Actors

Communicating Sequential Processes (CSP)

Dataflow

Data Parallelism

 Although about 95% of current use of shared mutable state can be avoided usingShared Mutable State Protection
proper abstractions, good abstractions are still necessary for the remaining 5% use cases, when shared mutable
state cannot be avoided

Agents

Software Transactional Memory (not fully implemented in GPars as yet)

2.1 Downloading and Installing

7

GPars is now distributed as standard with Groovy. So if you have a Groovy installation, you should have GPars
already. The exact version of GPars you have will, of course, depend of which version of Groovy. If you don't already
have GPars, and you do have Groovy, then perhaps you should upgrade your Groovy!

If you do not have a Groovy installation, but get Groovy by using dependencies or just having the groovy-all artifact,
then you will need to get GPars. Also if you want to use a version of GPars different from the one with Groovy, or have
an old GPars-less Groovy you cannot upgrade, you will need to get GPars. The ways of getting GPars are:

Download the artifact from a repository and add it and all the transitive dependencies manually.

Specify a dependency in Gradle, Maven, or Ivy (or Gant, or Ant) build files.

Use Grapes (especially useful for Groovy scripts).

If you're building a Grails or a Griffon application, you can use the appropriate plugins to fetch the jar files for you.

The GPars Artifact

As noted above GPars is now distributed as standard with Groovy. If however, you have to manage this dependency
manually, the GPars artifact is in the main Maven repository and in the Codehaus main and snapshots repositories.
The released versions are in the Maven and Codehaus main repositories, the current development version
(SNAPSHOT) is in the Codehaus snapshots repository. To use from Gradle or Grapes use the specification:

"org.codehaus.gpars:gpars:1.1.0"

for the release version, and:

"org.codehaus.gpars:gpars:1.2-SNAPSHOT"

for the development version. You will likely need to add the Codehaus snapshots repository manually to the search list
in this latter case. Using Maven the dependency is:

<dependency>
 <groupId>org.codehaus.gpars</groupId>
 <artifactId>gpars</artifactId>
 <version>1.1.0</version>
</dependency>

or version 1.2-SNAPSHOT if using the latest snapshot.

Transitive Dependencies

GPars as a library depends on Groovy version equal or greater than 2.0. Also, the Fork/Join concurrency library namely
 (an artifact from the) must be on the classpath the programs, which use GPars, to compilejsr166y JSR-166 Project

and execute. Released versions of this artifact are in the main Maven and Codehaus repositories. Development
versions of the artifact are available in the Codehaus snapshots repository. Using Gradle or Grapes you would use the
following dependency specification:

"org.codehaus.jsr166-mirror:jsr166y:1.7.0"

For Maven, the specification would be:

http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166y.jar
http://g.oswego.edu/dl/concurrency-interest/

8

<dependency>
 <groupId>org.codehaus.jsr166-mirror</groupId>
 <artifactId>jsr166y</artifactId>
 <version>1.7.0</version>
</dependency>

The development versions have version number 1.7.0.1-SNAPSHOT.

GPars defines this dependency in its own descriptor, so ideally all dependency management should be taken care of
automatically, if you use Gradle, Grails, Griffon, Maven, Ivy or other type of automatic dependency resolution tool.

Please visit the page on the GPars website for more details.Integration

2.2 A Hello World Example
Once you are setup, try the following Groovy script to test that your setup is functioning as it should.

import groovyx.gpars.actor.Actors.actorstatic

/**
 * A demo showing two cooperating actors. The decryptor decrypts received messages
 * and replies them back. The console actor sends a message to decrypt, prints out
 * the reply and terminates both actors. The main thread waits on both actors to
 * finish using the join() method to prevent premature exit, since both actors use
 * the actor group, which uses a daemon thread pool.default
 * @author Dierk Koenig, Vaclav Pech
 */

def decryptor = actor {
 loop {
 react { message ->
 (message) reply message.reverse()if instanceof String
 stop()else
 }
 }
}

def console = actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 println 'Decrypted message: ' + it
 decryptor.send false
 }
}

[decryptor, console]*.join()

You should get a message "Decrypted message: Groovy is parallel" printed out on the console when you run the code.

GPars has been designed primarily for use with the Groovy programming language. Of course
all Java and Groovy programs are just bytecodes running on the JVM, so GPars can be used
with Java source. Despite being aimed at Groovy code use, the solid technical foundation, plus
the good performance characteristics, of GPars make it an excellent library for Java programs.
In fact most of GPars is written in Java, so there is no performance penalty for Java
applications using GPars.

For details please refer to the Java API section.

To quick-test using GPars via the Java API, you can compile and run the following Java code:

http://gpars.codehaus.org/Integration

9

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.actor.DynamicDispatchActor;import

 class StatelessActorDemo {public
 void main([] args) InterruptedException {public static String throws
 MyStatelessActor actor = MyStatelessActor();final new
 actor.start();
 actor.send();"Hello"
 actor.sendAndWait(10);
 actor.sendAndContinue(10.0, MessagingRunnable< >() {new String
 @Override void doRun(s) {protected final String
 .out.println(+ s);System "Received a reply "
 }
 });
 }
}

class MyStatelessActor DynamicDispatchActor {extends
 void onMessage(msg) {public final String
 .out.println(+ msg);System "Received "
 replyIfExists();"Thank you"
 }

 void onMessage(msg) {public final Integer
 .out.println(+ msg);System "Received a number "
 replyIfExists();"Thank you"
 }

 void onMessage(msg) {public final Object
 .out.println(+ msg);System "Received an object "
 replyIfExists();"Thank you"
 }
}

Remember though that you will almost certainly have to add the Groovy artifact to the build as well as the GPars
artifact. GPars may well work at Java speeds with Java applications, but it still has some compilation dependencies on
Groovy.

2.3 Code conventions
We follow certain conventions in the code samples. Understanding these may help you read and comprehend GPars
code samples better.

The operator has been overloaded on actors, agents and dataflow expressions (both variables andleftShift <<
streams) to mean a message or a value.send assign

myActor << 'message'

myAgent << {account -> account.add('5 USD')}

myDataflowVariable << 120332

On actors and agents the default method has been also overloaded to mean . So sending a message tocall() send
an actor or agent may look like a regular method call.

myActor "message"

myAgent {house -> house.repair()}

The operator in GPars has the meaning. SorightShift >> when bound

myDataflowVariable >> {value -> doSomethingWith(value)}

will schedule the closure to run only after is bound to a value, with the value as a parameter.myDataflowVariable

In samples we tend to statically import frequently used factory methods:

10

GParsPool.withPool()

GParsPool.withExistingPool()

GParsExecutorsPool.withPool()

GParsExecutorsPool.withExistingPool()

Actors.actor()

Actors.reactor()

Actors.fairReactor()

Actors.messageHandler()

Actors.fairMessageHandler()

Agent.agent()

Agent.fairAgent()

Dataflow.task()

Dataflow.operator()

It is more a matter of style preferences and personal taste, but we think static imports make the code more compact
and readable.

2.4 Getting Set Up in an IDE
Adding the GPars jar files to your project or defining the appropriate dependencies in pom.xml should be enough to get
you started with GPars in your IDE.

GPars DSL recognition

 in both the free and the commercial will recognize the GPars domainIntelliJ IDEA Community Edition Ultimate Edition
specific languages, complete methods like , or and validate them. GPars uses the eachParallel() reduce() callAsync()

 mechanism, which teaches IntelliJ IDEA the DSLs as soon as the GPars jar file is added to the project.GroovyDSL

2.5 Applicability of Concepts
GPars provides a lot of concepts to pick from. We're continuously building and updating a page that tries to help user
choose the right abstraction for their tasks at hands. Please, refer to the page for details.Concepts compared

To briefly summarize the suggestions, below you can find the basic guide-lines:

http://www.jetbrains.net/confluence/display/GRVY/Scripting+IDE+for+DSL+awareness
http://gpars.codehaus.org/Concepts+compared

11

1.

2.

3.

4.

5.

1.

2.

3.

You're looking at a collection, which needs to be or processed using one of the many beautiful Groovyiterated
collections method, like , , and such. Proposing that processing each element of theeach() collect() find()
collection is independent of the other items, using GPars can be recommended.parallel collections

If you have a , which may safely run in the background, use the long-lasting calculation asynchronous
 in GPars. Since the GPars asynchronous functions can be composed, you can quicklyinvocation support

parallelize complex functional calculations without having to mark independent calculations explicitly.

You need to an algorithm at hand. You can identify a set of with their mutual dependencies. Theparallelize tasks
tasks typically do not need to share data, but instead some tasks may need to wait for other tasks to finish before
starting. You're ready to express these dependencies explicitly in code. With GPars you createdataflow tasks
internally sequential tasks, each of which can run concurrently with the others. Dataflow variables and channels
provide the tasks with the capability to express their dependencies and to exchange data safely.

You can't avoid using in your algorithm. Multiple threads will be accessing shared data andshared mutable state
(some of them) modifying it. Traditional locking and synchronized approach feels too risky or unfamiliar. Go for

, which will wrap your data and serialize all access to it.agents

You're building a system with high concurrency demands. Tweaking a data structure here or task there won't cut it.
You need to build the architecture from the ground up with concurrency in mind. might be theMessage-passing
way to go.

Groovy CSP will give you highly deterministic and composable model for concurrent processes. The model is
organized around the concept of or , which run concurrently and communicatecalculations processes
through synchronous channels.

If you're trying to solve a complex data-processing problem, consider GPars to build adataflow operators
data flow network. The concept is organized around event-driven transformations wired into pipelines using
asynchronous channels.

Actors and will shine if you need to build a general-purpose, highly concurrent and scalableActive Objects
architecture following the object-oriented paradigm.

Now you may have a better idea of what concepts to use on your current project. Go and check out more details on
them in the User Guide.

2.6 What's New
The new GPars 1.1.0 release introduces several enhancements and improvements on top of the previous release,
mainly in the dataflow area.

Check out the JIRA release notes

Project changes

See for the list of breaking changes.the Breaking Changes listing

Asynchronous functions

Parallel collections

https://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=12030&version=17399
http://gpars.codehaus.org/Breaking+Changes

12

Deprecated foldParallel, renamed to injectParallel

Fork / Join

Actors

Dataflow

LazyDataflowVariable added to allow for lazy asynchronous values

Timeout channels on Selects

Added a Promise-based API for value selection through the Select class

Enabled listening for bind errors on DataflowVariables

Minor API improvement affecting Promise and DataflowReadChannel

Agent

Protecting agent's blocking methods from being called from within commands

Stm

Updated to the latest 0.7.0 GA version of Multiverse

Other

Migrated to Groovy 2.0

Used @CompileStatic where appropriate

Renaming hints

2.7 Java API - Using GPars from Java
Using GPars is very addictive, I guarantee. Once you get hooked you won't be able to code without it. May the world
force you to write code in Java, you will still be able to benefit from most of GPars features.

Java API specifics

Some parts of GPars are irrelevant in Java and it is better to use the underlying Java libraries directly:

Parallel Collection - use jsr-166y library's Parallel Array directly

Fork/Join - use jsr-166y library's Fork/Join support directly

Asynchronous functions - use Java executor services directly

13

The other parts of GPars can be used from Java just like from Groovy, although most will miss the Groovy DSL
capabilities.

GPars Closures in Java API

To overcome the lack of closures as a language element in Java and to avoid forcing users to use Groovy closures
directly through the Java API, a few handy wrapper classes have been provided to help you define callbacks, actor
body or dataflow tasks.

groovyx.gpars.MessagingRunnable - used for single-argument callbacks or actor body

groovyx.gpars.ReactorMessagingRunnable - used for ReactiveActor body

groovyx.gpars.DataflowMessagingRunnable - used for dataflow operators' body

These classes can be used in all places GPars API expects a Groovy closure.

Actors

The as well as the classes can be used just like in Groovy:DynamicDispatchActor ReactiveActor

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.actor.DynamicDispatchActor;import

 class StatelessActorDemo {public
 void main([] args) InterruptedException {public static String throws
 MyStatelessActor actor = MyStatelessActor();final new
 actor.start();
 actor.send();"Hello"
 actor.sendAndWait(10);
 actor.sendAndContinue(10.0, MessagingRunnable< >() {new String
 @Override void doRun(s) {protected final String
 .out.println(+ s);System "Received a reply "
 }
 });
 }
 }

class MyStatelessActor DynamicDispatchActor {extends
 void onMessage(msg) {public final String
 .out.println(+ msg);System "Received "
 replyIfExists();"Thank you"
 }

 void onMessage(msg) {public final Integer
 .out.println(+ msg);System "Received a number "
 replyIfExists();"Thank you"
 }

 void onMessage(msg) {public final Object
 .out.println(+ msg);System "Received an object "
 replyIfExists();"Thank you"
 }
 }

Although there are not many differences between Groovy and Java GPars use, notice, the callbacks instantiating the
MessagingRunnable class in place for a groovy closure.

14

import groovy.lang.Closure;
 groovyx.gpars.ReactorMessagingRunnable;import
 groovyx.gpars.actor.Actor;import
 groovyx.gpars.actor.ReactiveActor;import

 class ReactorDemo {public
 void main([] args) InterruptedException {public static final String throws
 Closure handler = ReactorMessagingRunnable< , >() {final new Integer Integer
 @Override doRun(integer) {protected Integer final Integer
 integer * 2;return
 }
 };
 Actor actor = ReactiveActor(handler);final new
 actor.start();

.out.println(+ actor.sendAndWait(1));System "Result: "
 .out.println(+ actor.sendAndWait(2));System "Result: "
 .out.println(+ actor.sendAndWait(3));System "Result: "
 }
}

Convenience factory methods

Obviously, all the essential factory methods to build actors quickly are available where you'd expect them.

import groovy.lang.Closure;
 groovyx.gpars.ReactorMessagingRunnable;import
 groovyx.gpars.actor.Actor;import
 groovyx.gpars.actor.Actors;import

 class ReactorDemo {public
 void main([] args) InterruptedException {public static final String throws
 Closure handler = ReactorMessagingRunnable< , >() {final new Integer Integer
 @Override doRun(integer) {protected Integer final Integer
 integer * 2;return
 }
 };
 Actor actor = Actors.reactor(handler);final

.out.println(+ actor.sendAndWait(1));System "Result: "
 .out.println(+ actor.sendAndWait(2));System "Result: "
 .out.println(+ actor.sendAndWait(3));System "Result: "
 }
}

Agents

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.agent.Agent;import

 class AgentDemo {public
 void main([] args) InterruptedException {public static final String throws
 Agent counter = Agent< >(0);final new Integer
 counter.send(10);
 .out.println(+ counter.getVal());System "Current value: "
 counter.send(MessagingRunnable< >() {new Integer
 @Override void doRun(integer) {protected final Integer
 counter.updateValue(integer + 1);
 }
 });
 .out.println(+ counter.getVal());System "Current value: "
 }
 }

Dataflow Concurrency

Both and can be used from Java without any hiccups. Just avoid the handyDataflowVariables DataflowQueues
overloaded operators and go straight to the methods, like , , and other. You may also continuebind whenBound getVal
using dataflow passing to them instances of or just like groovy .tasks Runnable Callable Closure

15

1.

2.

3.

import groovyx.gpars.MessagingRunnable;
 groovyx.gpars.dataflow.DataflowVariable;import
 groovyx.gpars.group.DefaultPGroup;import

 java.util.concurrent.Callable;import

 class DataflowTaskDemo {public
 void main([] args) InterruptedException {public static final String throws
 DefaultPGroup group = DefaultPGroup(10);final new

 DataflowVariable a = DataflowVariable();final new

group.task(() {new Runnable
 void run() {public
 a.bind(10);
 }
 });

 Promise result = group.task(Callable() {final new
 call() Exception {public Object throws
 ()a.getVal() + 10;return Integer
 }
 });

result.whenBound(MessagingRunnable< >() {new Integer
 @Override void doRun(integer) {protected final Integer
 .out.println(+ integer);System "arguments = "
 }
 });

.out.println(+ result.getVal());System "result = "
 }
}

Dataflow operators

The sample below should illustrate the main differences between Groovy and Java API for dataflow operators.

Use the convenience factory methods accepting list of channels to create operators or selectors

Use to specify the operator bodyDataflowMessagingRunnable

Call to get hold of the operator from within the body in order to e.g. bind output valuesgetOwningProcessor()

import groovyx.gpars.DataflowMessagingRunnable;
 groovyx.gpars.dataflow.Dataflow;import
 groovyx.gpars.dataflow.DataflowQueue;import
 groovyx.gpars.dataflow. .DataflowProcessor;import operator

 java.util.Arrays;import
 java.util.List;import

 class DataflowOperatorDemo {public
 void main([] args) InterruptedException {public static final String throws
 DataflowQueue stream1 = DataflowQueue();final new
 DataflowQueue stream2 = DataflowQueue();final new
 DataflowQueue stream3 = DataflowQueue();final new
 DataflowQueue stream4 = DataflowQueue();final new

 DataflowProcessor op1 = Dataflow.selector(Arrays.asList(stream1), Arrays.asList(stream2), DataflowMessagingRunnable(1) {final new
 @Override void doRun(… objects) {protected final Object
 getOwningProcessor().bindOutput(2*()objects[0]);Integer
 }
 });

 List secondOperatorInput = Arrays.asList(stream2, stream3);final

 DataflowProcessor op2 = Dataflow. (secondOperatorInput, Arrays.asList(stream4), DataflowMessagingRunnable(2) {final operator new
 @Override void doRun(… objects) {protected final Object
 getOwningProcessor().bindOutput(() objects[0] + () objects[1]);Integer Integer
 }
 });

stream1.bind(1);
 stream1.bind(2);
 stream1.bind(3);
 stream3.bind(100);
 stream3.bind(100);
 stream3.bind(100);
 .out.println(+ stream4.getVal());System "Result: "
 .out.println(+ stream4.getVal());System "Result: "
 .out.println(+ stream4.getVal());System "Result: "
 op1.stop();
 op2.stop();
 }
}

16

Performance

In general, GPars overhead is identical irrespective of whether you use it from Groovy or Java and tends to be very
low. GPars actors, for example, can compete head-to-head with other JVM actor options, like Scala actors.

Since Groovy code in general runs slower than Java code, mainly due to dynamic method invocation, you might
consider writing your code in Java to improve performance. Typically numeric operations or frequent fine-grained
method calls within a task or actor body may benefit from a rewrite into Java.

Prerequisites

All the GPars integration rules apply to Java projects just like they do to Groovy projects. You only need to include the
groovy distribution jar file in your project and all is clear to march ahead. You may also want to check out the sample
Java Maven project to get tips on how to integrate GPars into a maven-based pure Java application - Sample Java
Maven Project

http://gpars.codehaus.org/Demos
http://gpars.codehaus.org/Demos

17

1.

2.

3.

3 Data Parallelism
Focusing on data instead of processes helps a great deal to create robust concurrent programs. You as a programmer
define your data together with functions that should be applied to it and then let the underlying machinery to process
the data. Typically a set of concurrent tasks will be created and then they will be submitted to a thread pool for
processing.

In the and classes give you access to low-level data parallelism techniques.GPars GParsPool GParsExecutorsPool
While the class relies on the jsr-166y Fork/Join framework and so offers greater functionality and betterGParsPool
performance, the uses good old Java executors and so is easier to setup in a managed orGParsExecutorsPool
restricted environment.

There are three fundamental domains covered by the GPars low-level data parallelism:

Processing collections concurrently

Running functions (closures) asynchronously

Performing Fork/Join (Divide/Conquer) algorithms

3.1 Parallel Collections
Dealing with data frequently involves manipulating collections. Lists, arrays, sets, maps, iterators, strings and lot of
other data types can be viewed as collections of items. The common pattern to process such collections is to take
elements sequentially, one-by-one, and make an action for each of the items in row.

Take, for example, the function, which is supposed to return the smallest element of a collection. When you callmin()
the method on a collection of numbers, the caller thread will create an or min() accumulator so-far-the-smallest-value
initialized to the minimum value of the given type, let say to zero. And then the thread will iterate through the elements
of the collection and compare them with the value in the . Once all elements have been processed, theaccumulator
minimum value is stored in the .accumulator

This algorithm, however simple, is on multi-core hardware. Running the function on a dual-coretotally wrong min()
chip can leverage of the computing power of the chip. On a quad-core it would be only 25%. Correct, thisat most 50%
algorithm effectively of the chip.wastes 75% of the computing power

Tree-like structures proved to be more appropriate for parallel processing. The function in our example doesn'tmin()
need to iterate through all the elements in row and compare their values with the . What it can do insteadaccumulator
is relying on the multi-core nature of your hardware. A function could, for example, compare pairs (orparallel_min()
tuples of certain size) of neighboring values in the collection and promote the smallest value from the tuple into a next
round of comparison. Searching for minimum in different tuples can safely happen in parallel and so tuples in the same
round can be processed by different cores at the same time without races or contention among threads.

Meet Parallel Arrays

The jsr-166y library brings a very convenient abstraction called . GPars leverages the Parallel ArraysParallel Arrays
implementation in several ways. The and classes provide parallel variants of theGParsPool GParsExecutorsPool
common Groovy iteration methods like , , and such.each() collect() findAll()

def selfPortraits = images.findAllParallel{it.contains me}.collectParallel {it.resize()}

It also allows for a more functional style map/reduce collection processing.

http://groovy.dzone.com/articles/parallelize-your-arrays-with-j

18

def smallestSelfPortrait = images.parallel.filter{it.contains me}.map{it.resize()}.min{it.sizeInMB}

3.1.1 GParsPool
Use of - the JSR-166y based concurrent collection processorGParsPool

Usage of GParsPool

The class enables a ParallelArray-based (from JSR-166y) concurrency DSL for collections and objects.GParsPool

Examples of use:

//summarize numbers concurrently
 GParsPool.withPool {
 AtomicInteger result = AtomicInteger(0)final new
 [1, 2, 3, 4, 5].eachParallel {result.addAndGet(it)}
 assert 15 == result
 }

//multiply numbers asynchronously
 GParsPool.withPool {
 List result = [1, 2, 3, 4, 5].collectParallel {it * 2}final
 assert ([2, 4, 6, 8, 10].equals(result))
 }

The passed-in closure takes an instance of a ForkJoinPool as a parameter, which can be then used freely inside the
closure.

//check whether all elements within a collection meet certain criteria
 GParsPool.withPool(5) {ForkJoinPool pool ->
 assert [1, 2, 3, 4, 5].everyParallel {it > 0}
 assert ![1, 2, 3, 4, 5].everyParallel {it > 1}
 }

The method takes optional parameters for number of threads in the created pool and anGParsPool.withPool()
unhandled exception handler.

withPool(10) {...}
withPool(20, exceptionHandler) {...}

The takes an already existing ForkJoinPool instance to reuse. The DSL is valid onlyGParsPool.withExistingPool()
within the associated block of code and only for the thread that has called the or methods.withPool() withExistingPool()
The method returns only after all the worker threads have finished their tasks and the pool has beenwithPool()
destroyed, returning back the return value of the associated block of code. The method doesn't waitwithExistingPool()
for the pool threads to finish.

Alternatively, the class can be statically imported , which willGParsPool import static groovyx.gpars.GParsPool.`*`
allow omitting the class name.GParsPool

withPool {
 assert [1, 2, 3, 4, 5].everyParallel {it > 0}
 assert ![1, 2, 3, 4, 5].everyParallel {it > 1}
 }

The following methods are currently supported on all objects in Groovy:

19

eachParallel()

eachWithIndexParallel()

collectParallel()

collectManyParallel()

findAllParallel()

findAnyParallel

findParallel()

everyParallel()

anyParallel()

grepParallel()

groupByParallel()

foldParallel()

minParallel()

maxParallel()

sumParallel()

splitParallel()

countParallel()

foldParallel()

Meta-class enhancer

As an alternative you can use the class to enhance meta-classes of any classes or individualParallelEnhancer
instances with the parallel methods.

import groovyx.gpars.ParallelEnhancer

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
ParallelEnhancer.enhanceInstance(list)
println list.collectParallel {it * 2 }

def animals = ['dog', 'ant', 'cat', 'whale']
ParallelEnhancer.enhanceInstance animals
println (animals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')
println (animals.everyParallel {it.contains('a')} ? 'All animals contain a' : 'Some animals can live without an a')

When using the class, you're not restricted to a block with the use of the GParsPool DSLs.ParallelEnhancer withPool()
The enhanced classed or instances remain enhanced till they get garbage collected.

Exception handling

If an exception is thrown while processing any of the passed-in closures, the first exception gets re-thrown from the
xxxParallel methods and the algorithm stops as soon as possible.

20

The exception handling mechanism of GParsPool builds on the one built into the Fork/Join
framework. Since Fork/Join algorithms are by nature hierarchical, once any part of the
algorithm fails, there's usually little benefit from continuing the computation, since some
branches of the algorithm will never return a result.

Bear in mind that the GParsPool implementation doesn't give any guarantees about its
behavior after a first unhandled exception occurs, beyond stopping the algorithm and
re-throwing the first detected exception to the caller. This behavior, after all, is consistent with
what the traditional sequential iteration methods do.

Transparently parallel collections

On top of adding new xxxParallel() methods, can also let you change the semantics of the original iterationGPars
methods. For example, you may be passing a collection into a library method, which will process your collection in a
sequential way, let say using the method. By changing the semantics of the method on your collectioncollect() collect()
you can effectively parallelize the library sequential code.

GParsPool.withPool {

//The selectImportantNames() will process the name collections concurrently
 assert ['ALICE', 'JASON'] == selectImportantNames(['Joe', 'Alice', 'Dave', 'Jason'].makeConcurrent())
}

/**
 * A function implemented using standard sequential collect() and findAll() methods.
 */
def selectImportantNames(names) {
 names.collect {it.toUpperCase()}.findAll{it.size() > 4}
}

The method will reset the collection back to the original sequential semantics.makeSequential()

import groovyx.gpars.GParsPool.withPoolstatic

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]

println 'Sequential: '
list.each { print it + ',' }
println()

withPool {

println 'Sequential: '
 list.each { print it + ',' }
 println()

list.makeConcurrent()

println 'Concurrent: '
 list.each { print it + ',' }
 println()

list.makeSequential()

println 'Sequential: '
 list.each { print it + ',' }
 println()
}

println 'Sequential: '
list.each { print it + ',' }
println()

The convenience method will allow you to specify code blocks, in which the collection maintainsasConcurrent()
concurrent semantics.

21

import groovyx.gpars.GParsPool.withPoolstatic

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]

println 'Sequential: '
list.each { print it + ',' }
println()

withPool {

println 'Sequential: '
 list.each { print it + ',' }
 println()

list.asConcurrent {
 println 'Concurrent: '
 list.each { print it + ',' }
 println()
 }

println 'Sequential: '
 list.each { print it + ',' }
 println()
}

println 'Sequential: '
list.each { print it + ',' }
println()

Transparent parallelizm, including the , and methods, is alsomakeConcurrent() makeSequential() asConcurrent()
available in combination with .ParallelEnhancer

/**
 * A function implemented using standard sequential collect() and findAll() methods.
 */
def selectImportantNames(names) {
 names.collect {it.toUpperCase()}.findAll{it.size() > 4}
}

def names = ['Joe', 'Alice', 'Dave', 'Jason']
ParallelEnhancer.enhanceInstance(names)
//The selectImportantNames() will process the name collections concurrently
assert ['ALICE', 'JASON'] == selectImportantNames(names.makeConcurrent())

import groovyx.gpars.ParallelEnhancer

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]

println 'Sequential: '
list.each { print it + ',' }
println()

ParallelEnhancer.enhanceInstance(list)

println 'Sequential: '
list.each { print it + ',' }
println()

list.asConcurrent {
 println 'Concurrent: '
 list.each { print it + ',' }
 println()

}
list.makeSequential()

println 'Sequential: '
list.each { print it + ',' }
println()

Avoid side-effects in functions

We have to warn you. Since the closures that are provided to the parallel methods like or eachParallel() collectParallel()
may be run in parallel, you have to make sure that each of the closures is written in a thread-safe manner. The closures
must hold no internal state, share data nor have side-effects beyond the boundaries the single element that they've
been invoked on. Violations of these rules will open the door for race conditions and deadlocks, the most severe
enemies of a modern multi-core programmer.

Don't do this:

22

def thumbnails = []
images.eachParallel {thumbnails << it.thumbnail} //Concurrently accessing a not-thread-safe collection of thumbnails, don't !do this

At least, you've been warned.

3.1.2 GParsExecutorsPool
Use of GParsExecutorsPool - the Java Executors' based concurrent collection processor

Usage of GParsExecutorsPool

The class enables a Java Executors-based concurrency DSL for collections and objects.GParsPool

The class can be used as a pure-JDK-based collection parallel processor. Unlike the GParsExecutorsPool GParsPool
class, doesn't require jsr-166y jar file, but leverages the standard JDK executor services toGParsExecutorsPool
parallelize closures processing a collections or an object iteratively. It needs to be states, however, that GParsPool
performs typically much better than does.GParsExecutorsPool

Examples of use:

//multiply numbers asynchronously
 GParsExecutorsPool.withPool {
 Collection<Future> result = [1, 2, 3, 4, 5].collectParallel{it * 10}
 assert HashSet([10, 20, 30, 40, 50]) == HashSet((Collection)result*.get())new new
 }

//multiply numbers asynchronously using an asynchronous closure
 GParsExecutorsPool.withPool {
 def closure={it * 10}
 def asyncClosure=closure.async()
 Collection<Future> result = [1, 2, 3, 4, 5].collect(asyncClosure)
 assert HashSet([10, 20, 30, 40, 50]) == HashSet((Collection)result*.get())new new
 }

The passed-in closure takes an instance of a ExecutorService as a parameter, which can be then used freely inside the
closure.

//find an element meeting specified criteria
 GParsExecutorsPool.withPool(5) {ExecutorService service ->
 service.submit({performLongCalculation()} as)Runnable
 }

The method takes optional parameters for number of threads in the created pool and aGParsExecutorsPool.withPool()
thread factory.

withPool(10) {...}
withPool(20, threadFactory) {...}

The takes an already existing executor service instance to reuse. The DSL isGParsExecutorsPool.withExistingPool()
valid only within the associated block of code and only for the thread that has called the or withPool() withExistingPool()
method. The method returns only after all the worker threads have finished their tasks and the executorwithPool()
service has been destroyed, returning back the return value of the associated block of code. The withExistingPool()
method doesn't wait for the executor service threads to finish.

Alternatively, the class can be statically imported GParsExecutorsPool import static
 , which will allow omitting the class name.groovyx.gpars.GParsExecutorsPool.`*` GParsExecutorsPool

23

withPool {
 def result = [1, 2, 3, 4, 5].findParallel{ number -> number > 2}Number
 assert result in [3, 4, 5]
 }

The following methods on all objects, which support iterations in Groovy, are currently supported:

eachParallel()

eachWithIndexParallel()

collectParallel()

findAllParallel()

findParallel()

allParallel()

anyParallel()

grepParallel()

groupByParallel()

Meta-class enhancer

As an alternative you can use the class to enhance meta-classes for any classes orGParsExecutorsPoolEnhancer
individual instances with asynchronous methods.

import groovyx.gpars.GParsExecutorsPoolEnhancer

def list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
GParsExecutorsPoolEnhancer.enhanceInstance(list)
println list.collectParallel {it * 2 }

def animals = ['dog', 'ant', 'cat', 'whale']
GParsExecutorsPoolEnhancer.enhanceInstance animals
println (animals.anyParallel {it ==~ /ant/} ? 'Found an ant' : 'No ants found')
println (animals.allParallel {it.contains('a')} ? 'All animals contain a' : 'Some animals can live without an a')

When using the class, you're not restricted to a block with the use of theGParsExecutorsPoolEnhancer withPool()
GParsExecutorsPool DSLs. The enhanced classed or instances remain enhanced till they get garbage collected.

Exception handling

If exceptions are thrown while processing any of the passed-in closures, an instance of wrapping allAsyncException
the original exceptions gets re-thrown from the xxxParallel methods.

Avoid side-effects in functions

Once again we need to warn you about using closures with side-effects effecting objects beyond the scope of the
single currently processed element or closures which keep state. Don't do that! It is dangerous to pass them to any of
the methods.xxxParallel()

3.1.3 Memoize

24

The function enables caching of function's return values. Repeated calls to the memoized function with thememoize
same argument values will, instead of invoking the calculation encoded in the original function, retrieve the result value
from an internal transparent cache. Provided the calculation is considerably slower than retrieving a cached value from
the cache, this allows users to trade-off memory for performance. Checkout out the example, where we attempt to scan
multiple websites for particular content:

The memoize functionality of GPars has been contributed to Groovy in version 1.8 and if you run on Groovy 1.8 or
later, it is recommended to use the Groovy functionality. Memoize in GPars is almost identical, except that it searches
the memoize caches concurrently using the surrounding thread pool and so may give performance benefits in some
scenarios.

The GPars memoize functionality has been renamed to avoid future conflicts with the memoize
functionality in Groovy. GPars now calls the methods with a preceding letter , such asg
gmemoize().

Examples of use

GParsPool.withPool {
 def urls = ['http://www.dzone.com', 'http://www.theserverside.com', 'http://www.infoq.com']
 Closure download = {url ->
 println "Downloading $url"
 url.toURL().text.toUpperCase()
 }
 Closure cachingDownload = download.gmemoize()

println 'Groovy sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GROOVY')}
 println 'Grails sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GRAILS')}
 println 'Griffon sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GRIFFON')}
 println 'Gradle sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GRADLE')}
 println 'Concurrency sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('CONCURRENCY')}
 println 'GPars sites today: ' + urls.findAllParallel {url -> cachingDownload(url).contains('GPARS')}
}

Notice closures are enhanced inside the blocks with a function, which returns a newGParsPool.withPool() memoize()
closure wrapping the original closure with a cache. In the example we're calling the function incachingDownload
several places in the code, however, each unique url gets downloaded only once - the first time it is needed. The
values are then cached and available for subsequent calls. And also to all threads, no matter which thread originally
came first with a download request for the particular url and had to handle the actual calculation/download.

So, to wrap up, memoize shields a function by a cache of past return values. However, can do even more. Inmemoize
some algorithms adding a little memory may have dramatic impact on the computational complexity of the calculation.
Let's look at a classical example of Fibonacci numbers.

Fibonacci example

A purely functional, recursive implementation, following closely the definition of Fibonacci numbers is exponentially
complex:

Closure fib = {n -> n > 1 ? call(n - 1) + call(n - 2) : n}

Try calling the function with numbers around 30 and you'll see how slow it is.fib

Now with a little twist and added memoize cache the algorithm magically turns into a linearly complex one:

25

1.

2.

Closure fib
fib = {n -> n > 1 ? fib(n - 1) + fib(n - 2) : n}.gmemoize()

The extra memory we added cut off all but one recursive branches of the calculation. And all subsequent calls to the
same function will also benefit from the cached values.fib

Also, see below, how the variant can reduce memory consumption in our example, yet preserve thememoizeAtMost
linear complexity of the algorithm.

Available variants

memoize

The basic variant, which keeps values in the internal cache for the whole lifetime of the memoized function. Provides
the best performance characteristics of all the variants.

memoizeAtMost

Allows the user to set a hard limit on number of items cached. Once the limit has been reached, all subsequently added
values will eliminate the oldest value from the cache using the LRU (Last Recently Used) strategy.

So for our Fibonacci number example, we could safely reduce the cache size to two items:

Closure fib
fib = {n -> n > 1 ? fib(n - 1) + fib(n - 2) : n}.memoizeAtMost(2)

Setting an upper limit on the cache size may have two purposes:

Keep the memory footprint of the cache within defined boundaries

Preserve desired performance characteristics of the function. Too large caches may take longer to retrieve the
cached value than it would have taken to calculate the result directly.

memoizeAtLeast

Allows unlimited growth of the internal cache until the JVM's garbage collector decides to step in and evict
SoftReferences, used by our implementation, from the memory. The single parameter value to the memoizeAtLeast()
method specifies the minimum number of cached items that should be protected from gc eviction. The cache will never
shrink below the specified number of entries. The cache ensures it only protects the most recently used items from
eviction using the LRU (Last Recently Used) strategy.

memoizeBetween

Combines memoizeAtLeast and memoizeAtMost and so allowing the cache to grow and shrink in the range between
the two parameter values depending on available memory and the gc activity, yet the cache size will never exceed the
upper size limit to preserve desired performance characteristics of the cache.

26

3.2 Map-Reduce
The Parallel Collection Map/Reduce DSL gives GPars a more functional flavor. In general, the Map/Reduce DSL may
be used for the same purpose as the family methods and has very similar semantics. On the other hand,xxxParallel()
Map/Reduce can perform considerably faster, if you need to chain multiple methods to process a single collection in
multiple steps:

println ' of occurrences of the word GROOVY today: ' + urls.parallelNumber
 .map {it.toURL().text.toUpperCase()}
 .filter {it.contains('GROOVY')}
 .map{it.split()}
 .map{it.findAll{word -> word.contains 'GROOVY'}.size()}
 .sum()

The methods have to follow the contract of their non-parallel peers. So a method mustxxxParallel() collectParallel()
return a legal collection of items, which you can again treat as a Groovy collection. Internally the parallel collect method
builds an efficient parallel structure, called parallel array, performs the required operation concurrently and before
returning destroys the Parallel Array building the collection of results to return to you. A potential call to let say

 on the resulting collection would repeat the whole process of construction and destruction of a ParallelfindAllParallel()
Array instance under the covers.

With Map/Reduce you turn your collection into a Parallel Array and back only once. The Map/Reduce family of methods
do not return Groovy collections, but are free to pass along the internal Parallel Arrays directly. Invoking the parallel
property on a collection will build a Parallel Array for the collection and return a thin wrapper around the Parallel Array
instance. Then you can chain all required methods like:

map()

reduce()

filter()

size()

sum()

min()

max()

sort()

groupBy()

combine()

Returning back to a plain Groovy collection instance is always just a matter of retrieving the property.collection

def myNumbers = (1..1000).parallel.filter{it % 2 == 0}.map{ .sqrt it}.collectionMath

Avoid side-effects in functions

Once again we need to warn you. To avoid nasty surprises, please, keep your closures, which you pass to the
Map/Reduce functions, stateless and clean from side-effects.

27

Availability

This feature is only available when using in the Fork/Join-based , not in .GParsPool GParsExecutorsPool

Classical Example

A classical example, inspired by http://github.com/thevery, counting occurrences of words in a string:

import groovyx.gpars.GParsPool.withPoolstatic

def words = "This is just a plain text to count words in"
print count(words)

def count(arg) {
 withPool {
 arg.parallelreturn
 .map{[it, 1]}
 .groupBy{it[0]}.getParallel()
 .map {it.value=it.value.size();it}
 .sort{-it.value}.collection
 }
}

The same example, now implemented the more general operation:combine

def words = "This is just a plain text to count words in"
print count(words)

def count(arg) {
 withPool {
 arg.parallelreturn
 .map{[it, 1]}
 .combine(0) {sum, value -> sum + value}.getParallel()
 .sort{-it.value}.collection
 }
}

Combine

The operation expects on its input a list of tuples (two-element lists) considered to be key-value pairs (such ascombine
[key1, value1, key2, value2, key1, value3, key3, value4 …]) with potentially repeating keys. When invoked, combine
merges the values for identical keys using the provided accumulator function and produces a map mapping the original
(unique) keys to their accumulated values. E.g. [a, b, c, d, a, e, c, f] will be combined into a : b+e, c : d+f, while the '+'
operation on the values needs to be provided by the user as the accumulation closure.

The argument needs to specify a function to use for combining (accumulating) the valuesaccumulation function
belonging to the same key. An needs to be provided as well. Since the methodinitial accumulator value combine
processes items in parallel, the will be reused multiple times. Thus the provided value mustinitial accumulator value
allow for reuse. It should be either a or value or a returning a fresh initial accumulatorcloneable immutable closure
each time requested. Good combinations of accumulator functions and reusable initial values include:

accumulator = {List acc, value -> acc << value} initialValue = []
accumulator = {List acc, value -> acc << value} initialValue = {-> []}
accumulator = { sum, value -> acc + value} initialValue = 0int int
accumulator = { sum, value -> sum + value} initialValue = {-> 0}int int
accumulator = {ShoppingCart cart, Item value -> cart.addItem(value)} initialValue = {-> ShoppingCart()}new

The return type is a map. E.g. ['he', 1, 'she', 2, 'he', 2, 'me', 1, 'she, 5, 'he', 1 with the initial value provided a 0 will be
combined into 'he' : 4, 'she' : 7, 'he', : 2, 'me' : 1

28

The keys will be mutually compared using their equals and hashCode methods. Consider using
 or to annotate classes that you use as keys. Just like with@Canonical @EqualsAndHashCode

all hash maps in Groovy, be sure you're using a String not a GString as a key!

For more involved scenarios when you complex objects, a good strategy here is to have a class that can becombine()
used as a key for the common use cases and apply different keys for uncommon cases.

import groovy.transform.ToString
 groovy.transform.TupleConstructorimport

 groovyx.gpars.GParsPool.withPoolimport static

ToStringTupleConstructor
class PricedCar {implements Cloneable
 modelString
 colorString
 priceDouble

 equals(o) {boolean final
 (.is(o)) if this return true
 (getClass() != o.class) if return false

 PricedCar pricedCar = (PricedCar) ofinal

 (color != pricedCar.color) if return false
 (model != pricedCar.model) if return false

 return true
 }

 hashCode() {int
 resultint
 result = (model != ? model.hashCode() : 0)null
 result = 31 * result + (color != ? color.hashCode() : 0)null
 resultreturn
 }

@Override
 clone() {protected Object
 .clone()return super
 }
}

def cars = [PricedCar('F550', 'blue', 2342.223),new
 PricedCar('F550', 'red', 234.234),new
 PricedCar('Da', 'white', 2222.2),new
 PricedCar('Da', 'white', 1111.1)]new

withPool {
 //Combine by model
 def result =
 cars.parallel.map {
 [it.model, it]
 }.combine(PricedCar('', 'N/A', 0.0)) {sum, value ->new
 sum.model = value.model
 sum.price += value.price
 sum
 }.values()

println result

 //Combine by model and color (the PricedCar's equals and hashCode))
 result =
 cars.parallel.map {
 [it, it]
 }.combine(PricedCar('', 'N/A', 0.0)) {sum, value ->new
 sum.model = value.model
 sum.color = value.color
 sum.price += value.price
 sum
 }.values()

println result
}

3.3 Parallel Arrays
As an alternative, the efficient tree-based data structures defines in JSR-166y can be used directly. The parallelArray
property on any collection or object will return a instance holding the elements of thejsr166y.forkjoin.ParallelArray
original collection, which then can be manipulated through the jsr166y API. Please refer to the jsr166y documentation
for the API details.

29

import groovyx.gpars.extra166y.Ops

groovyx.gpars.GParsPool.withPool {
 assert 15 == [1, 2, 3, 4, 5].parallelArray.reduce({a, b -> a + b} as Ops.Reducer, 0)
//summarize
 assert 55 == [1, 2, 3, 4, 5].parallelArray.withMapping({it ** 2} as Ops.Op).reduce({a, b -> a + b} as Ops.Reducer, 0)
//summarize squares
 assert 20 == [1, 2, 3, 4, 5].parallelArray.withFilter({it % 2 == 0} as Ops.Predicate)
//summarize squares of even numbers
 .withMapping({it ** 2} as Ops.Op)
 .reduce({a, b -> a + b} as Ops.Reducer, 0)

assert 'aa:bb:cc:dd:ee' == 'abcde'.parallelArray
//concatenate duplicated characters with separator
 .withMapping({it * 2} as Ops.Op)
 .reduce({a, b -> } as Ops.Reducer,)"$a:$b" ""

3.4 Asynchronous Invocation
Running long-lasting tasks in the background belongs to the activities, the need for which arises quite frequently. Your
main thread of execution wants to initialize a few calculations, downloads, searches or such, however, the results may
not be needed immediately. gives the developers the tools to schedule the asynchronous activities forGPars
processing in the background and collect the results once they're needed.

Usage of GParsPool and GParsExecutorsPool asynchronous processing facilities

Both and provide almost identical services in this domain, although they leverageGParsPool GParsExecutorsPool
different underlying machinery, based on which of the two classes the user chooses.

Closures enhancements

The following methods are added to closures inside the blocks:GPars(Executors)Pool.withPool()

async() - Creates an asynchronous variant of the supplied closure, which when invoked returns a future for the
potential return value

callAsync() - Calls a closure in a separate thread supplying the given arguments, returning a future for the potential
return value,

Examples:

GParsPool.withPool() {
 Closure longLastingCalculation = {calculate()}
 Closure fastCalculation = longLastingCalculation.async() //create a closure, which starts the original closure on a threadnew
pool
 Future result=fastCalculation() //returns almost immediately
 // stuff calculation performs …do while
 println result.get()
}

GParsPool.withPool() {
 /**
 * The callAsync() method is an asynchronous variant of the call() method to invoke a closure.default
 * It will a Future the result value.return for
 */
 assert 6 == {it * 2}.call(3)
 assert 6 == {it * 2}.callAsync(3).get()
}

Timeouts

30

The methods, taking either a long value or a Duration instance, allow the user to have thecallTimeoutAsync()
calculation cancelled after a given time interval.

{->
 () {while true
 .sleep 1000 //Simulate a bit of interesting calculationThread
 (.currentThread().isInterrupted()) ; //We've been cancelledif Thread break
 }
}.callTimeoutAsync(2000)

In order to allow cancellation, the asynchronously running code must keep checking the flag of its owninterrupted
thread and cease the calculation once the flag is set to true.

Executor Service enhancements

The ExecutorService and jsr166y.forkjoin.ForkJoinPool class is enhanced with the << (leftShift) operator to submit
tasks to the pool and return a for the result.Future

Example:

GParsExecutorsPool.withPool {ExecutorService executorService ->
 executorService << {println 'Inside parallel task'}
}

Running functions (closures) in parallel

The and classes also provide handy methods and GParsPool GParsExecutorsPool executeAsync()
 to easily run multiple closures asynchronously.executeAsyncAndWait()

Example:

GParsPool.withPool {
 assert [10, 20] == GParsPool.executeAsyncAndWait({calculateA()}, {calculateB()} //waits resultsfor
 assert [10, 20] == GParsPool.executeAsync({calculateA()}, {calculateB()})*.get() //returns Futures instead and doesn't wait for
results to be calculated
}

3.5 Composable Asynchronous Functions
Functions are to be composed. In fact, composing side-effect-free functions is very easy. Much easier and reliable than
composing objects, for example. Given the same input, functions always return the same result, they never change
their behavior unexpectedly nor they break when multiple threads call them at the same time.

Functions in Groovy
We can treat Groovy closures as functions. They take arguments, do their calculation and return a value. Provided you
don't let your closures touch anything outside their scope, your closures are well-behaved pure functions. Functions
that you can combine for a better good.

def sum = (0..100000).inject(0, {a, b -> a + b})

For example, by combining a function adding two numbers with the function, which iterates through the wholeinject
collection, you can quickly summarize all items. Then, replacing the function with a function willadding comparison
immediately give you a combined function calculating maximum.

31

def max = myNumbers.inject(0, {a, b -> a>b?a:b})

You see, functional programming is popular for a reason.

Are we concurrent yet?
This all works just fine until you realize you're not utilizing the full power of your expensive hardware. The functions are
plain sequential. No parallelism in here. All but one processor core do nothing, they're idle, totally wasted.

Those paying attention would suggest to use the techniques describedParallel Collection
earlier and they would certainly be correct. For our scenario described here, where we process
a collection, using those methods would be the best choice. However, we're nowparallel
looking for a , which wouldgeneric way to create and combine asynchronous functions
help us not only for collection processing but mostly in other more generic cases, like the one
right below.

To make things more obvious, here's an example of combining four functions, which are supposed to check whether a
particular web page matches the contents of a local file. We need to download the page, load the file, calculate hashes
of both and finally compare the resulting numbers.

Closure download = { url ->String
 url.toURL().text
}

Closure loadFile = { fileName ->String
 … //load the file here
}

Closure hash = {s -> s.hashCode()}

Closure compare = { first, second ->int int
 first == second
}

def result = compare(hash(download('http://www.gpars.org')), hash(loadFile('/coolStuff/gpars/website/index.html')))
println + result"The result of comparison: "

We need to download the page, load up the file, calculate hashes of both and finally compare the resulting numbers.
Each of the functions is responsible for one particular job. One downloads the content, second loads the file, third
calculates the hashes and finally the fourth one will do the comparison. Combining the functions is as simple as nesting
their calls.

Making it all asynchronous

The downside of our code is that we don't leverage the independence of the and the functions.download() loadFile()
Neither we allow the two hashes to be run concurrently. They could well run in parallel, but our way to combine
functions restricts any parallelism.

Obviously not all of the functions can run concurrently. Some functions depend on results of others. They cannot start
before the other function finishes. We need to block them till their parameters are available. The functions needshash()
a string to work on. The function needs two numbers to compare.compare()

So we can only parallelize some functions, while blocking parallelism of others. Seems like a challenging task.

Things are bright in the functional world

32

Luckily, the dependencies between functions are already expressed implicitly in the code. There's no need for us to
duplicate the dependency information. If one functions takes parameters and the parameters need first to be calculated
by another function, we implicitly have a dependency here. The function depends on the as well as onhash() loadFile()
the functions in our example. The function in our earlier example depends on the results of the download() inject

 functions invoked gradually on all the elements of the collection.addition

However difficult it may seem at first, our task is in fact very simple. We only need to teach our
functions to return of their future results. And we need to teach the other functions topromises
accept those as parameters so that they wait for the real values before they start theirpromises
work. And if we convince the functions to release the threads they hold while waiting for the
values, we get directly to where the magic can happen.

In the good tradition of we've made it very straightforward for you to convince any function to believe in otherGPars
functions' promises. Call the function on a closure and you're asynchronous.asyncFun()

withPool {
 def maxPromise = numbers.inject(0, {a, b -> a>b?a:b}.asyncFun())
 println "Look Ma, I can talk to the user the math is being done me!"while for
 println maxPromise.get()
}

The function doesn't really care what objects are being returned from the function, maybe it is just a littleinject addition
surprised that each call to the function returns so fast, but doesn't moan much, keeps iterating and finallyaddition
returns the overall result to you.

Now, this is the time you should stand behind what you say and do what you want others to do. Don't frown at the result
and just accepts that you got back just a promise. A to get the result delivered as soon as the calculation ispromise
done. The extra heat coming out of your laptop is an indication the calculation exploits natural parallelism in your
functions and makes its best effort to deliver the result to you quickly.

The is a good old , so you may query its status, register notificationpromise DataflowVariable
hooks or make it an input to a Dataflow algorithm.

withPool {
 def sumPromise = (0..100000).inject(0, {a, b -> a + b}.asyncFun())
 println + sumPromise.bound"Are we done yet? "
 sumPromise.whenBound {sum -> println sum}
}

The method has also a variant with a timeout parameter, if you want to avoid the risk ofget()
waiting indefinitely.

Can things go wrong?

Sure. But you'll get an exception thrown from the result promise method.get()

try {
 sumPromise.get()
} (MyCalculationException e) {catch
 println "Guess, things are not ideal today."
}

33

This is all fine, but what functions can be really combined?

There are no limits. Take any sequential functions you need to combine and you should be able to combine their
asynchronous variants as well.

Back to our initial example comparing content of a file with a web page, we simply make all the functions asynchronous
by calling the method on them and we are ready to set off.asyncFun()

Closure download = { url ->String
 url.toURL().text
 }.asyncFun()

Closure loadFile = { fileName ->String
 … //load the file here
 }.asyncFun()

Closure hash = {s -> s.hashCode()}.asyncFun()

Closure compare = { first, second ->int int
 first == second
 }.asyncFun()

def result = compare(hash(download('http://www.gpars.org')), hash(loadFile('/coolStuff/gpars/website/index.html')))
 println 'Allowed to something now'do else
 println + result.get()"The result of comparison: "

Calling asynchronous functions from within asynchronous functions

Another very valuable characteristics of asynchronous functions is that their result promises can also be composed.

import groovyx.gpars.GParsPool.withPoolstatic

withPool {
 Closure plus = { a, b ->Integer Integer
 sleep 3000
 println 'Adding numbers'
 a + b
 }.asyncFun()

Closure multiply = { a, b ->Integer Integer
 sleep 2000
 a * b
 }.asyncFun()

Closure measureTime = {->
 sleep 3000
 4
 }.asyncFun()

Closure distance = { initialDistance, velocity, time ->Integer Integer Integer
 plus(initialDistance, multiply(velocity, time))
 }.asyncFun()

Closure chattyDistance = { initialDistance, velocity, time ->Integer Integer Integer
 println 'All parameters are now ready - starting'
 println 'About to call another asynchronous function'
 def innerResultPromise = plus(initialDistance, multiply(velocity, time))
 println 'Returning the promise the calculation as my own result'for inner
 innerResultPromisereturn
 }.asyncFun()

println + distance(100, 20, measureTime()).get() + ' m'"Distance = "
 println + chattyDistance(100, 20, measureTime()).get() + ' m'"ChattyDistance = "
 }

If an asynchronous function (e.f. the function in the example) in its body calls another asynchronous functiondistance
(e.g.) and returns the the promise of the invoked function, the inner function's () result promise will composeplus plus
with the outer function's () result promise. The inner function () will now bind its result to the outerdistance plus
function's () promise, once the inner function (plus) finishes its calculation. This ability of promises to composedistance
allows functions to cease their calculation without blocking a thread not only when waiting for parameters, but also
whenever they call another asynchronous function anywhere in their body.

34

Methods as asynchronous functions

Methods can be referred to as closures using the operator. These closures can then be transformed using .& asyncFun
into composable asynchronous functions just like ordinary closures.

class DownloadHelper {
 download(url) {String String
 url.toURL().text
 }

 scanFor(word, text) {int String String
 text.findAll(word).size()
 }

 lower(s) {String
 s.toLowerCase()
 }
}
//now we'll make the methods asynchronous
withPool {
 DownloadHelper d = DownloadHelper()final new
 Closure download = d.&download.asyncFun()
 Closure scanFor = d.&scanFor.asyncFun()
 Closure lower = d.&lower.asyncFun()

//asynchronous processing
 def result = scanFor('groovy', lower(download('http://www.infoq.com')))
 println 'Allowed to something now'do else
 println result.get()
}

Using annotation to create asynchronous functions

Instead of calling the function, the annotation can be used to annotate Closure-typed fields.asyncFun() @AsyncFun
The fields have to be initialized in-place and the containing class needs to be instantiated withing a block.withPool

import groovyx.gpars.GParsPool.withPoolstatic
 groovyx.gpars.AsyncFunimport

class DownloadingSearch {
 @AsyncFun Closure download = { url ->String
 url.toURL().text
 }

@AsyncFun Closure scanFor = { word, text ->String String
 text.findAll(word).size()
 }

@AsyncFun Closure lower = {s -> s.toLowerCase()}

void scan() {
 def result = scanFor('groovy', lower(download('http://www.infoq.com'))) //synchronous processing
 println 'Allowed to something now'do else
 println result.get()
 }
}

withPool {
 DownloadingSearch().scan()new
}

Alternative pools

The annotation by default uses an instance of from the wrapping withPool block. You may,AsyncFun GParsPool
however, specify the type of pool explicitly:

@AsyncFun(GParsExecutorsPoolUtil) def sum6 = {a, b -> a + b }

Blocking functions through annotations

35

1.

2.

The also allows the user to specify, whether the resulting function should have blocking (true) orAsyncFun
non-blocking (false - default) semantics.

@AsyncFun(blocking =)true
def sum = {a, b -> a + b }

Explicit and delayed pool assignment

When using the function directly to create an asynchronous function you haveGPars(Executors)PoolUtil.asyncFun()
two additional options to assign a thread pool to the function.

The thread pool to use by the function can be specified explicitly as an additional argument at creation time

The implicit thread pool can be obtained from the surrounding scope at invocation rather at creation time

When specifying the thread pool explicitly, the call doesn't need to be wrapped in an block:withPool()

Closure sPlus = { a, b ->Integer Integer
 a + b
}

Closure sMultiply = { a, b ->Integer Integer
 sleep 2000
 a * b
}

println + sMultiply(sPlus(10, 30), 100)"Synchronous result: "

 pool = FJPool()final new

Closure aPlus = GParsPoolUtil.asyncFun(sPlus, pool)
Closure aMultiply = GParsPoolUtil.asyncFun(sMultiply, pool)

def result = aMultiply(aPlus(10, 30), 100)

println "Time to something the calculation is running"do else while
println + result.get()"Asynchronous result: "

With delayed pool assignment only the function invocation must be surrounded with a block:withPool()

Closure aPlus = GParsPoolUtil.asyncFun(sPlus)
Closure aMultiply = GParsPoolUtil.asyncFun(sMultiply)

withPool {
 def result = aMultiply(aPlus(10, 30), 100)

println "Time to something the calculation is running"do else while
 println + result.get()"Asynchronous result: "
}

On our side this is a very interesting domain to explore, so any comments, questions or suggestions on combining
asynchronous functions or hints about its limits are welcome.

3.6 Fork-Join
Fork/Join or Divide and Conquer is a very powerful abstraction to solve hierarchical problems.

The abstraction

When talking about hierarchical problems, think about quick sort, merge sort, file system or general tree navigation and
such.

36

Fork / Join algorithms essentially split a problem at hands into several smaller sub-problems and recursively apply
the same algorithm to each of the sub-problems.

Once the sub-problem is small enough, it is solved directly.

The solutions of all sub-problems are combined to solve their parent problem, which in turn helps solve its own
parent problem.

Check out the fancy , which will show you how threadsinteractive Fork/Join visualization demo
cooperate to solve a common divide-and-conquer algorithm.

The mighty library solves Fork / Join orchestration pretty nicely for us, but leaves a couple of rough edges,JSR-166y
which can hurt you, if you don't pay attention enough. You still deal with threads, pools or synchronization barriers.

The GPars abstraction convenience layer

GPars can hide the complexities of dealing with threads, pools and recursive tasks from you, yet let you leverage the
powerful Fork/Join implementation in jsr166y.

import groovyx.gpars.GParsPool.runForkJoinstatic
 groovyx.gpars.GParsPool.withPoolimport static

withPool() {
 println """ of files: ${Number

./src runForkJoin(File("new ")) {file ->
 count = 0long
 file.eachFile {
 (it.isDirectory()) {if

Forking a child task $it println " for "
 forkOffChild(it) //fork a child task
 } {else
 count++
 }
 }
 count + (childrenResults.sum(0))return
 //use results of children tasks to calculate and store own result
 }
 }"""
}

The factory method will use the supplied recursive code together with the provided values and build arunForkJoin()
hierarchical Fork/Join calculation. The number of values passed to the method must match the number ofrunForkJoin()
expected parameters of the closure as well as the number of arguments passed into the or forkOffChild()

 methods.runChildDirectly()

def quicksort(numbers) {
 withPool {
 runForkJoin(0, numbers) {index, list ->
 def groups = list.groupBy {it <=> list[list.size().intdiv(2)]}
 ((list.size() < 2) || (groups.size() == 1)) {if
 [index: index, list: list.clone()]return
 }
 (-1..1).each {forkOffChild(it, groups[it] ?: [])}
 [index: index, list: childrenResults.sort {it.index}.sum {it.list}]return
 }.list
 }
}

http://blog.krecan.net/2011/03/27/visualizing-forkjoin/

37

The important piece of the puzzle that needs to be mentioned here is that doesn'tforkOffChild()
wait for the child to run. It merely schedules it for execution some time in the future. If a child
fails by throwing an exception, you should not expect the exception to be fired from the
forkOffChild() method itself. The exception ise likely to happen long after the parent has
returned from the call to the method.forkOffChild()

It is the method that will re-throw exceptions that happened in the childgetChildrenResults()
sub-tasks back to the parent task.

Alternative approach

Alternatively, the underlying mechanism of nested Fork/Join worker tasks can be used directly. Custom-tailored
workers can eliminate the performance overhead associated with parameter spreading imposed when using the
generic workers. Also, custom workers can be implemented in Java and so further increase the performance of the
algorithm.

public class FileCounter AbstractForkJoinWorker< > {final extends Long
 File file;private final

def FileCounter(File file) {final
 .file = filethis
 }

@Override
 computeTask() {protected Long
 count = 0;long
 file.eachFile {
 (it.isDirectory()) {if
 println "Forking a thread $it"for
 forkOffChild(FileCounter(it)) //fork a child tasknew
 } {else
 count++
 }
 }
 count + ((childrenResults)?.sum() ?: 0) //use results of children tasks to calculate and store own resultreturn
 }
}

withPool(1) {pool -> //feel free to experiment with the number of fork/join threads in the pool
 println .." of files: ${runForkJoin(FileCounter(File("Number new new ")))}"
}

The AbstractForkJoinWorker subclasses may be written both in Java or Groovy, giving you the option to easily optimize
for execution speed, if row performance of the worker becomes a bottleneck.

Fork / Join saves your resources

Fork/Join operations can be safely run with small number of threads thanks to internally using the TaskBarrier class to
synchronize the threads. While a thread is blocked inside an algorithm waiting for its sub-problems to be calculated, the
thread is silently returned to the pool to take on any of the available sub-problems from the task queue and process
them. Although the algorithm creates as many tasks as there are sub-directories and tasks wait for the sub-directory
tasks to complete, as few as one thread is enough to keep the computation going and eventually calculate a valid
result.

Mergesort example

38

import groovyx.gpars.GParsPool.runForkJoinstatic
 groovyx.gpars.GParsPool.withPoolimport static

/**
 * Splits a list of numbers in half
 */
def split(List< > list) {Integer
 listSize = list.size()int
 middleIndex = listSize / 2int
 def list1 = list[0..<middleIndex]
 def list2 = list[middleIndex..listSize - 1]
 [list1, list2]return
}

/**
 * Merges two sorted lists into one
 */
List< > merge(List< > a, List< > b) {Integer Integer Integer
 i = 0, j = 0int
 newSize = a.size() + b.size()final int
 List< > result = ArrayList< >(newSize)Integer new Integer

 ((i < a.size()) && (j < b.size())) {while
 (a[i] <= b[j]) result << a[i++]if
 result << b[j++]else
 }

 (i < a.size()) result.addAll(a[i..-1])if
 result.addAll(b[j..-1])else
 resultreturn
}

 def numbers = [1, 5, 2, 4, 3, 8, 6, 7, 3, 4, 5, 2, 2, 9, 8, 7, 6, 7, 8, 1, 4, 1, 7, 5, 8, 2, 3, 9, 5, 7, 4, 3]final

withPool(3) { //feel free to experiment with the number of fork/join threads in the pool
 println """Sorted numbers: ${
 runForkJoin(numbers) {nums ->

 ${ .currentThread().name[-1]}: Sorting $nums println "Thread Thread "
 (nums.size()) {switch
 0..1:case
 nums //store own resultreturn
 2:case
 (nums[0] <= nums[1]) nums //store own resultif return
 nums[-1..0] //store own resultelse return
 :default
 def splitList = split(nums)
 [splitList[0], splitList[1]].each {forkOffChild it} //fork a child task
 merge(* childrenResults) //use results of children tasks to calculate and store own resultreturn
 }
 }
 }"""
}

Mergesort example using a custom-tailored worker class

39

public class SortWorker AbstractForkJoinWorker<List< >> {final extends Integer
 List numbersprivate final

def SortWorker(List< > numbers) {final Integer
 .numbers = numbers.asImmutable()this
 }

/**
 * Splits a list of numbers in half
 */
 def split(List< > list) {Integer
 listSize = list.size()int
 middleIndex = listSize / 2int
 def list1 = list[0..<middleIndex]
 def list2 = list[middleIndex..listSize - 1]
 [list1, list2]return
 }

/**
 * Merges two sorted lists into one
 */
 List< > merge(List< > a, List< > b) {Integer Integer Integer
 i = 0, j = 0int
 newSize = a.size() + b.size()final int
 List< > result = ArrayList< >(newSize)Integer new Integer

 ((i < a.size()) && (j < b.size())) {while
 (a[i] <= b[j]) result << a[i++]if
 result << b[j++]else
 }

 (i < a.size()) result.addAll(a[i..-1])if
 result.addAll(b[j..-1])else
 resultreturn
 }

/**
 * Sorts a small list or delegates to two children, the list contains more than two elements.if
 */
 @Override
 List< > computeTask() {protected Integer
 println " ${ .currentThread().name[-1]}: Sorting $numbers"Thread Thread
 (numbers.size()) {switch
 0..1:case
 numbers //store own resultreturn
 2:case
 (numbers[0] <= numbers[1]) numbers //store own resultif return
 numbers[-1..0] //store own resultelse return
 :default
 def splitList = split(numbers)
 [SortWorker(splitList[0]), SortWorker(splitList[1])].each{forkOffChild it} //fork a child tasknew new
 merge(* childrenResults) //use results of children tasks to calculate and store own resultreturn
 }
 }
}

 def numbers = [1, 5, 2, 4, 3, 8, 6, 7, 3, 4, 5, 2, 2, 9, 8, 7, 6, 7, 8, 1, 4, 1, 7, 5, 8, 2, 3, 9, 5, 7, 4, 3]final

withPool(1) { //feel free to experiment with the number of fork/join threads in the pool
 println "Sorted numbers: ${runForkJoin(SortWorker(numbers))}"new
}

Running child tasks directly

The method has a sibling - the method, which will run the child task directly andforkOffChild() runChildDirectly()
immediately within the current thread instead of scheduling the child task for asynchronous processing on the thread
pool. Typically you'll call _forkOffChild() on all sub-tasks but the last, which you invoke directly without the scheduling
overhead.

Closure fib = {number ->
 (number <= 2) {if
 1return
 }
 forkOffChild(number - 1) // This task will run asynchronously, probably in a different thread
 def result = runChildDirectly(number - 2) // This task is run directly within the current threadfinal
 () getChildrenResults().sum() + resultreturn Integer
 }

withPool {
 assert 55 == runForkJoin(10, fib)
 }

Availability

40

This feature is only available when using in the Fork/Join-based , not in .GParsPool GParsExecutorsPool

3.7 Parallel Speculations
With processor cores having become plentiful, some algorithms might benefit from brutal-force parallel duplication.
Instead of deciding up-front about how to solve a problem, what algorithm to use or which location to connect to, you
run all potential solutions in parallel.

Parallel speculations

Imagine you need to perform a task like e.g. calculate an expensive function or read data from a file, database or
internet. Luckily, you know of several good ways (e.g. functions or urls) to achieve your goal. However, they are not all
equal. Although they return back the same (as far as your needs are concerned) result, they may all take different
amount of time to complete and some of them may even fail (e.g. network issues). What's worse, no-one is going to tell
you which path gives you the solution first nor which paths lead to no solution at all. Shall I run or quick sort merge sort
on my list? Which url will work best? Is this service available at its primary location or should I use the backup one?

GPars speculations give you the option to try all the available alternatives in parallel and so get the result from the
fastest functional path, silently ignoring the slow or broken ones.

This is what the methods on and can do.speculate() GParsPool GParsExecutorsPool()

def numbers = …
def quickSort = …
def mergeSort = …
def sortedNumbers = speculate(quickSort, mergeSort)

Here we're performing both and , while getting the result of the faster one. Given thequick sort merge sort concurrently
parallel resources available these days on mainstream hardware, running the two functions in parallel will not have
dramatic impact on speed of calculation of either one, and so we get the result in about the same time as if we ran
solely the faster of the two calculations. And we get the result sooner than when running the slower one. Yet we didn't
have to know up-front, which of the two sorting algorithms would perform better on our data. Thus we speculated.

Similarly, downloading a document from multiple sources of different speed and reliability would look like this:

import groovyx.gpars.GParsPool.speculatestatic
 groovyx.gpars.GParsPool.withPoolimport static

def alternative1 = {
 'http://www.dzone.com/links/index.html'.toURL().text
}

def alternative2 = {
 'http://www.dzone.com/'.toURL().text
}

def alternative3 = {
 'http://www.dzzzzzone.com/'.toURL().text //wrong url
}

def alternative4 = {
 'http://dzone.com/'.toURL().text
}

withPool(4) {
 println speculate([alternative1, alternative2, alternative3, alternative4]).contains('groovy')
}

Make sure the surrounding thread pool has enough threads to process all alternatives in
parallel. The size of the pool should match the number of closures supplied.

41

Alternatives using dataflow variables and streams

In cases, when stopping unsuccessful alternatives is not needed, dataflow variables or streams may be used to obtain
the result value from the winning speculation.

Please refer to the Dataflow Concurrency section of the User Guide for details on Dataflow
variables and streams.

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.taskimport static

def alternative1 = {
 'http://www.dzone.com/links/index.html'.toURL().text
}

def alternative2 = {
 'http://www.dzone.com/'.toURL().text
}

def alternative3 = {
 'http://www.dzzzzzone.com/'.toURL().text //will fail due to wrong url
}

def alternative4 = {
 'http://dzone.com/'.toURL().text
}

//Pick either one of the following, both will work:
 def result = DataflowQueue()final new

// def result = DataflowVariable()final new

[alternative1, alternative2, alternative3, alternative4].each {code ->
 task {
 {try
 result << code()
 } (ignore) { } //We deliberately ignore unsuccessful urlscatch
 }
}

println result.val.contains('groovy')

42

4 Groovy CSP
The CSP (Communicating Sequential Processes) abstraction builds on independent composable processes, which
exchange messages in a synchronous manner. GPars leverages developed at the University of Kent,the JCSP library
UK.

Jon Kerridge, the author of the CSP implementation in GPars, provides exhaustive examples on of GroovyCSP use at
his website:

The GroovyCSP implementation leverages JCSP, a Java-based CSP library, which is licensed
under LGPL. There are some differences between the Apache 2 license, which GPars uses,
and LGPL. Please make sure your application conforms to the LGPL rules before enabling the
use of JCSP in your code.

If the LGPL license is not adequate for your use, you might consider checking out the Dataflow Concurrency chapter of
this User Guide to learn about , and , which may help you resolve concurrency issues in waystasks selectors operators
similar to the CSP approach. In fact the dataflow and CSP concepts, as implemented in GPars, stand very close to
each other.

By default, without actively adding an explicit dependency on JCSP in your build file or
downloading and including the JCSP jar file in your project, the standard
commercial-software-friendly Apache 2 License terms apply to your project. GPars directly only
depends on software licensed under licenses compatible with the Apache 2 License.

The CSP model principles

In essence, the CSP model builds on independent concurrent processes, which mutually communicate through
channels using synchronous (i.e. rendezvous) message passing. Unlike actors or dataflow operators, which revolve
around the event-processing pattern, CSP processes place focus the their activities (aka sequences of steps) and use
communication to stay mutually in sync along the way.

Since the addressing is indirect through channels, the processes do not need to know about one another. They
typically consist of a set of input and output channels and a body. Once a CSP process is started, it obtains a thread
from a thread pool and starts processing its body, pausing only when reading from a channel or writing into a channel.
Some implementations (e.g. GoLang) can also detach the thread from the CSP process when blocked on a channel.

CSP programs are deterministic. The same data on the program's input will always generate the same output,
irrespective of the actual thread-scheduling scheme used. This helps a lot when debugging CSP programs as well as
analyzing deadlocks.

Determinism combined with indirect addressing result in a great level of composability of CSP processes. You can
combine small CSP processes into bigger ones just by connecting their input and output channels and then wrapping
them by another, bigger containing process.

The CSP model introduces non-determinism using . A process can attempt to read a value from multipleAlternatives
channels at the same time through a construct called or . The first value that becomes available inAlternative Select
any of the channels involved in the will be read and consumed by the process. Since the order of messagesSelect
received through a depends on unpredictable conditions during program run-time, the value that will get read isSelect
non-deterministic.

http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://www.soc.napier.ac.uk/~cs10/#_Toc271192596

43

CSP with GPars dataflow

GPars provides all the necessary building blocks to create CSP processes.

CSP Processes can be modelled through GPars tasks using a , a or a to hold theClosure Runnable Callable
actual implementation of the process

CSP Channels should be modelled with and classesSyncDataflowQueue SyncDataflowBroadcast

CSP Alternative is provided through the class with its and methodsSelect select prioritySelect

Processes

To start a process simply use the factory method.task

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.scheduler.ResizeablePoolimport

group = DefaultPGroup(ResizeablePool())new new true

def t = group.task {
 println "I am a process"
}

t.join()

Since each process consumes a thread for its lifetime, it is advisable to use resizeable thread
pools as in the example above.

A process can also be created from a Runnable or Callable object:

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.scheduler.ResizeablePoolimport

group = DefaultPGroup(ResizeablePool())new new true

class MyProcess {implements Runnable

@Override
 void run() {
 println "I am a process"
 }
}
def t = group.task MyProcess()new

t.join()

Using Callable allows for values to be returned through the method:get()

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.scheduler.ResizeablePoolimport

 java.util.concurrent.Callableimport

group = DefaultPGroup(ResizeablePool())new new true

class MyProcess Callable< > {implements String

@Override
 call() {String
 println "I am a process"
 return "CSP is great!"
 }
}
def t = group.task MyProcess()new

println t.get()

44

Channels

Processes typically need channels to communicate with the other processes as well as with the outside world:

import groovy.transform.TupleConstructor
 groovyx.gpars.dataflow.DataflowReadChannelimport
 groovyx.gpars.dataflow.DataflowWriteChannelimport
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.scheduler.ResizeablePoolimport

 java.util.concurrent.Callableimport
 groovyx.gpars.dataflow.SyncDataflowQueueimport

group = DefaultPGroup(ResizeablePool())new new true

@TupleConstructor
class Greeter Callable< > {implements String
 DataflowReadChannel names
 DataflowWriteChannel greetings

@Override
 call() {String
 (! .currentThread().isInterrupted()) {while Thread
 name = names.valString
 greetings << + name"Hello "
 }
 return "CSP is great!"
 }
}

def a = SyncDataflowQueue()new
def b = SyncDataflowQueue()new

group.task Greeter(a, b)new

a << "Joe"
a << "Dave"
println b.val
println b.val

The CSP model uses synchronous messaging, however, in GPars you may consider using
asynchronous channels as well as synchronous ones. You can also combine these two types
of channels within the same process.

Composition

Grouping processes is then just a matter of connecting them with channels:

45

group = DefaultPGroup(ResizeablePool())new new true

@TupleConstructor
class Formatter Callable< > {implements String
 DataflowReadChannel rawNames
 DataflowWriteChannel formattedNames

@Override
 call() {String
 (! .currentThread().isInterrupted()) {while Thread
 name = rawNames.valString
 formattedNames << name.toUpperCase()
 }
 }
}

@TupleConstructor
class Greeter Callable< > {implements String
 DataflowReadChannel names
 DataflowWriteChannel greetings

@Override
 call() {String
 (! .currentThread().isInterrupted()) {while Thread
 name = names.valString
 greetings << + name"Hello "
 }
 }
}

def a = SyncDataflowQueue()new
def b = SyncDataflowQueue()new
def c = SyncDataflowQueue()new

group.task Formatter(a, b)new
group.task Greeter(b, c)new

a << "Joe"
a << "Dave"
println c.val
println c.val

Alternatives

To introduce non-determinist GPars offers the class with its and methods:Select select prioritySelect

46

import groovy.transform.TupleConstructor
 groovyx.gpars.dataflow.SyncDataflowQueueimport
 groovyx.gpars.dataflow.DataflowReadChannelimport
 groovyx.gpars.dataflow.DataflowWriteChannelimport
 groovyx.gpars.dataflow.Selectimport
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.scheduler.ResizeablePoolimport

 groovyx.gpars.dataflow.Dataflow.selectimport static

group = DefaultPGroup(ResizeablePool())new new true

@TupleConstructor
class Receptionist {implements Runnable
 DataflowReadChannel emails
 DataflowReadChannel phoneCalls
 DataflowReadChannel tweets
 DataflowWriteChannel forwardedMessages

 Select incomingRequests = select([phoneCalls, emails, tweets]) //prioritySelect() would give highest precedence toprivate final
phone calls

@Override
 void run() {
 (! .currentThread().isInterrupted()) {while Thread
 msg = incomingRequests.select()String
 forwardedMessages << msg.toUpperCase()
 }
 }
}

def a = SyncDataflowQueue()new
def b = SyncDataflowQueue()new
def c = SyncDataflowQueue()new
def d = SyncDataflowQueue()new

group.task Receptionist(a, b, c, d)new

a << "my email"
b << "my phone call"
c << "my tweet"

//The values come in random order since the process uses a Select to read its input
3.times{
 println d.val.value
}

Components

CSP processes can be composed into larger entities. Suppose you already have a set of CSP processes (aka
Runnable/Callable classes), you can compose them into a larger process:

final class Prefix Callable {implements
 DataflowChannel inChannelprivate final
 DataflowChannel outChannelprivate final
 def prefixprivate final

def Prefix(inChannel, outChannel, prefix) {final final final
 .inChannel = inChannel;this
 .outChannel = outChannel;this
 .prefix = prefixthis
 }

 def call() {public
 outChannel << prefix
 () {while true
 sleep 200
 outChannel << inChannel.val
 }
 }
}

47

final class Copy Callable {implements
 DataflowChannel inChannelprivate final
 DataflowChannel outChannel1private final
 DataflowChannel outChannel2private final

def Copy(inChannel, outChannel1, outChannel2) {final final final
 .inChannel = inChannel;this
 .outChannel1 = outChannel1;this
 .outChannel2 = outChannel2;this
 }

 def call() {public
 PGroup group = Dataflow.retrieveCurrentDFPGroup()final
 () {while true
 def i = inChannel.val
 group.task {
 outChannel1 << i
 outChannel2 << i
 }.join()
 }
 }
}

import groovyx.gpars.dataflow.DataflowChannel
 groovyx.gpars.dataflow.SyncDataflowQueueimport
 groovyx.gpars.group.DefaultPGroupimport

group = DefaultPGroup(6)new

def fib(DataflowChannel out) {
 group.task {
 def a = SyncDataflowQueue()new
 def b = SyncDataflowQueue()new
 def c = SyncDataflowQueue()new
 def d = SyncDataflowQueue()new
 [Prefix(d, a, 0L), Prefix(c, d, 1L), Copy(a, b, out), StatePairs(b, c)].each { group.task it}new new new new
 }
}

 SyncDataflowQueue ch = SyncDataflowQueue()final new
group.task Print('Fibonacci numbers', ch)new
fib(ch)

sleep 10000

48

5 Actors
The actor support in GPars was originally inspired by the Actors library in Scala, but has since gone well beyond what
Scala offers as standard.

Actors allow for a message passing-based concurrency model: programs are collections of independent active objects
that exchange messages and have no mutable shared state. Actors can help developers avoid issues such as
deadlock, live-lock and starvation, which are common problems for shared memory based approaches. Actors are a
way of leveraging the multi-core nature of today's hardware without all the problems traditionally associated with
shared-memory multi-threading, which is why programming languages such as Erlang and Scala have taken up this
model.

A nice article summarizing the key was written recently by Ruben Vermeersch. Actors alwaysconcepts behind actors
guarantee that at any one time and also, under the covers, that theat most one thread processes the actor's body
memory gets synchronized each time a thread gets assigned to an actor so the actor's state can be safely modified
by code in the body . Ideally actor's code should without any other extra (synchronization or locking) effort never

 directly from outside so all the code of the actor class can only be executed by the thread handling the lastbe invoked
received message and so all the actor's code is . If any of the actor's methods is allowed to beimplicitly thread-safe
called by other objects directly, the thread-safety guarantee for the actor's code and state are .no longer valid

Types of actors

In general, you can find two types of actors in the wild - ones that hold and those, who don't. GPars givesimplicit state
you both options. actors, represented in by the and the Stateless GPars DynamicDispatchActor ReactiveActor
classes, keep no track of what messages have arrived previously. You may thing of these as flat message handlers,
which process messages as they come. Any state-based behavior has to be implemented by the user.

The actors, represented in GPars by the class (and previously also by the stateful DefaultActor AbstractPooledActor
class), allow the user to handle implicit state directly. After receiving a message the actor moves into a new state with
different ways to handle future messages. To give you an example, a freshly started actor may only accept some types
of messages, e.g. encrypted messages for decryption, only after it has received the encryption keys. The stateful actors
allow to encode such dependencies directly in the structure of the message-handling code. Implicit state management,
however, comes at a slight performance cost, mainly due to the lack of continuations support on JVM.

Actor threading model

Since actors are detached from the system threads, a great number of actors can share a relatively small thread pool.
This can go as far as having many concurrent actors that share a single pooled thread. This architecture allows to
avoid some of the threading limitations of the JVM. In general, while the JVM can only give you a limited number of
threads (typically around a couple of thousands), the number of actors is only limited by the available memory. If an
actor has no work to do, it doesn't consume threads.

Actor code is processed in chunks separated by quiet periods of waiting for new events (messages). This can be
naturally modeled through . As JVM doesn't support continuations directly, they have to be simulated incontinuations
the actors frameworks, which has slight impact on organization of the actors' code. However, the benefits in most cases
outweigh the difficulties.

http://ruben.savanne.be/articles/concurrency-in-erlang-scala

49

import groovyx.gpars.actor.Actor
 groovyx.gpars.actor.DefaultActorimport

class GameMaster DefaultActor {extends
 secretNumint

void afterStart() {
 secretNum = Random().nextInt(10)new
 }

void act() {
 loop {
 react { num ->int
 (num > secretNum)if
 reply 'too large'
 (num < secretNum)else if
 reply 'too small'
 {else
 reply 'you win'
 terminate()
 }
 }
 }
 }
}

class Player DefaultActor {extends
 nameString
 Actor server
 myNumint

void act() {
 loop {
 myNum = Random().nextInt(10)new
 server.send myNum
 react {
 (it) {switch
 'too large': println ; case "$name: $myNum was too large" break
 'too small': println ; case "$name: $myNum was too small" break
 'you win': println ; terminate(); case "$name: I won $myNum" break
 }
 }
 }
 }
}

def master = GameMaster().start()new
def player = Player(name: 'Player', server: master).start()new

// forces main thread to live until both actors stopthis
[master, player]*.join()

example by Jordi Campos i Miralles, Departament de Matem tica Aplicada i An lisi, MAiA Facultat de Matem tiques,
Universitat de Barcelona

50

Usage of Actors

Gpars provides consistent Actor APIs and DSLs. Actors in principal perform three specific operations - send messages,
receive messages and create new actors. Although not specifically enforced by messages should be immutableGPars
or at least follow the policy when the sender never touches the messages after the message has been senthands-off
off.

Sending messages

Messages can be sent to actors using the method.send()

def passiveActor = Actors.actor{
 loop {
 react { msg -> println ; }"Received: $msg"
 }
}
passiveActor.send 'Message 1'
passiveActor << 'Message 2' //using the << operator
passiveActor 'Message 3' //using the implicit call() method

Alternatively, the operator or the implicit method can be used. A family of methods is available<< call() sendAndWait()
to block the caller until a reply from the actor is available. The is returned from the method as areply sendAndWait()
return value. The methods may also return after a timeout expires or in case of termination of the calledsendAndWait()
actor.

def replyingActor = Actors.actor{
 loop {
 react { msg ->
 println ;"Received: $msg"
 reply "I've got $msg"
 }
 }
}
def reply1 = replyingActor.sendAndWait('Message 4')
def reply2 = replyingActor.sendAndWait('Message 5', 10, TimeUnit.SECONDS)
use (TimeCategory) {
 def reply3 = replyingActor.sendAndWait('Message 6', 10.seconds)
}

The method allows the caller to continue its processing while the supplied closure is waiting for asendAndContinue()
reply from the actor.

friend.sendAndContinue 'I need money!', {money -> pocket money}
println 'I can my friend is collecting money me'continue while for

The method returns a (aka Future) to the final reply and so allows the caller to continue itssendAndPromise() Promise
processing while the actor is handling the submitted message.

Promise loan = friend.sendAndPromise 'I need money!'
println 'I can my friend is collecting money me'continue while for
loan.whenBound {money -> pocket money} //asynchronous waiting a replyfor
println //synchronous waiting a reply"Received ${loan.get()}" for

All , or methods will throw an exception if invoked on a non-active actor.send() sendAndWait() sendAndContinue()

Receiving messages

51

Non-blocking message retrieval

Calling the method, optionally with a timeout parameter, from within the actor's code will consume the nextreact()
message from the actor's inbox, potentially waiting, if there is no message to be processed immediately.

println 'Waiting a gift'for
react {gift ->
 (myWife.likes gift) reply 'Thank you!'if
}

Under the covers the supplied closure is not invoked directly, but scheduled for processing by any thread in the thread
pool once a message is available. After scheduling the current thread will then be detached from the actor and freed to
process any other actor, which has received a message already.

To allow detaching actors from the threads the method demands the code to be written in a special react()
.Continuation-style

Actors.actor {
 loop {
 println 'Waiting a gift'for
 react {gift ->
 (myWife.likes gift) reply 'Thank you!'if
 {else
 reply 'Try again, please'
 react {anotherGift ->
 (myChildren.like gift) reply 'Thank you!'if
 }
 println 'Never reached'
 }
 }
 println 'Never reached'
 }
 println 'Never reached'
}

The method has a special semantics to allow actors to be detached from threads when no messages arereact()
available in their mailbox. Essentially, schedules the supplied code (closure) to be executed upon next messagereact()
arrival and returns. The closure supplied to the methods is the code where the computation should .react() continue
Thus .continuation style

Since actor has to preserve the guarantee of at most one thread active within the actor's body, the next message
cannot be handled before the current message processing finishes. Typically, there shouldn't be a need to put code
after calls to . Some actor implementations even enforce this, however, GPars does not for performancereact()
reasons. The method allows iteration within the actor body. Unlike typical looping constructs, like or loop() for while
loops, cooperates with nested blocks and will ensure looping across subsequent message retrievals.loop() react()

Sending replies

The methods are not only defined on the actors themselves, but for (notreply/replyIfExists AbstractPooledActor
available in , nor classes) also on the processed messagesDefaultActor DynamicDispatchActor ReactiveActor
themselves upon their reception, which is particularly handy when handling multiple messages in a single call. In such
cases invoked on the actor sends a reply to authors of all the currently processed message (the last one),reply()
whereas called on messages sends a reply to the author of the particular message only.reply()

See demo here

The sender property

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=blob_plain;f=src/test/groovy/groovyx/gpars/samples/actors/stateful/DemoMultiMessage.groovy;hb=HEAD

52

Messages upon retrieval offer the sender property to identify the originator of the message. The property is available
inside the Actor's closure:

react {tweet ->
 (isSpam(tweet)) ignoreTweetsFrom senderif
 sender.send 'Never write me again!'
}

Forwarding

When sending a message, a different actor can be specified as the sender so that potential replies to the message will
be forwarded to the specified actor and not to the actual originator.

def decryptor = Actors.actor {
 react {message ->
 reply message.reverse()
// sender.send message.reverse() //An alternative way to send replies
 }
}

def console = Actors.actor { //This actor will print out decrypted messages, since the replies are forwarded to it
 react {
 println 'Decrypted message: ' + it
 }
}

decryptor.send 'lellarap si yvoorG', console //Specify an actor to send replies to
console.join()

Creating Actors

Actors share a of threads, which are dynamically assigned to actors when the actors need to to messagespool react
sent to them. The threads are returned to back the pool once a message has been processed and the actor is idle
waiting for some more messages to arrive.

For example, this is how you create an actor that prints out all messages that it receives.

def console = Actors.actor {
 loop {
 react {
 println it
 }
 }
}

Notice the method call, which ensures that the actor doesn't stop after having processed the first message.loop()

Here's an example with a decryptor service, which can decrypt submitted messages and send the decrypted messages
back to the originators.

53

final def decryptor = Actors.actor {
 loop {
 react { message ->String
 ('stopService' == message) {if
 println 'Stopping decryptor'
 stop()
 }
 reply message.reverse()else
 }
 }
}

Actors.actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 println 'Decrypted message: ' + it
 decryptor.send 'stopService'
 }
}.join()

Here's an example of an actor that waits for up to 30 seconds to receive a reply to its message.

def friend = Actors.actor {
 react {
 // doesn't reply -> caller won't receive any answer in timethis
 println it
 //reply 'Hello' //uncomment to answer conversationthis
 react {
 println it
 }
 }
}

def me = Actors.actor {
 friend.send('Hi')
 //wait answer 1secfor
 react(1000) {msg ->
 (msg == Actor.TIMEOUT) {if
 friend.send('I see, busy as usual. Never mind.')
 stop()
 } {else
 // conversationcontinue
 println "Thank you $msg"for
 }
 }
}

me.join()

Undelivered messages

Sometimes messages cannot be delivered to the target actor. When special action needs to be taken for undelivered
messages, at actor termination all unprocessed messages from its queue have their method called.onDeliveryError()
The method or closure defined on the message can, for example, send a notification back to theonDeliveryError()
original sender of the message.

54

final DefaultActor me
me = Actors.actor {
 def message = 1

message.metaClass.onDeliveryError = {->
 //send message back to the caller
 me << "Could not deliver $delegate"
 }

def actor = Actors.actor {
 react {
 //wait 2sec in order next call in demo can be emitted
 .sleep(2000)Thread
 //stop actor after first message
 stop()
 }
 }

actor << message
 actor << message

react {
 //print whatever comes back
 println it
 }

}

me.join()

Alternatively the method can be specified on the sender itself. The method can be added bothonDeliveryError()
dynamically

final DefaultActor me
me = Actors.actor {
 def message1 = 1
 def message2 = 2

def actor = Actors.actor {
 react {
 //wait 2sec in order next call in demo can be emitted
 .sleep(2000)Thread
 //stop actor after first message
 stop()
 }
 }

me.metaClass.onDeliveryError = {msg ->
 //callback on actor inaccessibility
 println "Could not deliver message $msg"
 }

actor << message1
 actor << message2

actor.join()

}

me.join()

and statically in actor definition:

class MyActor DefaultActor {extends
 void onDeliveryError(msg) {public
 println "Could not deliver message $msg"
 }
 …
}

Joining actors

Actors provide a method to allow callers to wait for the actor to terminate. A variant accepting a timeout is alsojoin()
available. The Groovy operator comes in handy when joining multiple actors at a time.spread-dot

55

def master = GameMaster().start()new
def player = Player(name: 'Player', server: master).start()new

[master, player]*.join()

Conditional and counting loops

The method allows for either a condition or a number of iterations to be specified, optionally accompanied with aloop()
closure to invoke once the loop finishes - .After Loop Termination Code Handler

The following actor will loop three times to receive 3 messages and then prints out the maximum of the received
messages.

final Actor actor = Actors.actor {
 def candidates = []
 def printResult = {-> println }"The best offer is ${candidates.max()}"

loop(3, printResult) {
 react {
 candidates << it
 }
 }
}

actor 10
actor 30
actor 20
actor.join()

The following actor will receive messages until a value greater then 30 arrives.

final Actor actor = Actors.actor {
 def candidates = []
 Closure printResult = {-> println }final "Reached best offer - ${candidates.max()}"

loop({-> candidates.max() < 30}, printResult) {
 react {
 candidates << it
 }
 }
}

actor 10
actor 20
actor 25
actor 31
actor 20
actor.join()

The can use actor's but not .After Loop Termination Code Handler react{} loop()

 can be set to behave in a fair on non-fair (default) manner. Depending on theDefaultActor
strategy chosen, the actor either makes the thread available to other actors sharing the same
parallel group (fair), or keeps the thread fot itself until the message queue gets empty (non-fair).
Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the factory method or the actor's makeFair() method.fairActor()

Custom schedulers

56

Actors leverage the standard JDK concurrency library by default. To provide a custom thread scheduler use the
appropriate constructor parameter when creating a parallel group (PGroup class). The supplied scheduler will
orchestrate threads in the group's thread pool.

Please also see the numerous .Actor Demos

5.1 Actors Principles
Actors share a of threads, which are dynamically assigned to actors when the actors need to to messagespool react
sent to them. The threads are returned back to the pool once a message has been processed and the actor is idle
waiting for some more messages to arrive. Actors become detached from the underlying threads and so a relatively
small thread pool can serve potentially unlimited number of actors. Virtually unlimited scalability in number of actors is
the main advantage of , which are detached from the underlying physical threads.event-based actors

Here are some examples of how to use actors. This is how you create an actor that prints out all messages that it
receives.

import groovyx.gpars.actor.Actors.actorstatic

def console = actor {
 loop {
 react {
 println it
 }
 }

Notice the method call, which ensures that the actor doesn't stop after having processed the first message.loop()

As an alternative you can extend the class and override the method. Once you instantiate the actor,DefaultActor act()
you need to start it so that it attaches itself to the thread pool and can start accepting messages. The factoryactor()
method will take care of starting the actor.

class CustomActor DefaultActor {extends
 @Override
 void act() {protected
 loop {
 react {
 println it
 }
 }
 }
}

def console= CustomActor()new
console.start()

Messages can be sent to the actor using multiple methods

console.send('Message')
console 'Message'
console.sendAndWait 'Message' //Wait a replyfor
console.sendAndContinue 'Message', {reply -> println } //Forward the reply to a function"I received reply: $reply"

Creating an asynchronous service

http://git.codehaus.org/gitweb.cgi?p=gpars.git;a=tree;f=src/test/groovy/groovyx/gpars/samples;h=f9a751689a034a1d3de13c4874f4f4e839cb1026;hb=HEAD

57

import groovyx.gpars.actor.Actors.actorstatic

 def decryptor = actor {final
 loop {
 react { message->String
 reply message.reverse()
 }
 }
}

def console = actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 println 'Decrypted message: ' + it
 }
}

console.join()

As you can see, you create new actors with the method passing in the actor's body as a closure parameter.actor()
Inside the actor's body you can use to iterate, to receive messages and to send a message to theloop() react() reply()
actor, which has sent the currently processed message. The sender of the current message is also available through
the actor's property. When the decryptor actor doesn't find a message in its message queue at the time when sender

 is called, the method gives up the thread and returns it back to the thread pool for other actors to pick itreact() react()
up. Only after a new message arrives to the actor's message queue, the closure of the method gets scheduledreact()
for processing with the pool. Event-based actors internally simulate continuations - actor's work is split into sequentially
run chunks, which get invoked once a message is available in the inbox. Each chunk for a single actor can be
performed by a different thread from the thread pool.

Groovy flexible syntax with closures allows our library to offer multiple ways to define actors. For instance, here's an
example of an actor that waits for up to 30 seconds to receive a reply to its message. Actors allow time DSL defined by
org.codehaus.groovy.runtime.TimeCategory class to be used for timeout specification to the method, providedreact()
the user wraps the call within a use block.TimeCategory

def friend = Actors.actor {
 react {
 // doesn't reply -> caller won't receive any answer in timethis
 println it
 //reply 'Hello' //uncomment to answer conversationthis
 react {
 println it
 }
 }
}

def me = Actors.actor {
 friend.send('Hi')
 //wait answer 1secfor
 react(1000) {msg ->
 (msg == Actor.TIMEOUT) {if
 friend.send('I see, busy as usual. Never mind.')
 stop()
 } {else
 // conversationcontinue
 println "Thank you $msg"for
 }
 }
}

me.join()

When a timeout expires when waiting for a message, the Actor.TIMEOUT message arrives instead. Also the
 handler is invoked, if present on the actor:onTimeout()

58

def friend = Actors.actor {
 react {
 // doesn't reply -> caller won't receive any answer in timethis
 println it
 //reply 'Hello' //uncomment to answer conversationthis
 react {
 println it
 }
 }
}

def me = Actors.actor {
 friend.send('Hi')

delegate.metaClass.onTimeout = {->
 friend.send('I see, busy as usual. Never mind.')
 stop()
 }

//wait answer 1secfor
 react(1000) {msg ->
 (msg != Actor.TIMEOUT) {if
 // conversationcontinue
 println "Thank you $msg"for
 }
 }
}

me.join()

Notice the possibility to use Groovy meta-programming to define actor's lifecycle notification methods (e.g. onTimeout()
) dynamically. Obviously, the lifecycle methods can be defined the usual way when you decide to define a new class for
your actor.

class MyActor DefaultActor {extends
 void onTimeout() {public
 …
 }

 void act() {protected
 …
 }
}

Actors guarantee thread-safety for non-thread-safe code

Actors guarantee that always at most one thread processes the actor's body at a time and also under the covers the
memory gets synchronized each time a thread gets assigned to an actor so the actor's state can be safely modified
by code in the body .without any other extra (synchronization or locking) effort

class MyCounterActor DefaultActor {extends
 counter = 0private Integer

 void act() {protected
 loop {
 react {
 counter++
 }
 }
 }
}

Ideally actor's code should directly from outside so all the code of the actor class can only benever be invoked
executed by the thread handling the last received message and so all the actor's code is . If anyimplicitly thread-safe
of the actor's methods is allowed to be called by other objects directly, the thread-safety guarantee for the actor's code
and state are .no longer valid

Simple calculator

59

A little bit more realistic example of an event-driven actor that receives two numeric messages, sums them up and
sends the result to the console actor.

import groovyx.gpars.group.DefaultPGroup

//not necessary, just showing that a single-threaded pool can still handle multiple actors
def group = DefaultPGroup(1);new

 def console = group.actor {final
 loop {
 react {
 println 'Result: ' + it
 }
 }
}

 def calculator = group.actor {final
 react {a ->
 react {b ->
 console.send(a + b)
 }
 }
}

calculator.send 2
calculator.send 3

calculator.join()
group.shutdown()

Notice that event-driven actors require special care regarding the method. Since need toreact() event_driven actors
split the code into independent chunks assignable to different threads sequentially and are not nativelycontinuations
supported on JVM, the chunks are created artificially. The method creates the next message handler. As soonreact()
as the current message handler finishes, the next message handler (continuation) gets scheduled.

Concurrent Merge Sort Example

For comparison I'm also including a more involved example performing a concurrent merge sort of a list of integers
using actors. You can see that thanks to flexibility of Groovy we came pretty close to the Scala model, although I still
miss Scala pattern matching for message handling.

60

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.actor.Actors.actorimport static

Closure createMessageHandler(def parentActor) {
 {return
 react {List< > message ->Integer
 assert message != null
 (message.size()) {switch
 0..1:case
 parentActor.send(message)
 break
 2:case
 (message[0] <= message[1]) parentActor.send(message)if
 parentActor.send(message[-1..0])else
 break
 :default
 def splitList = split(message)

def child1 = actor(createMessageHandler(delegate))
 def child2 = actor(createMessageHandler(delegate))
 child1.send(splitList[0])
 child2.send(splitList[1])

react {message1 ->
 react {message2 ->
 parentActor.send merge(message1, message2)
 }
 }
 }
 }
 }
}

def console = DefaultPGroup(1).actor {new
 react {
 println "Sorted array:t${it}"
 .exit 0System
 }
}

def sorter = actor(createMessageHandler(console))
sorter.send([1, 5, 2, 4, 3, 8, 6, 7, 3, 9, 5, 3])
console.join()

def split(List< > list) {Integer
 listSize = list.size()int
 middleIndex = listSize / 2int
 def list1 = list[0..<middleIndex]
 def list2 = list[middleIndex..listSize - 1]
 [list1, list2]return
}

List< > merge(List< > a, List< > b) {Integer Integer Integer
 i = 0, j = 0int
 newSize = a.size() + b.size()final int
 List< > result = ArrayList< >(newSize)Integer new Integer

 ((i < a.size()) && (j < b.size())) {while
 (a[i] <= b[j]) result << a[i++]if
 result << b[j++]else
 }

 (i < a.size()) result.addAll(a[i..-1])if
 result.addAll(b[j..-1])else
 resultreturn
}

Since reuse threads from a pool, the script will work with virtually , no matter howactors any size of a thread pool
many actors are created along the way.

Actor lifecycle methods
Each Actor can define lifecycle observing methods, which will be called whenever a certain lifecycle event occurs.

61

afterStart() - called right after the actor has been started.

afterStop(List undeliveredMessages) - called right after the actor is stopped, passing in all the unprocessed
messages from the queue.

onInterrupt(InterruptedException e) - called when the actor's thread gets interrupted. Thread interruption will result
in the stopping the actor in any case.

onTimeout() - called when no messages are sent to the actor within the timeout specified for the currently blocking
react method.

onException(Throwable e) - called when an exception occurs in the actor's event handler. Actor will stop after
return from this method.

You can either define the methods statically in your Actor class or add them dynamically to the actor's metaclass:

class MyActor DefaultActor {extends
 void afterStart() {public
 …
 }
 void onTimeout() {public
 …
 }

 void act() {protected
 …
 }
}

def myActor = actor {
 delegate.metaClass.onException = {
 log.error('Exception occurred', it)
 }

…
}

To help performance, you may consider using the method instead of whensilentStart() start()
starting a or a . Calling will by-pass some ofDynamicDispatchActor ReactiveActor silentStart()
the start-up machinery and as a result will also avoid calling the method. Due to itsafterStart()
stateful nature, cannot be started silently.DefaultActor

Pool management

 can be organized into groups and as a default there's always an application-wide pooled actor group available.Actors
And just like the abstract factory can be used to create actors in the default group, custom groups can be usedActors
as abstract factories to create new actors instances belonging to these groups.

def myGroup = DefaultPGroup()new

def actor1 = myGroup.actor {
…
}

def actor2 = myGroup.actor {
…
}

The property of an actor points to the group it belongs to. It by default points to the default actor group,parallelGroup
which is , and can only be changed before the actor is started.Actors.defaultActorPGroup

62

class MyActor StaticDispatchActor< > {extends Integer
 PGroup group = DefaultPGroup(100)private static new

MyActor(...) {
 .parallelGroup = groupthis
 …
 }
}

The actors belonging to the same group share the of that group. The pool by default contains underlying thread pool
, where stands for the number of detected by the JVM. The can be set n + 1 threads n CPUs pool size explicitly

either by setting the system property or individually for each actor group by specifying the appropriategpars.poolsize
constructor parameter.

def myGroup = DefaultPGroup(10) //the pool will contain 10 threadsnew

The thread pool can be manipulated through the appropriate class, which to the DefaultPGroup delegates Pool
interface of the thread pool. For example, the method allows you to change the pool size any time and the resize()

 sets it back to the default value. The method can be called when you need to safelyresetDefaultSize() shutdown()
finish all tasks, destroy the pool and stop all the threads in order to exit JVM in an organized manner.

… (n+1 threads in the pool after startup)default

Actors.defaultActorPGroup.resize 1 //use one-thread pool

… (1 thread in the pool)

Actors.defaultActorPGroup.resetDefaultSize()

… (n+1 threads in the pool)

Actors.defaultActorPGroup.shutdown()

As an alternative to the , which creates a pool of daemon threads, the class can beDefaultPGroup NonDaemonPGroup
used when non-daemon threads are required.

def daemonGroup = DefaultPGroup()new

def actor1 = daemonGroup.actor {
…
}

def nonDaemonGroup = NonDaemonPGroup()new

def actor2 = nonDaemonGroup.actor {
…
}

class MyActor {
 def MyActor() {
 .parallelGroup = nonDaemonGroupthis
 }

void act() {...}
}

Actors belonging to the same group share the . With pooled actor groups you can split yourunderlying thread pool
actors to leverage multiple thread pools of different sizes and so assign resources to different components of your
system and tune their performance.

63

def coreActors = NonDaemonPGroup(5) //5 non-daemon threads poolnew
def helperActors = DefaultPGroup(1) //1 daemon thread poolnew

def priceCalculator = coreActors.actor {
…
}

def paymentProcessor = coreActors.actor {
…
}

def emailNotifier = helperActors.actor {
…
}

def cleanupActor = helperActors.actor {
…
}

//increase size of the core actor group
coreActors.resize 6

//shutdown the group's pool once you no longer need the group to release resources
helperActors.shutdown()

Do not forget to shutdown custom pooled actor groups, once you no longer need them and their actors, to preserve
system resources.

The default actor group

Actors that didn't have their parallelGroup property changed or that were created through any of the factory methods on
the class share a common group . This group uses a withActors Actors.defaultActorPGroup resizeable thread pool
an upper limit of . This gives you the comfort of having the pool automatically adjust to the demand of the1000 threads
actors. On the other hand, with a growing number of actors the pool may become too big an inefficient. It is advisable to
group your actors into your own PGroups with fixed size thread pools for all but trivial applications.

Common trap: App terminates while actors do not receive messages

Most likely you're using daemon threads and pools, which is the default setting, and your main thread finishes. Calling
 on any, some or all of your actors would block the main thread until the actor terminates and thus keep allactor.join()

your actors running. Alternatively use instances of and assign some of your actors to theseNonDaemonPGroup
groups.

def nonDaemonGroup = NonDaemonPGroup()new
def myActor = nonDaemonGroup.actor {...}

alternatively

def nonDaemonGroup = NonDaemonPGroup()new

class MyActor DefaultActor {extends
 def MyActor() {
 .parallelGroup = nonDaemonGroupthis
 }

void act() {...}
}

def myActor = MyActor()new

Blocking Actors

64

Instead of event-driven continuation-styled actors, you may in some scenarios prefer using blocking actors. Blocking
actors hold a single pooled thread for their whole life-time including the time when waiting for messages. They avoid
some of the thread management overhead, since they never fight for threads after start, and also they let you write
straight code without the necessity of continuation style, since they only do blocking message reads via the receive
method. Obviously the number of blocking actors running concurrently is limited by the number of threads available in
the shared pool. On the other hand, blocking actors typically provide better performance compared to continuation-style
actors, especially when the actor's message queue rarely gets empty.

def decryptor = blockingActor {
 () {while true
 receive {message ->
 (message) reply message.reverse()if instanceof String
 stop()else
 }
 }
}

def console = blockingActor {
 decryptor.send 'lellarap si yvoorG'
 println 'Decrypted message: ' + receive()
 decryptor.send false
}

[decryptor, console]*.join()

Blocking actors increase the number of options to tune performance of your applications. They may in particular be
good candidates for high-traffic positions in your actor network.

5.2 Stateless Actors

Dynamic Dispatch Actor

The class is an actor allowing for an alternative structure of the message handling code. InDynamicDispatchActor
general repeatedly scans for messages and dispatches arrived messages to one of the DynamicDispatchActor

 methods defined on the actor. The leverages the Groovy dynamiconMessage(message) DynamicDispatchActor
method dispatch mechanism under the covers. Since, unlike descendants, a not DefaultActor DynamicDispatchActor

 (discussed below) do not need to implicitly remember actor's state between subsequent messageReactiveActor
receptions, they provide much better performance characteristics, generally comparable to other actor frameworks, like
e.g. Scala Actors.

import groovyx.gpars.actor.Actors
 groovyx.gpars.actor.DynamicDispatchActorimport

 class MyActor DynamicDispatchActor {final extends

void onMessage(message) {String
 println 'Received string'
 }

void onMessage(message) {Integer
 println 'Received integer'
 reply 'Thanks!'
 }

void onMessage(message) {Object
 println 'Received object'
 sender.send 'Thanks!'
 }

void onMessage(List message) {
 println 'Received list'
 stop()
 }
}

 def myActor = MyActor().start()final new

Actors.actor {
 myActor 1
 myActor ''
 myActor 1.0
 myActor(ArrayList())new
 myActor.join()
}.join()

65

In some scenarios, typically when no implicit conversation-history-dependent state needs to be preserved for the actor,
the dynamic dispatch code structure may be more intuitive than the traditional one using nested and loop react
statements.

The class also provides a handy facility to add message handlers dynamically at actorDynamicDispatchActor
construction time or any time later using the handlers, optionally wrapped inside a method:when become

final Actor myActor = DynamicDispatchActor().become {new
 when { msg -> println 'A '; reply 'Thanks'}String String
 when { msg -> println 'A '; reply 'Thanks'}Double Double
 when {msg -> println 'A something ...'; reply 'What was that?';stop()}
}
myActor.start()
Actors.actor {
 myActor 'Hello'
 myActor 1.0d
 myActor 10 as BigDecimal
 myActor.join()
}.join()

Obviously the two approaches can be combined:

final class MyDDA DynamicDispatchActor {extends

void onMessage(message) {String
 println 'Received string'
 }

void onMessage(message) {Integer
 println 'Received integer'
 }

void onMessage(message) {Object
 println 'Received object'
 }

void onMessage(List message) {
 println 'Received list'
 stop()
 }
}

 def myActor = MyDDA().become {final new
 when {BigDecimal num -> println 'Received BigDecimal'}
 when { num -> println 'Got a '}Float float
}.start()
Actors.actor {
 myActor 'Hello'
 myActor 1.0f
 myActor 10 as BigDecimal
 myActor.send([])
 myActor.join()
}.join()

The dynamic message handlers registered via take precedence over the static handlers.when onMessage

 can be set to behave in a fair on non-fair (default) manner. DependingDynamicDispatchActor
on the strategy chosen, the actor either makes the thread available to other actors sharing the
same parallel group (fair), or keeps the thread fot itself until the message queue gets empty
(non-fair). Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the factory method or the actor's makeFair() method.fairMessageHandler()

def fairActor = Actors.fairMessageHandler {...}

Static Dispatch Actor

66

While dispatches messages based on their run-time type and so pays extra performanceDynamicDispatchActor
penalty for each message, avoids run-time message checks and dispatches the message solelyStaticDispatchActor
based on the compile-time information.

final class MyActor StaticDispatchActor< > {extends String
 void onMessage(message) {String
 println 'Received string ' + message

 (message) {switch
 'hello':case
 reply 'Hi!'
 break
 'stop':case
 stop()
 }
 }
}

Instances of have to override the method appropriate for the actor's declared typeStaticDispatchActor onMessage
parameter. The method is then invoked with every received message.onMessage(T message)

A shorter route towards both fair and non-fair static dispatch actors is available through the helper factory methods:

final actor = staticMessageHandler { message ->String
 println 'Received string ' + message

 (message) {switch
 'hello':case
 reply 'Hi!'
 break
 'stop':case
 stop()
 }
}

println 'Reply: ' + actor.sendAndWait('hello')
actor 'bye'
actor 'stop'
actor.join()

Although when compared to the class is limited to a single handler method,DynamicDispatchActor StaticDispatchActor
the simplified creation without any handlers plus the considerable performance benefits should make when

 your default choice for straightforward message handlers, when dispatching based on messageStaticDispatchActor
run-time type is not necessary. For example, make dataflow operators four times faster comparedStaticDispatchActors
to when using .DynamicDispatchActor

Reactive Actor

The class, constructed typically by calling or , allow for moreReactiveActor Actors.reactor() DefaultPGroup.reactor()
event-driven like approach. When a reactive actor receives a message, the supplied block of code, which makes up the
reactive actor's body, is run with the message as a parameter. The result returned from the code is sent in reply.

67

final def group = DefaultPGroup()new

 def doubler = group.reactor {final
 2 * it
}

group.actor {
 println ' of 10 = ' + doubler.sendAndWait(10)Double
}

group.actor {
 println ' of 20 = ' + doubler.sendAndWait(20)Double
}

group.actor {
 println ' of 30 = ' + doubler.sendAndWait(30)Double
}

(i in (1..10)) {for
 println " of $i = ${doubler.sendAndWait(i)}"Double
}

doubler.stop()
doubler.join()

Here's an example of an actor, which submits a batch of numbers to a for processing and then prints theReactiveActor
results gradually as they arrive.

import groovyx.gpars.actor.Actor
 groovyx.gpars.actor.Actorsimport

 def doubler = Actors.reactor {final
 2 * it
}

Actor actor = Actors.actor {
 (1..10).each {doubler << it}
 i = 0int
 loop {
 i += 1
 (i > 10) stop()if
 {else
 react {message ->
 println " of $i = $message"Double
 }
 }
 }
}

actor.join()
doubler.stop()
doubler.join()

Essentially reactive actors provide a convenience shortcut for an actor that would wait for messages in a loop, process
them and send back the result. This is schematically how the reactive actor looks inside:

public class ReactiveActor DefaultActor {extends
 Closure body

void act() {
 loop {
 react {message ->
 reply body(message)
 }
 }
 }
}

 can be set to behave in a fair on non-fair (default) manner. Depending on theReactiveActor
strategy chosen, the actor either makes the thread available to other actors sharing the same
parallel group (fair), or keeps the thread fot itself until the message queue gets empty (non-fair).
Generally, non-fair actors perform 2 - 3 times better than fair ones.

Use either the factory method or the actor's makeFair() method.fairReactor()

68

def fairActor = Actors.fairReactor {...}

5.3 Tips and Tricks

Structuring actor's code
When extending the class, you can call any actor's methods from within the method and use the DefaultActor act()

 or methods in them.react() loop()

class MyDemoActor DefaultActor {extends

 void act() {protected
 handleA()
 }

 void handleA() {private
 react {a ->
 handleB(a)
 }
 }

 void handleB(a) {private int
 react {b ->
 println a + b
 reply a + b
 }
 }
}

 def demoActor = MyDemoActor()final new
demoActor.start()

Actors.actor {
 demoActor 10
 demoActor 20
 react {
 println "Result: $it"
 }
}.join()

Bear in mind that the methods and in all our examples will only schedule the supplied messagehandleA() handleB()
handlers to run as continuations of the current calculation in reaction to the next message arriving.

Alternatively, when using the factory method, you can add event-handling code through the meta class asactor()
closures.

Actor demoActor = Actors.actor {
 delegate.metaClass {
 handleA = {->
 react {a ->
 handleB(a)
 }
 }

handleB = {a ->
 react {b ->
 println a + b
 reply a + b
 }
 }
 }

handleA()
}

Actors.actor {
 demoActor 10
 demoActor 20
 react {
 println "Result: $it"
 }
}.join()

Closures, which have the actor set as their delegate can also be used to structure event-handling code.

69

Closure handleB = {a ->
 react {b ->
 println a + b
 reply a + b
 }
}

Closure handleA = {->
 react {a ->
 handleB(a)
 }
}

Actor demoActor = Actors.actor {
 handleA.delegate = delegate
 handleB.delegate = delegate

handleA()
}

Actors.actor {
 demoActor 10
 demoActor 20
 react {
 println "Result: $it"
 }
}.join()

Event-driven loops
When coding event-driven actors you have to have in mind that calls to and methods have slightlyreact() loop()
different semantics. This becomes a bit of a challenge once you try to implement any types of loops in your actors. On
the other hand, if you leverage the fact that only schedules a continuation and returns, you may call methodsreact()
recursively without fear to fill up the stack. Look at the examples below, which respectively use the three described
techniques for structuring actor's code.

A subclass of DefaultActor

class MyLoopActor DefaultActor {extends

 void act() {protected
 outerLoop()
 }

 void outerLoop() {private
 react {a ->
 println 'Outer: ' + a
 (a != 0) innerLoop()if
 println 'Done'else
 }
 }

 void innerLoop() {private
 react {b ->
 println 'Inner ' + b
 (b == 0) outerLoop()if
 innerLoop()else
 }
 }
}

 def actor = MyLoopActor().start()final new
actor 10
actor 20
actor 0
actor 0
actor.join()

Enhancing the actor's metaClass

70

Actor actor = Actors.actor {

delegate.metaClass {
 outerLoop = {->
 react {a ->
 println 'Outer: ' + a
 (a!=0) innerLoop()if
 println 'Done'else
 }
 }

innerLoop = {->
 react {b ->
 println 'Inner ' + b
 (b==0) outerLoop()if
 innerLoop()else
 }
 }
 }

outerLoop()
}

actor 10
actor 20
actor 0
actor 0
actor.join()

Using Groovy closures

Closure innerLoop

Closure outerLoop = {->
 react {a ->
 println 'Outer: ' + a
 (a!=0) innerLoop()if
 println 'Done'else
 }
}

innerLoop = {->
 react {b ->
 println 'Inner ' + b
 (b==0) outerLoop()if
 innerLoop()else
 }
}

Actor actor = Actors.actor {
 outerLoop.delegate = delegate
 innerLoop.delegate = delegate

outerLoop()
}

actor 10
actor 20
actor 0
actor 0
actor.join()

Plus don't forget about the possibility to use the actor's method to create a loop that runs until the actorloop()
terminates.

71

class MyLoopingActor DefaultActor {extends

 void act() {protected
 loop {
 outerLoop()
 }
 }

 void outerLoop() {private
 react {a ->
 println 'Outer: ' + a
 (a!=0) innerLoop()if
 println 'Done now, but will loop again'else for
 }
 }

 void innerLoop() {private
 react {b ->
 println 'Inner ' + b
 (b == 0) outerLoop()if
 innerLoop()else
 }
 }
}

 def actor = MyLoopingActor().start()final new
actor 10
actor 20
actor 0
actor 0
actor 10
actor.stop()
actor.join()

5.4 Active Objects
Active objects provide an OO facade on top of actors, allowing you to avoid dealing directly with the actor machinery,
having to match messages, wait for results and send replies.

Actors with a friendly facade

import groovyx.gpars.activeobject.ActiveObject
 groovyx.gpars.activeobject.ActiveMethodimport

@ActiveObject
class Decryptor {
 @ActiveMethod
 def decrypt(encryptedText) {String
 encryptedText.reverse()return
 }

@ActiveMethod
 def decrypt(encryptedNumber) {Integer
 -1*encryptedNumber + 142return
 }
}

 Decryptor decryptor = Decryptor()final new
def part1 = decryptor.decrypt(' noitcA ni yvoorG')
def part2 = decryptor.decrypt(140)
def part3 = decryptor.decrypt('noitide dn')

print part1.get()
print part2.get()
println part3.get()

You mark active objects with the annotation. This will ensure a hidden actor instance is created for each@ActiveObject
instance of your class. Now you can mark methods with the annotation indicating that you want the@ActiveMethod
method to be invoked asynchronously by the target object's internal actor. An optional boolean parameter toblocking
the annotation specifies, whether the caller should block until a result is available or whether instead@ActiveMethod
the caller should only receive a for a future result in a form of a and so the caller is notpromise DataflowVariable
blocked waiting.

By default, all active methods are set to be . However, methods, which declarenon-blocking
their return type explicitly, must be configured as blocking, otherwise the compiler will report an
error. Only , and are allowed return types for non-blocking methods.def void DataflowVariable

72

Under the covers, GPars will translate your method call to . The actor willa message being sent to the internal actor
eventually handle that message by invoking the desired method on behalf of the caller and once finished a reply will be
sent back to the caller. Non-blocking methods return promises for results, aka .DataflowVariables

But blocking means we're not really asynchronous, are we?

Indeed, if you mark your active methods as , the caller will be blocked waiting for the result, just like whenblocking
doing normal plain method invocation. All we've achieved is being thread-safe inside the Active object from concurrent
access. Something the keyword could give you as well. So it is the methods that shouldsynchronized non-blocking
drive your decision towards using active objects. Blocking methods will then provide the usual synchronous semantics
yet give the consistency guarantees across concurrent method invocations. The blocking methods are then still very
useful when used in combination with non-blocking ones.

import groovyx.gpars.activeobject.ActiveMethod
 groovyx.gpars.activeobject.ActiveObjectimport
 groovyx.gpars.dataflow.DataflowVariableimport

@ActiveObject
class Decryptor {
 @ActiveMethod(blocking=)true
 decrypt(encryptedText) {String String
 encryptedText.reverse()
 }

@ActiveMethod(blocking=)true
 decrypt(encryptedNumber) {Integer Integer
 -1*encryptedNumber + 142
 }
}

 Decryptor decryptor = Decryptor()final new
print decryptor.decrypt(' noitcA ni yvoorG')
print decryptor.decrypt(140)
println decryptor.decrypt('noitide dn')

Non-blocking semantics

Now calling the non-blocking active method will return as soon as the actor has been sent a message. The caller is
now allowed to do whatever he likes, while the actor is taking care of the calculation. The state of the calculation can be
polled using the property on the promise. Calling the method on the returned promise will block the callerbound get()
until a value is available. The call to will eventually return a value or throw an exception, depending on theget()
outcome of the actual calculation.

The method has also a variant with a timeout parameter, if you want to avoid the risk ofget()
waiting indefinitely.

Annotation rules

There are a few rules to follow when annotating your objects:

73

1.

2.

3.

4.

5.

The annotations are only accepted in classes annotated as ActiveMethod ActiveObject

Only instance (non-static) methods can be annotated as ActiveMethod

You can override active methods with non-active ones and vice versa

Subclasses of active objects can declare additional active methods, provided they are themselves annotated as
ActiveObject

Combining concurrent use of active and non-active methods may result in race conditions. Ideally design your
active objects as completely encapsulated classes with all non-private methods marked as active

Inheritance

The annotation can appear on any class in an inheritance hierarchy. The actor field will only be created@ActiveObject
in top-most annotated class in the hierarchy, the subclasses will reuse the field.

import groovyx.gpars.activeobject.ActiveObject
 groovyx.gpars.activeobject.ActiveMethodimport
 groovyx.gpars.dataflow.DataflowVariableimport

@ActiveObject
class A {
 @ActiveMethod
 def fooA(value) {
 …
 }
}

class B A {extends
}

@ActiveObject
class C B {extends
 @ActiveMethod
 def fooC(value1, value2) {
 …
 }
}

In our example the actor field will be generated into class . Class has to be annotated with since itA C @ActiveObject
holds the annotation on method , while class does not need the annotation, since none of its@ActiveMethod fooC() B
methods is active.

Groups

Just like actors can be grouped around thread pools, active objects can be configured to use threads from particular
parallel groups.

@ActiveObject()"group1"
class MyActiveObject {
 …
}

The parameter to the annotation specifies a name of parallel group to bind the internal actor to.value @ActiveObject
Only threads from the specified group will be used to run internal actors of instances of the class. The groups, however,
need to be created and registered prior to creation of any of the active object instances belonging to that group. If not
specified explicitly, an active object will use the default actor group - .Actors.defaultActorPGroup

final DefaultPGroup group = DefaultPGroup(10)new
ActiveObjectRegistry.instance.register(, group)"group1"

74

Alternative names for the internal actor

You will probably only rarely run into name collisions with the default name for the active object's internal actor field.
May you need to change the default name , use the parameter to the internalActiveObjectActor actorName

 annotation.@ActiveObject

@ActiveObject(actorName =)"alternativeActorName"
class MyActiveObject {
 …
}

Alternative names for internal actors as well as their desired groups cannot be overriden in
subclasses. Make sure you only specify these values in the top-most active objects in your
inheritance hierarchy. Obviously, the top most active object is still allowed to subclass other
classes, just none of the predecessors must be an active object.

5.5 Classic Examples

A few examples on Actors use

Examples

The Sieve of Eratosthenes

Sleeping Barber

Dining Philosophers

Word Sort

Load Balancer

The Sieve of Eratosthenes

Problem description

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

75

import groovyx.gpars.actor.DynamicDispatchActor

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using actors
 *
 * In principle, the algorithm consists of concurrently run chained filters,
 * each of which detects whether the current number can be divided by a single prime number.
 * (generate nums 1, 2, 3, 4, 5, ...) -> (filter by mod 2) -> (filter by mod 3) -> (filter by mod 5) -> (filter by mod 7) -> (filter
by mod 11) -> (caution! Primes falling out here)
 * The chain is built (grows) on the fly, whenever a prime is found.new
 */

 requestedPrimeNumberBoundary = 1000int

 def firstFilter = FilterActor(2).start()final new

/**
 * Generating candidate numbers and sending them to the actor chain
 */
(2..requestedPrimeNumberBoundary).each {
 firstFilter it
}
firstFilter.sendAndWait 'Poison'

/**
 * Filter out numbers that can be divided by a single prime number
 */

 class FilterActor DynamicDispatchActor {final extends
 myPrimeprivate final int
 def followerprivate

def FilterActor(myPrime) { .myPrime = myPrime; }final this

/**
 * Try to divide the received number with the prime. If the number cannot be divided, send it along the chain.
 * If there's no-one to send it to, I'm the last in the chain, the number is a prime and so I will create and chain
 * a actor responsible filtering by newly found prime number.new for this
 */
 def onMessage(value) {int
 (value % myPrime != 0) {if
 (follower) follower valueif
 {else
 println "Found $value"
 follower = FilterActor(value).start()new
 }
 }
 }

/**
 * Stop the actor on poisson reception
 */
 def onMessage(def poisson) {
 (follower) {if
 def sender = sender
 follower.sendAndContinue(poisson, { .stop(); sender?.send('Done')}) //Pass the poisson along and stop after a replythis
 } { //I am the last in the chainelse
 stop()
 reply 'Done'
 }
 }
}

Sleeping Barber

Problem description

import groovyx.gpars.group.DefaultPGroup
 groovyx.gpars.actor.DefaultActorimport
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.actor.Actorimport

 def group = DefaultPGroup()final new

 def barber = group.actor {final
 def random = Random()final new
 loop {
 react {message ->
 (message) {switch
 Enter:case
 message.customer.send Start()new
 println "Barber: Processing customer ${message.customer.name}"
 doTheWork(random)
 message.customer.send Done()new
 reply Next()new
 break
 Wait:case
 println "Barber: No customers. Going to have a sleep"
 break
 }
 }
 }
}

http://en.wikipedia.org/wiki/Sleeping_barber_problem

76

 def doTheWork(Random random) {private
 .sleep(random.nextInt(10) * 1000)Thread
}

 Actor waitingRoomfinal

waitingRoom = group.actor {
 capacity = 5final int
 List<Customer> waitingCustomers = []final
 barberAsleep = boolean true

loop {
 react {message ->
 (message) {switch
 Enter:case
 (waitingCustomers.size() == capacity) {if
 reply Full()new
 } {else
 waitingCustomers << message.customer
 (barberAsleep) {if
 assert waitingCustomers.size() == 1
 barberAsleep = false
 waitingRoom.send Next()new
 }
 reply Wait()else new
 }
 break
 Next:case
 (waitingCustomers.size()>0) {if
 def customer = waitingCustomers.remove(0)
 barber.send Enter(customer:customer)new
 } {else
 barber.send Wait()new
 barberAsleep = true
 }
 }
 }
 }

}

class Customer DefaultActor {extends
 nameString
 Actor localBarbers

void act() {
 localBarbers << Enter(customer:)new this
 loop {
 react {message ->
 (message) {switch
 Full:case
 println "Customer: $name: The waiting room is full. I am leaving."
 stop()
 break
 Wait:case
 println "Customer: $name: I will wait."
 break
 Start:case
 println "Customer: $name: I am now being served."
 break
 Done:case
 println "Customer: $name: I have been served."
 stop();
 break

}
 }
 }
 }
}

class Enter { Customer customer }
class Full {}
class Wait {}
class Next {}
class Start {}
class Done {}

def customers = []
customers << Customer(name:'Joe', localBarbers:waitingRoom).start()new
customers << Customer(name:'Dave', localBarbers:waitingRoom).start()new
customers << Customer(name:'Alice', localBarbers:waitingRoom).start()new

sleep 15000
customers << Customer(name: 'James', localBarbers: waitingRoom).start()new
sleep 5000
customers*.join()
barber.stop()
waitingRoom.stop()

Dining Philosophers

Problem description

http://en.wikipedia.org/wiki/Dining_philosophers_problem

77

import groovyx.gpars.actor.DefaultActor
 groovyx.gpars.actor.Actorsimport

Actors.defaultActorPGroup.resize 5

 class Philosopher DefaultActor {final extends
 Random random = Random()private new

 nameString
 def forks = []

void act() {
 assert 2 == forks.size()
 loop {
 think()
 forks*.send Take()new
 def messages = []
 react {a ->
 messages << [a, sender]
 react {b ->
 messages << [b, sender]
 ([a, b].any {Rejected.isCase it}) {if
 println "$name: tOops, can't get my forks! Giving up."
 def accepted = messages.find {Accepted.isCase it[0]}final
 (accepted!=) accepted[1].send Finished()if null new
 } {else
 eat()
 reply Finished()new
 }
 }
 }
 }
 }

void think() {
 println "$name: tI'm thinking"
 .sleep random.nextInt(5000)Thread
 println "$name: tI'm done thinking"
 }

void eat() {
 println "$name: tI'm EATING"
 .sleep random.nextInt(2000)Thread
 println "$name: tI'm done EATING"
 }
}

 class Fork DefaultActor {final extends

 nameString
 available = boolean true

void act() {
 loop {
 react {message ->
 (message) {switch
 Take:case
 (available) {if
 available = false
 reply Accepted()new
 } reply Rejected()else new
 break
 Finished:case
 assert !available
 available = true
 break
 : IllegalStateException()default throw new "Cannot process the message: $message"
 }
 }
 }
 }
}

 class Take {}final
 class Accepted {}final
 class Rejected {}final
 class Finished {}final

def forks = [
 Fork(name:'Fork 1'),new
 Fork(name:'Fork 2'),new
 Fork(name:'Fork 3'),new
 Fork(name:'Fork 4'),new
 Fork(name:'Fork 5')new
]

def philosophers = [
 Philosopher(name:'Joe', forks:[forks[0], forks[1]]),new
 Philosopher(name:'Dave', forks:[forks[1], forks[2]]),new
 Philosopher(name:'Alice', forks:[forks[2], forks[3]]),new
 Philosopher(name:'James', forks:[forks[3], forks[4]]),new
 Philosopher(name:'Phil', forks:[forks[4], forks[0]]),new
]

forks*.start()
philosophers*.start()

sleep 10000
forks*.stop()
philosophers*.stop()

78

Word sort

Given a folder name, the script will sort words in all files in the folder. The actor creates a given number of SortMaster
 , splits among them the files to sort words in and collects the results.WordSortActors

Inspired by Scala Concurrency blog post by Michael Galpin

http://fupeg.blogspot.com/2009/06/scala-concurrency.html

79

//Messages
 class FileToSort { fileName }private final String
 class SortResult { fileName; List< > words }private final String String

//Worker actor
class WordSortActor DefaultActor {extends

 List< > sortedWords(fileName) {private String String
 parseFile(fileName).sort {it.toLowerCase()}
 }

 List< > parseFile(fileName) {private String String
 List< > words = []String
 File(fileName).splitEachLine(' ') {words.addAll(it)}new
 wordsreturn
 }

void act() {
 loop {
 react {message ->
 (message) {switch
 FileToSort:case
 println "Sorting file=${message.fileName} on thread ${ .currentThread().name}"Thread
 reply SortResult(fileName: message.fileName, words: sortedWords(message.fileName))new
 }
 }
 }
 }
}

//Master actor
 class SortMaster DefaultActor {final extends

 docRoot = '/'String
 numActors = 1int

List<List< >> sorted = []String
 CountDownLatch startupLatch = CountDownLatch(1)private new
 CountDownLatch doneLatchprivate

 void beginSorting() {private
 cnt = sendTasksToWorkers()int
 doneLatch = CountDownLatch(cnt)new
 }

 List createWorkers() {private
 (1..numActors).collect { WordSortActor().start()}return new
 }

 sendTasksToWorkers() {private int
 List<Actor> workers = createWorkers()
 cnt = 0int
 File(docRoot).eachFile {new
 workers[cnt % numActors] << FileToSort(fileName: it)new
 cnt += 1
 }
 cntreturn
 }

 void waitUntilDone() {public
 startupLatch.await()
 doneLatch.await()
 }

void act() {
 beginSorting()
 startupLatch.countDown()
 loop {
 react {
 (it) {switch
 SortResult:case
 sorted << it.words
 doneLatch.countDown()
 println "Received results file=${it.fileName}"for
 }
 }
 }
 }
}

//start the actors to sort words
def master = SortMaster(docRoot: 'c:/tmp/Logs/', numActors: 5).start()new
master.waitUntilDone()
println 'Done'

File file = File()new "c:/tmp/Logs/sorted_words.txt"
file.withPrintWriter { printer ->
 master.sorted.each { printer.println it }
}

Load Balancer

Demonstrates work balancing among adaptable set of workers. The load balancer receives tasks and queues them in a
temporary task queue. When a worker finishes his assignment, it asks the load balancer for a new task.

80

If the load balancer doesn't have any tasks available in the task queue, the worker is stopped. If the number of tasks in
the task queue exceeds certain limit, a new worker is created to increase size of the worker pool.

81

import groovyx.gpars.actor.Actor
 groovyx.gpars.actor.DefaultActorimport

/**
 * Demonstrates work balancing among adaptable set of workers.
 * The load balancer receives tasks and queues them in a temporary task queue.
 * When a worker finishes his assignment, it asks the load balancer a task.for new
 * If the load balancer doesn't have any tasks available in the task queue, the worker is stopped.
 * If the number of tasks in the task queue exceeds certain limit, a worker is creatednew
 * to increase size of the worker pool.
 */

 class LoadBalancer DefaultActor {final extends
 workers = 0int
 List taskQueue = []
 QUEUE_SIZE_TRIGGER = 10private static final

void act() {
 loop {
 react { message ->
 (message) {switch
 NeedMoreWork:case
 (taskQueue.size() == 0) {if
 println 'No more tasks in the task queue. Terminating the worker.'
 reply DemoWorker.EXIT
 workers -= 1
 } reply taskQueue.remove(0)else
 break
 WorkToDo:case
 taskQueue << message
 ((workers == 0) || (taskQueue.size() >= QUEUE_SIZE_TRIGGER)) {if
 println 'Need more workers. Starting one.'
 workers += 1
 DemoWorker().start()new this
 }
 }
 println "Active workers=${workers}tTasks in queue=${taskQueue.size()}"
 }
 }
 }
}

 class DemoWorker DefaultActor {final extends
 EXIT = ()final static Object new Object
 Random random = Random()private static final new

Actor balancer

def DemoWorker(balancer) {
 .balancer = balancerthis
 }

void act() {
 loop {
 .balancer << NeedMoreWork()this new
 react {
 (it) {switch
 WorkToDo:case
 processMessage(it)
 break
 EXIT: terminate()case
 }
 }
 }

}

 void processMessage(message) {private
 (random) {synchronized
 .sleep random.nextInt(5000)Thread
 }
 }
}

 class WorkToDo {}final
 class NeedMoreWork {}final

 Actor balancer = LoadBalancer().start()final new

//produce tasks
 (i in 1..20) {for

 .sleep 100Thread
 balancer << WorkToDo()new
}

//produce tasks in a parallel thread
.start {Thread

 (i in 1..10) {for
 .sleep 1000Thread
 balancer << WorkToDo()new
 }
}

.sleep 35000 //let the queues get emptyThread
balancer << WorkToDo()new
balancer << WorkToDo()new

.sleep 10000Thread

balancer.stop()
balancer.join()

82

6 Agents
The Agent class, which is a thread-safe non-blocking shared mutable state wrapper implementation inspired by Agents
in Clojure.

A lot of the concurrency problems disappear when you eliminate the need for Shared Mutable
State with your architecture. Indeed, concepts like actors, CSP or dataflow concurrency avoid
or isolate mutable state completely. In some cases, however, sharing mutable data is either
inevitable or makes the design more natural and understandable. Think, for example, of a
shopping cart in a typical e-commerce application, when multiple AJAX requests may hit the
cart with read or write requests concurrently.

Introduction

In the Clojure programing language you can find a concept of Agents, the purpose of which is to protect mutable data
that need to be shared across threads. Agents hide the data and protect it from direct access. Clients can only send
commands (functions) to the agent. The commands will be serialized and processed against the data one-by-one in
turn. With the commands being executed serially the commands do not need to care about concurrency and can
assume the data is all theirs when run. Although implemented differently, GPars Agents, called , fundamentallyAgent
behave like actors. They accept messages and process them asynchronously. The messages, however, must be
commands (functions or Groovy closures) and will be executed inside the agent. After reception the received function is
run against the internal state of the Agent and the return value of the function is considered to be the new internal state
of the Agent.

Essentially, agents safe-guard mutable values by allowing only a single to make modificationsagent-managed thread
to them. The mutable values are from outside, but instead not directly accessible requests have to be sent to the

 and the agent guarantees to process the requests sequentially on behalf of the callers. Agents guaranteeagent
sequential execution of all requests and so consistency of the values.

Schematically:

agent = Agent(0) //created a Agent wrapping an integer with initial value 0new new
agent.send {increment()} //asynchronous send operation, sending the increment() function
…
//after some delay to process the message the internal Agent's state has been updated
…
assert agent.val== 1

To wrap integers, we can certainly use AtomicXXX types on the Java platform, but when the state is a more complex
object we need more support.

Concepts

GPars provides an Agent class, which is a special-purpose thread-safe non-blocking implementation inspired by
Agents in Clojure.

An Agent wraps a reference to mutable state, held inside a single field, and accepts code (closures / commands) as
messages, which can be sent to the Agent just like to any other actor using the '<<' operator, the send() methods or the
implicit method. At some point after reception of a closure / command, the closure is invoked against the internalcall()
mutable field and can make changes to it. The closure is guaranteed to be run without intervention from other threads
and so may freely alter the internal state of the Agent held in the internal <i>data</i> field.

83

The whole update process is of the fire-and-forget type, since once the message (closure) is sent to the Agent, the
caller thread can go off to do other things and come back later to check the current value with Agent.val or
Agent.valAsync(closure).

Basic rules

When executed, the submitted commands obtain the agent's state as a parameter.

The submitted commands /closures can call any methods on the agent's state.

Replacing the state object with a new one is also possible and is done using the .updateValue() method

The of the submitted closure doesn't have a special meaning and is ignored.return value

If the message sent to an is , it is considered to be a for the internal reference field.Agent not a closure new value

The property of an will wait until all preceding commands in the agent's queue are consumed and thenval Agent
safely return the value of the Agent.

The method will do the same the caller.valAsync() without blocking

The property will return an immediate snapshot of the internal agent's state.instantVal

All Agent instances share a default daemon thread pool. Setting the property of an Agent instance willthreadPool
allow it to use a different thread pool.

Exceptions thrown by the commands can be collected using the property.errors

Examples

Shared list of members

The Agent wraps a list of members, who have been added to the jug. To add a new member a message (command to
add a member) has to be sent to the Agent.jugMembers

import groovyx.gpars.agent.Agent
 java.util.concurrent.ExecutorServiceimport
 java.util.concurrent.Executorsimport

/**
 * Create a Agent wrapping a list of stringsnew
 */
def jugMembers = Agent<List< >>(['Me']) //add Menew String

jugMembers.send {it.add 'James'} //add James

 t1 = .start {final Thread Thread
 jugMembers.send {it.add 'Joe'} //add Joe
}

 t2 = .start {final Thread Thread
 jugMembers << {it.add 'Dave'} //add Dave
 jugMembers {it.add 'Alice'} //add Alice (using the implicit call() method)
}

[t1, t2]*.join()
println jugMembers.val
jugMembers.valAsync {println }"Current members: $it"

jugMembers.await()

Shared conference counting number of registrations

The Conference class allows registration and un-registration, however these methods can only be called from the
commands sent to the Agent.conference

84

import groovyx.gpars.agent.Agent

/**
 * Conference stores number of registrations and allows parties to register and unregister.
 * It inherits from the Agent class and adds the register() and unregister() methods,private
 * which callers may use it the commands they submit to the Conference.
 */
class Conference Agent< > {extends Long
 def Conference() { (0) }super
 def register(num) { data += num }private long
 def unregister(num) { data -= num }private long
}

 Agent conference = Conference() // Conference createdfinal new new

/**
 * Three external parties will to register/unregister concurrentlytry
 */

 t1 = .start {final Thread Thread
 conference << {register(10L)} //send a command to register 10 attendees
}

 t2 = .start {final Thread Thread
 conference << {register(5L)} //send a command to register 5 attendees
}

 t3 = .start {final Thread Thread
 conference << {unregister(3L)} //send a command to unregister 3 attendees
}

[t1, t2, t3]*.join()

assert 12L == conference.val

Factory methods

Agent instances can also be created using the factory method.Agent.agent()

def jugMembers = Agent.agent ['Me'] //add Me

Listeners and validators

Agents allow the user to add listeners and validators. While listeners will get notified each time the internal state
changes, validators get a chance to reject a coming change by throwing an exception.

final Agent counter = Agent()new

counter.addListener {oldValue, newValue -> println }"Changing value from $oldValue to $newValue"
counter.addListener {agent, oldValue, newValue -> println }"Agent $agent changing value from $oldValue to $newValue"

counter.addValidator {oldValue, newValue -> (oldValue > newValue) IllegalArgumentException('Things can only go up inif throw new
Groovy')}
counter.addValidator {agent, oldValue, newValue -> (oldValue == newValue) IllegalArgumentException('Things never stay theif throw new
same $agent')}for

counter 10
counter 11
counter {updateValue 12}
counter 10 //Will be rejected
counter {updateValue it - 1} //Will be rejected
counter {updateValue it} //Will be rejected
counter {updateValue 11} //Will be rejected
counter 12 //Will be rejected
counter 20
counter.await()

Both listeners and validators are essentially closures taking two or three arguments. Exceptions thrown from the
validators will be logged inside the agent and can be tested using the method or retrieved through the hasErrors()

 property.errors

85

1.

2.

assert counter.hasErrors()
assert counter.errors.size() == 5

Validator gotchas

With Groovy being not very strict on data types and immutability, agent users should be aware of potential bumps on
the road. If the submitted code modifies the state directly, validators will not be able to un-do the change in case of a
validation rule violation. There are two possible solutions available:

Make sure you never change the supplied object representing current agent state

Use custom copy strategy on the agent to allow the agent to create copies of the internal state

In both cases you need to call to set and validate the new state properly.updateValue()

The problem as well as both of the solutions are shown below:

//Create an agent storing names, rejecting 'Joe'
 Closure rejectJoeValidator = {oldValue, newValue -> ('Joe' in newValue) IllegalArgumentException('Joe is notfinal if throw new

allowed to enter our list.')}

Agent agent = Agent([])new
agent.addValidator rejectJoeValidator

agent {it << 'Dave'} //Accepted
agent {it << 'Joe'} //Erroneously accepted, since by-passes the validation mechanism
println agent.val

//Solution 1 - never alter the supplied state object
agent = Agent([])new
agent.addValidator rejectJoeValidator

agent {updateValue(['Dave', * it])} //Accepted
agent {updateValue(['Joe', * it])} //Rejected
println agent.val

//Solution 2 - use custom copy strategy on the agent
agent = Agent([], {it.clone()})new
agent.addValidator rejectJoeValidator

agent {updateValue it << 'Dave'} //Accepted
agent {updateValue it << 'Joe'} //Rejected, since 'it' is now just a copy of the internal agent's state
println agent.val

Grouping

By default all Agent instances belong to the same group sharing its daemon thread pool.

Custom groups can also create instances of Agent. These instances will belong to the group, which created them, and
will share a thread pool. To create an Agent instance belonging to a group, call the factory method on theagent()
group. This way you can organize and tune performance of agents.

final def group = NonDaemonPGroup(5) //create a group around a thread poolnew
def jugMembers = group.agent(['Me']) //add Me

The default thread pool for agents contains daemon threads. Make sure that your custom
thread pools either use daemon threads, too, which can be achieved either by using
DefaultPGroup or by providing your own thread factory to a thread pool constructor, or in case
your thread pools use non-daemon threads, such as when using the NonDaemonPGroup
group class, make sure you shutdown the group or the thread pool explicitly by calling its
shutdown() method, otherwise your applications will not exit.

86

1.

Direct pool replacement

Alternatively, by calling the method on an Agent instance a custom thread pool can be specifiedattachToThreadPool()
for it.

def jugMembers = Agent<List< >>(['Me']) //add Menew String

 ExecutorService pool = Executors.newFixedThreadPool(10)final
jugMembers.attachToThreadPool(DefaultPool(pool))new

Remember, like actors, a single Agent instance (aka agent) can never use more than one
thread at a time

The shopping cart example

import groovyx.gpars.agent.Agent

class ShoppingCart {
 def cartState = Agent([:])private new
//----------------- methods below here ----------------------------------public
 void addItem(product, quantity) {public String int
 cartState << {it[product] = quantity} //the << sendsoperator
 //a message to the Agent
 } void removeItem(product) {public String
 cartState << {it.remove(product)}
 } listContent() {public Object
 cartState.valreturn
 } void clearItems() {public
 cartState << performClear
 }

 void increaseQuantity(product, quantityChange) {public String int
 cartState << .&changeQuantity.curry(product, quantityChange)this
 }
//----------------- methods below here ---------------------------------private
 void changeQuantity(product, quantityChange, Map items) {private String int
 items[product] = (items[product] ?: 0) + quantityChange
 } Closure performClear = { it.clear() }private
}
//----------------- script code below here -------------------------------------

 ShoppingCart cart = ShoppingCart()final new
cart.addItem 'Pilsner', 10
cart.addItem 'Budweisser', 5
cart.addItem 'Staropramen', 20

cart.removeItem 'Budweisser'
cart.addItem 'Budweisser', 15

println "Contents ${cart.listContent()}"

cart.increaseQuantity 'Budweisser', 3
println "Contents ${cart.listContent()}"

cart.clearItems()
println "Contents ${cart.listContent()}"

You might have noticed two implementation strategies in the code.

Public methods may internally just send the required code off to the Agent, instead of executing the same
functionality directly

And so sequential code like

public void addItem(product, quantity) {String int
 cartState[product]=quantity

}

becomes

87

public void addItem(product, quantity) {String int
 cartState << {it[product] = quantity}
}

2. Public methods may send references to internal private methods or closures, which hold the desired functionality to
perform

public void clearItems() {
 cartState << performClear
}

 Closure performClear = { it.clear() }private

, if the closure takes other arguments besides the current internal state instance. SeeCurrying might be necessary
the method.increaseQuantity

The printer service example

Another example - a not thread-safe printer service shared by multiple threads. The printer needs to have the
document and quality properties set before printing, so obviously a potential for race conditions if not guarded properly.
Callers don't want to block until the printer is available, which the fire-and-forget nature of actors solves very elegantly.

import groovyx.gpars.agent.Agent

/**
 * A non-thread-safe service that slowly prints documents on at a time
 */
class PrinterService {
 documentString
 qualityString

 void printDocument() {public
 println "Printing $document in $quality quality"
 .sleep 5000Thread
 println "Done printing $document"
 }
}

def printer = Agent<PrinterService>(PrinterService())new new

 thread1 = .start {final Thread Thread
 (num in (1..3)) {for
 text = final String "document $num"
 printer << {printerService ->
 printerService.document = text
 printerService.quality = 'High'
 printerService.printDocument()
 }
 .sleep 200Thread
 }
 println ' 1 is ready to something . All print tasks have been submitted'Thread do else
}

 thread2 = .start {final Thread Thread
 (num in (1..4)) {for
 text = final String "picture $num"
 printer << {printerService ->
 printerService.document = text
 printerService.quality = 'Medium'
 printerService.printDocument()
 }
 .sleep 500Thread
 }
 println ' 2 is ready to something . All print tasks have been submitted'Thread do else
}

[thread1, thread2]*.join()
printer.await()

For latest update, see the respective Demos.

Reading the value

88

To follow the clojure philosophy closely the Agent class gives reads higher priority than to writes. By using the
 property your read request will bypass the incoming message queue of the Agent and return the currentinstantVal

snapshot of the internal state. The property will wait in the message queue for processing, just like the non-blockingval
variant , which will invoke the provided closure with the internal state as a parameter.valAsync(Clojure cl)

You have to bear in mind that the property might return although correct, but randomly looking results, sinceinstantVal
the internal state of the Agent at the time of execution is non-deterministic and depends on the messagesinstantVal
that have been processed before the thread scheduler executes the body of .instantVal

The method allows you to wait for processing all the messages submitted to the Agent before and so blocks theawait()
calling thread.

State copy strategy

To avoid leaking the internal state the Agent class allows to specify a copy strategy as the second constructor
argument. With the copy strategy specified, the internal state is processed by the copy strategy closure and the output
value of the copy strategy value is returned to the caller instead of the actual internal state. This applies to , instantVal

 as well as to .val valAsync()

Error handling

Exceptions thrown from within the submitted commands are stored inside the agent and can be obtained from the
 property. The property gets cleared once read.errors

def jugMembers = Agent<List>()new
 assert jugMembers.errors.empty

jugMembers.send { IllegalStateException('test1')}throw new
 jugMembers.send { IllegalArgumentException('test2')}throw new
 jugMembers.await()

List errors = jugMembers.errors
 assert 2 == errors.size()
 assert errors[0] IllegalStateExceptioninstanceof
 assert 'test1' == errors[0].message
 assert errors[1] IllegalArgumentExceptioninstanceof
 assert 'test2' == errors[1].message

assert jugMembers.errors.empty

Fair and Non-fair agents

Agents can be either fair or non-fair. Fair agents give up the thread after processing each message, non-fair agents
keep a thread until their message queue is empty. As a result, non-fair agents tend to perform better than fair ones.
The default setting for all Agent instances is to be , however by calling its method the instance cannon-fair makeFair()
be made fair.

def jugMembers = Agent<List>(['Me']) //add Menew
 jugMembers.makeFair()

89

7 Dataflow
Dataflow concurrency offers an alternative concurrency model, which is inherently safe and robust.

Introduction

Check out the small example written in Groovy using GPars, which sums results of calculations performed by three
concurrently run tasks:

import groovyx.gpars.dataflow.Dataflow.taskstatic

 def x = DataflowVariable()final new
 def y = DataflowVariable()final new
 def z = DataflowVariable()final new

task {
 z << x.val + y.val
}

task {
 x << 10
}

task {
 y << 5
}

println "Result: ${z.val}"

Or the same algorithm rewritten using the class.Dataflows

import groovyx.gpars.dataflow.Dataflow.taskstatic

 def df = Dataflows()final new

task {
 df.z = df.x + df.y
}

task {
 df.x = 10
}

task {
 df.y = 5
}

println "Result: ${df.z}"

We start three logical tasks, which can run in parallel and perform their particular activities. The tasks need to exchange
data and they do so using . Think of Dataflow Variables as one-shot channels safely and reliablyDataflow Variables
transferring data from producers to their consumers.

The Dataflow Variables have a pretty straightforward semantics. When a task needs to read a value from
 (through the val property), it will block until the value has been set by another task or thread (usingDataflowVariable

the '<<' operator). Each can be set in its lifetime. Notice that you don't have to bother withDataflowVariable only once
ordering and synchronizing the tasks or threads and their access to shared variables. The values are magically
transferred among tasks at the right time without your intervention. The data flow seamlessly among tasks / threads
without your intervention or care.

 The three tasks in the example Implementation detail: do not necessarily need to be mapped to three physical
. Tasks represent so-called "green" or "logical" threads and can be mapped under the covers to any number ofthreads

physical threads. The actual mapping depends on the scheduler, but the outcome of dataflow algorithms doesn't
depend on the actual scheduling.

90

The operation of dataflow variables silently accepts re-binding to a value, which is equal tobind
an already bound value. Call to reject equal values on already-bound variables.bindUnique

Benefits

Here's what you gain by using Dataflow Concurrency (by):Jonas Bonér

No race-conditions

No live-locks

Deterministic deadlocks

Completely deterministic programs

BEAUTIFUL code.

This doesn't sound bad, does it?

http://www.jonasboner.com

91

Concepts

Dataflow programming

Quoting Wikipedia

Operations (in Dataflow programs) consist of "black boxes" with inputs and outputs, all of which are always explicitly
defined. They run as soon as all of their inputs become valid, as opposed to when the program encounters them.
Whereas a traditional program essentially consists of a series of statements saying "do this, now do this", a dataflow
program is more like a series of workers on an assembly line, who will do their assigned task as soon as the materials
arrive. This is why dataflow languages are inherently parallel; the operations have no hidden state to keep track of, and
the operations are all "ready" at the same time.

Principles

With Dataflow Concurrency you can safely share variables across tasks. These variables (in Groovy instances of the
 class) can only be assigned (using the '<<' operator) a value once in their lifetime. The values of theDataflowVariable

variables, on the other hand, can be read multiple times (in Groovy through the val property), even before the value has
been assigned. In such cases the reading task is suspended until the value is set by another task. So you can simply
write your code for each task sequentially using Dataflow Variables and the underlying mechanics will make sure you
get all the values you need in a thread-safe manner.

In brief, you generally perform three operations with Dataflow variables:

Create a dataflow variable

Wait for the variable to be bound (read it)

Bind the variable (write to it)

And these are the three essential rules your programs have to follow:

When the program encounters an unbound variable it waits for a value.

It is not possible to change the value of a dataflow variable once it is bound.

Dataflow variables makes it easy to create concurrent stream agents.

Dataflow Queues and Broadcasts

Before you go to check the samples of using , and , you should know a bit aboutDataflow Variables Tasks Operators
streams and queues to have a full picture of Dataflow Concurrency. Except for dataflow variables there are also the
concepts of and that you can leverage in your code. You may think of them asDataflowQueues DataflowBroadcast
thread-safe buffers or queues for message transfer among concurrent tasks or threads. Check out a typical
producer-consumer demo:

92

import groovyx.gpars.dataflow.Dataflow.taskstatic

def words = ['Groovy', 'fantastic', 'concurrency', 'fun', 'enjoy', 'safe', 'GPars', 'data', 'flow']
 def buffer = DataflowQueue()final new

task {
 (word in words) {for
 buffer << word.toUpperCase() //add to the buffer
 }
}

task {
 () println buffer.val //read from the buffer in a loopwhile true
}

Both and , just like , implement the interfaceDataflowBroadcasts DataflowQueues DataflowVariables DataflowChannel
with common methods allowing users to write to them and read values from them. The ability to treat both types
identically through the interface comes in handy once you start using them to wire , orDataflowChannel tasks operators

 together.selectors

The interface combines two interfaces, each serving its purpose:DataflowChannel

DataflowReadChannel holding all the methods necessary for reading values from a
channel - getVal(), getValAsync(), whenBound(), etc.

DataflowWriteChannel holding all the methods necessary for writing values into a channel -
bind(), <<

You may prefer using these dedicated interfaces instead of the general DataflowChannel
interface, to better express the intended usage.

Please refer to the for more details on the channel interfaces.API doc

Point-to-point communication

The class can be viewed as a point-to-point (1 to 1, many to 1) communication channel. It allows oneDataflowQueue
or more producers send messages to one reader. If multiple readers read from the same , they willDataflowQueue
each consume different messages. Or to put it a different way, each message is consumed by exactly one reader. You
can easily imagine a simple load-balancing scheme built around a shared with readers being addedDataflowQueue
dynamically when the consumer part of your algorithm needs to scale up. This is also a useful default choice when
connecting tasks or operators.

Publish-subscribe communication

The class offers a publish-subscribe (1 to many, many to many) communication model. One orDataflowBroadcast
more producers write messages, while all registered readers will receive all the messages. Each message is thus
consumed by all readers with a valid subscription at the moment when the message is being written to the channel.
The readers subscribe by calling the method.createReadChannel()

DataflowWriteChannel broadcastStream = DataflowBroadcast()new
DataflowReadChannel stream1 = broadcastStream.createReadChannel()
DataflowReadChannel stream2 = broadcastStream.createReadChannel()
broadcastStream << 'Message1'
broadcastStream << 'Message2'
broadcastStream << 'Message3'
assert stream1.val == stream2.val
assert stream1.val == stream2.val
assert stream1.val == stream2.val

http://gpars.codehaus.org/API+doc

93

Under the hood uses the class to implement the message delivery.DataflowBroadcast DataflowStream

DataflowStream

The class represents a deterministic dataflow channel. It is build around the concept of a functionalDataflowStream
queue and so provides a lock-free thread-safe implementation for message passing. Essentially, you may think of

 as a 1 to many communication channel, since when a reader consumes a messages, other readersDataflowStream
will still be able to read the message. Also, all messages arrive to all readers in the same order. Since DataflowStream
is implemented as a functional queue, its API requires that users traverse the values in the stream themselves. On the
other hand offers handy methods for value filtering or transformation together with interestingDataflowStream
performance characteristics.

The class, unlike the other communication elements, does not implement the DataflowStream
 interface, since the semantics of its use is different. Use DataflowChannel

 and classes to wrap instances ofDataflowStreamReadAdapter DataflowStreamWriteAdapter
the class in or DataflowChannel DataflowReadChannel DataflowWriteChannel
implementations.

import groovyx.gpars.dataflow.stream.DataflowStream
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.scheduler.ResizeablePoolimport

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using dataflow tasks
 *
 * In principle, the algorithm consists of a concurrently run chained filters,
 * each of which detects whether the current number can be divided by a single prime number.
 * (generate nums 1, 2, 3, 4, 5, ...) -> (filter by mod 2) -> (filter by mod 3) -> (filter by mod 5) -> (filter by mod 7) -> (filter
by mod 11) -> (caution! Primes falling out here)
 * The chain is built (grows) on the fly, whenever a prime is foundnew
 */

/**
 * We need a resizeable thread pool, since tasks consume threads waiting blocked values at DataflowQueue.valwhile for
 */
group = DefaultPGroup(ResizeablePool())new new true

 requestedPrimeNumberCount = 100final int

/**
 * Generating candidate numbers
 */

 DataflowStream candidates = DataflowStream()final new
group.task {
 candidates.generate(2, {it + 1}, {it < 1000})
}

/**
 * Chain a filter a particular prime number to the end of the Sievenew for
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide prime candidates withfuture
 * @ A channel ending the whole chainreturn new
 */
def filter(DataflowStream inChannel, prime) {int
 inChannel.filter { number ->
 group.task {
 number % prime != 0
 }
 }
}

/**
 * Consume Sieve output and add additional filters all found primesfor
 */
def currentOutput = candidates
requestedPrimeNumberCount.times {
 prime = currentOutput.firstint
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
}

94

For convenience and for the ability to use with other dataflow constructs, like e.g. operators, you canDataflowStream
wrap it with for read access or for write access. The classDataflowReadAdapter DataflowWriteAdapter DataflowStream
is designed for single-threaded producers and consumers. If multiple threads are supposed to read or write values to
the stream, their access to the stream must be serialized externally or the adapters should be used.

DataflowStream Adapters

Since the API as well as the semantics of its use are very different from the one defined by DataflowStream
 , adapters have to be used in order to allow to be used with otherDataflow(Read/Write)Channel DataflowStreams

dataflow elements. The class will wrap a with necessary methods toDataflowStreamReadAdapter DataflowStream
read values, while the class will provide write methods around the wrapped DataflowStreamWriteAdapter

 .DataflowStream

It is important to mention that the is thread safe allowing multipleDataflowStreamWriteAdapter
threads to add values to the wrapped through the adapter. On the other hand, DataflowStream

 is designed to be used by a single thread.DataflowStreamReadAdapter

To minimize the overhead and stay in-line with the semantics, the DataflowStream
 class is not thread-safe and should only be used from within aDataflowStreamReadAdapter

single thread. If multiple threads need to read from a DataflowStream, they should each create
their own wrapping .DataflowStreamReadAdapter

Thanks to the adapters can be used for communication between operators or selectors, which expect DataflowStream
 .Dataflow(Read/Write)Channels

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.stream.DataflowStreamimport
 groovyx.gpars.dataflow.stream.DataflowStreamReadAdapterimport
 groovyx.gpars.dataflow.stream.DataflowStreamWriteAdapterimport
 groovyx.gpars.dataflow.Dataflow.selectorimport static
 groovyx.gpars.dataflow.Dataflow.import static operator

/**
 * Demonstrates the use of DataflowStreamAdapters to allow dataflow operators to use DataflowStreams
 */

 DataflowStream a = DataflowStream()final new
 DataflowStream b = DataflowStream()final new

def aw = DataflowStreamWriteAdapter(a)new
def bw = DataflowStreamWriteAdapter(b)new
def ar = DataflowStreamReadAdapter(a)new
def br = DataflowStreamReadAdapter(b)new

def result = DataflowQueue()new

def op1 = (ar, bw) {operator
 bindOutput it
}
def op2 = selector([br], [result]) {
 result << it
}

aw << 1
aw << 2
aw << 3
assert([1, 2, 3] == [result.val, result.val, result.val])
op1.stop()
op2.stop()
op1.join()
op2.join()

Also the ability to select a value from multiple can only be used through an adapter around a DataflowChannels
 :DataflowStream

95

import groovyx.gpars.dataflow.Select
 groovyx.gpars.dataflow.stream.DataflowStreamimport
 groovyx.gpars.dataflow.stream.DataflowStreamReadAdapterimport
 groovyx.gpars.dataflow.stream.DataflowStreamWriteAdapterimport
 groovyx.gpars.dataflow.Dataflow.selectimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates the use of DataflowStreamAdapters to allow dataflow select to select on DataflowStreams
 */

 DataflowStream a = DataflowStream()final new
 DataflowStream b = DataflowStream()final new

def aw = DataflowStreamWriteAdapter(a)new
def bw = DataflowStreamWriteAdapter(b)new
def ar = DataflowStreamReadAdapter(a)new
def br = DataflowStreamReadAdapter(b)new

 Select<?> select = select(ar, br)final
task {
 aw << 1
 aw << 2
 aw << 3
}
assert 1 == select().value
assert 2 == select().value
assert 3 == select().value
task {
 bw << 4
 aw << 5
 bw << 6
}
def result = (1..3).collect{select()}.sort{it.value}
assert result*.value == [4, 5, 6]
assert result*.index == [1, 0, 1]

If you don't need any of the functional queue functionality, likeDataflowStream-special
generation, filtering or mapping, you may consider using the class instead,DataflowBroadcast
which offers the communication model through the publish-subscribe DataflowChannel
interface.

Bind handlers

def a = DataflowVariable()new
a >> {println }"The variable has just been bound to $it"
a.whenBound {println }"Just to confirm that the variable has been really set to $it"
...

Bind handlers can be registered on all dataflow channels (variables, queues or broadcasts) either using the >> operator
and the or the methods. They will be run once a value is bound to the variable.then() whenBound()

Dataflow queues and broadcasts also support a method to register a closure or a message handler towheneverBound
run each time a value is bound to them.

def queue = DataflowQueue()new
queue.wheneverBound {println }"A value $it arrived to the queue"

Obviously nothing prevents you from having more of such handlers for a single promise: They will all trigger in parallel
once the promise has a concrete value:

96

Promise bookingPromise = task {
 data = collectData()final
 broker.makeBooking(data)return
}
…
bookingPromise.whenBound {booking -> printAgenda booking}
bookingPromise.whenBound {booking -> sendMeAnEmailTo booking}
bookingPromise.whenBound {booking -> updateTheCalendar booking}

Dataflow variables and broadcasts are one of several possible ways to implement Parallel
 . For details, please check out in the Speculations Parallel Speculations Parallel Collections

section of the User Guide.

Bind handlers grouping

When you need to wait for multiple DataflowVariables/Promises to be bound, you can benefit from calling the
 function, which is available on the class as well as on instances.whenAllBound() Dataflow PGroup

final group = NonDaemonPGroup()new

//Calling asynchronous services and receiving back promises the reservationsfor
 Promise flightReservation = flightBookingService('PRG <-> BRU')
 Promise hotelReservation = hotelBookingService('BRU:Feb 24 2009 - Feb 29 2009')
 Promise taxiReservation = taxiBookingService('BRU:Feb 24 2009 10:31')

//when all reservations have been made we need to build an agenda our tripfor
 Promise agenda = group.whenAllBound(flightReservation, hotelReservation, taxiReservation) {flight, hotel, taxi ->
 "Agenda: $flight | $hotel | $taxi"
 }

//since is a demo, we will only print the agenda and block till it is readythis
 println agenda.val

If you cannot specify up-front the number of parameters the handler takes, use a closure with onewhenAllBound()
argument of type :List

Promise module1 = task {
 compile(module1Sources)
}
Promise module2 = task {
 compile(module2Sources)
}
//We don't know the number of modules that will be jarred together, so use a List

 jarCompiledModules = {List modules -> ...}final

whenAllBound([module1, module2], jarCompiledModules)

Bind handlers chaining

All dataflow channels also support the method to register a handler (a callback) that should be invoked when athen()
value becomes available. Unlike the method allows for chaining, giving you the option to passwhenBound() then()
result values between functions asynchronously.

Notice that Groovy allows us to leave out some of the in the method chains.dots then()

97

final DataflowVariable variable = DataflowVariable()new
 DataflowVariable result = DataflowVariable()final new

variable.then {it * 2} then {it + 1} then {result << it}
variable << 4
assert 9 == result.val

This could be nicely combined with Asynchronous functions

final DataflowVariable variable = DataflowVariable()new
 DataflowVariable result = DataflowVariable()final new

 doubler = {it * 2}final
 adder = {it + 1}final

variable.then doubler then adder then {result << it}

.start {variable << 4}Thread
assert 9 == result.val

or ActiveObjects

@ActiveObject
class ActiveDemoCalculator {
 @ActiveMethod
 def doubler(value) {int
 value * 2
 }

@ActiveMethod
 def adder(value) {int
 value + 1
 }
}

 DataflowVariable result = DataflowVariable()final new
 calculator = ActiveDemoCalculator();final new

calculator.doubler(4).then {calculator.adder it}.then {result << it}
assert 9 == result.val

98

Chaining can save quite some code when calling other asynchronous services from within
 handlers. Asynchronous services, such as or whenBound() Asynchronous Functions Active

 , return for their results. To obtain the actual results your handlers wouldMethods Promises
either have to block to wait for the value to be bound, which would lock the current thread in an
unproductive state,

variable.whenBound {value ->
 Promise promise = asyncFunction(value)
 println promise.get()
}

or, alternatively, it would register another (nested) handler, which would result inwhenBound()
unnecessarily complex code.

variable.whenBound {value ->
 asyncFunction(value).whenBound {
 println it
 }
}

For illustration compare the two following code snippets, one using and one usingwhenBound()
 chaining. They ate both equivalent in terms of functionality and behavior.then()

final DataflowVariable variable = DataflowVariable()new

 doubler = {it * 2}final
 inc = {it + 1}final

//Using whenBound()
variable.whenBound {value ->
 task {
 doubler(value)
 }.whenBound {doubledValue ->
 task {
 inc(doubledValue)
 }.whenBound {incrementedValue ->
 println incrementedValue
 }
 }
}

//Using then() chaining
variable.then doubler then inc then .&printlnthis

.start {variable << 4}Thread

Chaining Promises solves both of these issues elegantly:

variable >> asyncFunction >> {println it}

The () operator has been overloaded to call and so can be chained the same way:RightShift >> then()

final DataflowVariable variable = DataflowVariable()new
 DataflowVariable result = DataflowVariable()final new

 doubler = {it * 2}final
 adder = {it + 1}final

variable >> doubler >> adder >> {result << it}

.start {variable << 4}Thread

assert 9 == result.val

Error handling for Promise chaining

99

1.

2.

3.

4.

Asynchronous operations may obviously throw exceptions. It is important to be able to handle them easily and with little
effort. GPars promises can implicitly propagate exceptions from asynchronous calculations across promise chains.

Promises propagate result values as well as exceptions. The blocking method re-throws the exception thatget()
was bound to the Promise and so the caller can handle it.

For asynchronous notifications, the handler closure gets the exception passed in as an argument.whenBound()

The method accepts two arguments - a and an optional . These will be invokedthen() value handler error handler
depending on whether the result is a regular value or an exception. If no errorHandler is specified, the exception is
re-thrown to the Promise returned by .then()

Exactly the same behavior as for holds true for the method, which listens on multiplethen() whenAllBound()
Promises to get bound

Promise< > initial = DataflowVariable< >()Integer new Integer
 Promise< > result = initial.then {it * 2} then {100 / it} //Will exception 0String throw for
 .then {println ; it} //Since no error handler is defined, exceptions"Logging the value $it as it passes by" return
will be ignored
 //and silently re-thrown to the next handler in
the chain
 .then({ }, { }) //Here the exception is caught"The result $num is $it"for "Error detected $num: $it"for
 initial << 0
 println result.get()

ErrorHandler is a closure that accepts instances of as its only (optional) argument and returns a value thatThrowable
should be bound to the result of the method call (the returned Promise). If an exception is thrown from within anthen()
error handler, it is bound as an error to the resulting Promise.

promise.then({it+1}) //Implicitly re- potential exceptions bound tothrows
promise
promise.then({it+1}, {e -> e}) //Explicitly re- potential exceptions bound tothrow throws
promise
promise.then({it+1}, {e -> RuntimeException('Error occurred', e}) //Explicitly re- a exception wrapping athrow new throws new
potential exception bound to promise

Just like with regular exception handling in Java with try-catch statements, this behavior of GPars promises gives
asynchronous invocations the freedom to handle exceptions at the place where it is most convenient. You may freely
ignore exceptions in your code and assume things just work, yet exceptions will not get accidentally swallowed.

task {
 'gpars.codehaus.org'.toURL().text //should MalformedURLExceptionthrow
}
.then {page -> page.toUpperCase()}
.then {page -> page.contains('GROOVY')}
.then({mentionsGroovy -> println }, {error -> println }).join()"Groovy found: $mentionsGroovy" "Error: $error"

Handling concrete exception type

You may be also more specific about the handled exception type:

url.then(download)
 .then(calculateHash, {MalformedURLException e -> 0})return
 .then(formatResult)
 .then(printResult, printError)
 .then(sendNotificationEmail);

`

Customer-site exception handling

100

You may also leave the exception completely un-handled and let the clients (consumers) handle it:

`
Promise< > result = url.then(download).then(calculateHash).then(formatResult).then(printResult);Object

 {try
 result.get()
} (Exception e) {catch
 //handle exceptions here
}

`

Putting it together

By combining and (or >>) you can easily create large asynchronous scenarios in a convenientwhenAllBound() then
way:

withPool {
 Closure download = { url ->String
 sleep 3000 //Simulate a web read
 'web content'
 }.asyncFun()

Closure loadFile = { fileName ->String
 'file content' //simulate a local file read
 }.asyncFun()

Closure hash = {s -> s.hashCode()}

Closure compare = { first, second ->int int
 first == second
 }

Closure errorHandler = {println }"Error detected: $it"

def all = whenAllBound([
 download('http://www.gpars.org') >> hash,
 loadFile('/coolStuff/gpars/website/index.html') >> hash
], compare).then({println it}, errorHandler)
 all.join() //optionally block until the calculation is all done

Notice that only the initial action (function) needs to be asynchronous. The functions further
down the pipe will be invoked asynchronously by the promise even if the are synchronous.

Lazy dataflow variables

Sometimes you may like to combine the qualities of dataflow variables with their lazy initialization.

Closure< > download = {url ->String
 println "Downloading"
 url.toURL().text
}

def pageContent = LazyDataflowVariable(download.curry())new "http://gpars.codehaus.org"

Instances of have an initializer specified at construction time, which only gets triggered whenLazyDataflowVariable
someone asks for its value, either through the blocking method or using any of the non-blocking callbackget()
methods, such as . Since preserve all the goodies of ordinary , youthen() LazyDataflowVariables DataflowVariables
can again chain them easily with other or dataflow variables.lazy ordinary

Example

101

This deserves a more practical example. Taking inspiration from
http://blog.jcoglan.com/2013/03/30/callbacks-are-imperative-promises-are-functional-nodes-biggest-missed-opportunity/
the following piece of code demonstrates use of to lazily and asynchronously load mutuallyLazyDataflowVariables
dependent components into memory. The components (modules) will be loaded in the order of their dependencies and
concurrently, if possible. Each module will only be loaded once, irrespective of the number of modules that depend on
it. Thanks to laziness only the modules that are transitively needed will be loaded. Our example uses a simple
"diamond" dependency scheme:

D depends on B and C

C depends on A

B depends on A

When loading D, A will get loaded first. B and C will be loaded concurrently once A has been loaded. D will start loading
once both B and C have been loaded.

def moduleA = LazyDataflowVariable({->new
 println "Loading moduleA into memory"
 sleep 3000
 println "Loaded moduleA into memory"
 return "moduleA"
})

def moduleB = LazyDataflowVariable({->new
 moduleA.then {
 println "->Loading moduleB into memory, since moduleA is ready"
 sleep 3000
 println " Loaded moduleB into memory"
 return "moduleB"
 }
})

def moduleC = LazyDataflowVariable({->new
 moduleA.then {
 println "->Loading moduleC into memory, since moduleA is ready"
 sleep 3000
 println " Loaded moduleC into memory"
 return "moduleC"
 }
})

def moduleD = LazyDataflowVariable({->new
 whenAllBound(moduleB, moduleC) { b, c ->
 println "-->Loading moduleD into memory, since moduleB and moduleC are ready"
 sleep 3000
 println " Loaded moduleD into memory"
 return "moduleD"
 }
})

println "Nothing loaded so far"
println "==="
println + moduleD.get()"Load module: "
println "==="
println "All requested modules loaded"

Dataflow Expressions

Look at the magic below:

def initialDistance = DataflowVariable()new
def acceleration = DataflowVariable()new
def time = DataflowVariable()new

task {
 initialDistance << 100
 acceleration << 2
 time << 10
}

def result = initialDistance + acceleration*0.5*time**2
println 'Total distance ' + result.val

102

We use DataflowVariables that represent several parameters to a mathematical equation calculating total distance of
an accelerating object. In the equation itself, however, we use the DataflowVariables directly. We do not refer to the
values they represent and yet we are able to do the math correctly. This shows that DataflowVariables can be very
flexible.

For example, you can call methods on them and these methods will get dispatched to the bound values:

def name = DataflowVariable()new
task {
 name << ' adam '
}
println name.toUpperCase().trim().val

You can pass other DataflowVariables as arguments to such methods and the real values will be passed automatically
instead:

def title = DataflowVariable()new
def searchPhrase = DataflowVariable()new
task {
 title << ' Groovy in Action 2nd edition '
}

task {
 searchPhrase << '2nd'
}

println title.trim().contains(searchPhrase).val

And you can also query properties of the bound value using directly the DataflowVariable:

def book = DataflowVariable()new
def searchPhrase = DataflowVariable()new
task {
 book << [
 title:'Groovy in Action 2nd edition ',
 author:'Dierk Koenig',
 publisher:'Manning']
}

task {
 searchPhrase << '2nd'
}

book.title.trim().contains(searchPhrase).whenBound {println it} //Asynchronous waiting

println book.title.trim().contains(searchPhrase).val //Synchronous waiting

Please note that the result is still a DataflowVariable (DataflowExpression to be precise), which you can get the real
value from both synchronously and asynchronously.

Bind error notification

 offer the ability to send notifications to the registered listeners whenever a bind operation fails. The DataflowVariables
 method allows for listener to be added and removed. The listeners get notified in case of agetBindErrorManager()

failed attempt to bind a value (through bind(), bindSafely(), bindUnique() or leftShift()) or an error (through bindError()).

103

final DataflowVariable variable = DataflowVariable()new

variable.getBindErrorManager().addBindErrorListener(BindErrorListener() {new
 @Override
 void onBindError(oldValue, failedValue, uniqueBind) {final Object final Object final boolean
 println "Bind failed!"
 }

@Override
 void onBindError(oldValue, Throwable failedError) {final Object final
 println "Binding an error failed!"
 }

@Override
 void onBindError(Throwable oldError, failedValue, uniqueBind) {public final final Object final boolean
 println "Bind failed!"
 }

@Override
 void onBindError(Throwable oldError, Throwable failedError) {public final final
 println "Binding an error failed!"
 }

})

This allows you to customize reactions to attempts to binding of already bound dataflow variables. For example, using
 you do not get bind exceptions fired to the caller, but instead a registered gets notified.bindSafely() BindErrorListener

Further reading

 by Jonas BonérScala Dataflow library

 by Jonas BonérJVM concurrency presentation slides

Dataflow Concurrency library for Ruby

7.1 Tasks
The give you an easy-to-grasp abstraction of mutually-independent logical tasks or threads, which canDataflow tasks
run concurrently and exchange data solely through Dataflow Variables, Queues, Broadcasts and Streams. Dataflow
tasks with their easy-to-express mutual dependencies and inherently sequential body could also be used as a practical
implementation of UML .Activity Diagrams

Check out the examples.

A simple mashup example

In the example we're downloading the front pages of three popular web sites, each in their own task, while in a
separate task we're filtering out sites talking about Groovy today and forming the output. The output task synchronizes
automatically with the three download tasks on the three Dataflow variables through which the content of each website
is passed to the output task.

http://github.com/jboner/scala-dataflow/tree/f9a38992f5abed4df0b12f6a5293f703aa04dc33/src
http://jonasboner.com/talks/state_youre_doing_it_wrong/html/all.html
http://github.com/larrytheliquid/dataflow/tree/master

104

import groovyx.gpars.GParsPool.withPoolstatic
 groovyx.gpars.dataflow.DataflowVariableimport
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * A simple mashup sample, downloads content of three websites
 * and checks how many of them refer to Groovy.
 */

def dzone = DataflowVariable()new
def jroller = DataflowVariable()new
def theserverside = DataflowVariable()new

task {
 println 'Started downloading from DZone'
 dzone << 'http://www.dzone.com'.toURL().text
 println 'Done downloading from DZone'
}

task {
 println 'Started downloading from JRoller'
 jroller << 'http://www.jroller.com'.toURL().text
 println 'Done downloading from JRoller'
}

task {
 println 'Started downloading from TheServerSide'
 theserverside << 'http://www.theserverside.com'.toURL().text
 println 'Done downloading from TheServerSide'
}

task {
 withPool {
 println +" of Groovy sites today: "Number
 ([dzone, jroller, theserverside].findAllParallel {
 it.val.toUpperCase().contains 'GROOVY'
 }).size()
 }
}.join()

Grouping tasks

Dataflow tasks can be organized into groups to allow for performance fine-tuning. Groups provide a handy task()
factory method to create tasks attached to the groups. Using groups allows you to organize tasks or operators around
different thread pools (wrapped inside the group). While the Dataflow.task() command schedules the task on a default
thread pool (java.util.concurrent.Executor, fixed size=#cpu+1, daemon threads), you may prefer being able to define
your own thread pool(s) to run your tasks.

import groovyx.gpars.group.DefaultPGroup

def group = DefaultPGroup()new

group.with {
 task {
 …
 }

task {
 …
 }
}

The default thread pool for dataflow tasks contains daemon threads, which means your
application will exit as soon as the main thread finishes and won't wait for all tasks to complete.
When grouping tasks, make sure that your custom thread pools either use daemon threads,
too, which can be achieved by using DefaultPGroup or by providing your own thread factory to
a thread pool constructor, or in case your thread pools use non-daemon threads, such as when
using the NonDaemonPGroup group class, make sure you shutdown the group or the thread
pool explicitly by calling its shutdown() method, otherwise your applications will not exit.

You may selectively override the default group used for tasks, operators, callbacks and other dataflow elements inside
a code block using the _Dataflow.usingGroup() method:

105

Dataflow.usingGroup(group) {
 task {
 'http://gpars.codehaus.org'.toURL().text //should MalformedURLExceptionthrow
 }
 .then {page -> page.toUpperCase()}
 .then {page -> page.contains('GROOVY')}
 .then({mentionsGroovy -> println }, {error -> println }).join()"Groovy found: $mentionsGroovy" "Error: $error"
}

You can always override the default group by being specific:

Dataflow.usingGroup(group) {
 anotherGroup.task {
 'http://gpars.codehaus.org'.toURL().text //should MalformedURLExceptionthrow
 }
 .then(anotherGroup) {page -> page.toUpperCase()}
 .then(anotherGroup) {page -> page.contains('GROOVY')}.then(anotherGroup) {println Dataflow.retrieveCurrentDFPGroup();it}
 .then(anotherGroup, {mentionsGroovy -> println }, {error -> println }).join()"Groovy found: $mentionsGroovy" "Error: $error"
}

A mashup variant with methods

To avoid giving you wrong impression about structuring the Dataflow code, here's a rewrite of the mashup example,
with a method performing the actual download in a separate task and returning a DataflowVariabledownloadPage()
instance, so that the main application thread could eventually get hold of the downloaded content. Dataflow variables
can obviously be passed around as parameters or return values.

package groovyx.gpars.samples.dataflow

 groovyx.gpars.GParsExecutorsPool.withPoolimport static
 groovyx.gpars.dataflow.DataflowVariableimport
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * A simple mashup sample, downloads content of three websites and checks how many of them refer to Groovy.
 */

 List urls = ['http://www.dzone.com', 'http://www.jroller.com', 'http://www.theserverside.com']final

task {
 def pages = urls.collect { downloadPage(it) }
 withPool {
 println +" of Groovy sites today: "Number
 (pages.findAllParallel {
 it.val.toUpperCase().contains 'GROOVY'
 }).size()
 }
}.join()

def downloadPage(def url) {
 def page = DataflowVariable()new
 task {
 println "Started downloading from $url"
 page << url.toURL().text
 println "Done downloading from $url"
 }
 pagereturn
}

A physical calculation example

Dataflow programs naturally scale with the number of processors. Up to a certain level, the more processors you have
the faster the program runs. Check out, for example, the following script, which calculates parameters of a simple
physical experiment and prints out the results. Each task performs its part of the calculation and may depend on values
calculated by some other tasks as well as its result might be needed by some of the other tasks. With Dataflow
Concurrency you can split the work between tasks or reorder the tasks themselves as you like and the dataflow
mechanics will ensure the calculation will be accomplished correctly.

106

import groovyx.gpars.dataflow.DataflowVariable
 groovyx.gpars.dataflow.Dataflow.taskimport static

 def mass = DataflowVariable()final new
 def radius = DataflowVariable()final new
 def volume = DataflowVariable()final new
 def density = DataflowVariable()final new
 def acceleration = DataflowVariable()final new
 def time = DataflowVariable()final new
 def velocity = DataflowVariable()final new
 def decelerationForce = DataflowVariable()final new
 def deceleration = DataflowVariable()final new
 def distance = DataflowVariable()final new

def t = task {
 println """
Calculating distance required to stop a moving ball.
==
The ball has a radius of ${radius.val} meters and is made of a material with ${density.val} kg/m3 density,
which means that the ball has a volume of ${volume.val} m3 and a mass of ${mass.val} kg.
The ball has been accelerating with ${acceleration.val} m/s2 from 0 ${time.val} seconds and so reached a velocity offor
${velocity.val} m/s.

Given our ability to push the ball backwards with a force of ${decelerationForce.val} N (Newton), we can cause a deceleration
of ${deceleration.val} m/s2 and so stop the ball at a distance of ${distance.val} m.

===
This example has been calculated asynchronously in multiple tasks using GPars Dataflow concurrency in Groovy.
Author: ${author.val}
"""

.exit 0System
}

task {
 mass << volume.val * density.val
}

task {
 volume << .PI * (radius.val ** 3)Math
}

task {
 radius << 2.5
 density << 998.2071 //water
 acceleration << 9.80665 //free fall
 decelerationForce << 900
}

task {
 println 'Enter your name:'
 def name = InputStreamReader(.in).readLine()new System
 author << (name?.trim()?.size()>0 ? name : 'anonymous')
}

task {
 time << 10
 velocity << acceleration.val * time.val
}

task {
 deceleration << decelerationForce.val / mass.val
}

task {
 distance << deceleration.val * ((velocity.val/deceleration.val) ** 2) * 0.5
}

t.join()

Note: I did my best to make all the physical calculations right. Feel free to change the values and see how long
distance you need to stop the rolling ball.

Deterministic deadlocks

If you happen to introduce a deadlock in your dependencies, the deadlock will occur each time you run the code. No
randomness allowed. That's one of the benefits of Dataflow concurrency. Irrespective of the actual thread scheduling
scheme, if you don't get a deadlock in tests, you won't get them in production.

task {
 println a.val
 b << 'Hi there'
}

task {
 println b.val
 a << 'Hello man'
}

107

Dataflows map

As a handy shortcut the class can help you reduce the amount of code you have to write to leverageDataflows
Dataflow variables.

def df = Dataflows()new
df.x = 'value1'
assert df.x == 'value1'

Dataflow.task {df.y = 'value2}

assert df.y == 'value2'

Think of Dataflows as a map with Dataflow Variables as keys storing their bound values as appropriate map values.
The semantics of reading a value (e.g. df.x) and binding a value (e.g. df.x = 'value') remain identical to the semantics of
plain Dataflow Variables (x.val and x << 'value' respectively).

Mixing and Groovy blocksDataflows with

When inside a block of a Dataflows instance, the dataflow variables stored inside the Dataflows instance can bewith
accessed directly without the need to prefix them with the Dataflows instance identifier.

new Dataflows().with {
 x = 'value1'
 assert x == 'value1'

Dataflow.task {y = 'value2}

assert y == 'value2'
}

Returning a value from a task

Typically dataflow tasks communicate through dataflow variables. On top of that, tasks can also return values, again
through a dataflow variable. When you invoke the factory method, you get back an instance of Promisetask()
(implemented as DataflowVariable), through which you can listen for the task's return value, just like when using any
other Promise or DataflowVariable.

final Promise t1 = task {
 10return
 }
 Promise t2 = task {final
 20return
 }
 def results = [t1, t2]*.val
 println 'Both sub-tasks finished and returned values: ' + results

Obviously the value can also be obtained without blocking the caller using the method.whenBound()

def task = task {
 println 'The task is running and calculating the value'return
 30
}
task >> {value -> println }"The task finished and returned $value"

h2. Joining tasks

Using the operation on the result dataflow variable of a task you can block until the task finishes.join()

108

task {
 Promise t1 = task {final
 println 'First sub-task running.'
 }
 Promise t2 = task {final
 println 'Second sub-task running'
 }
 [t1, t2]*.join()
 println 'Both sub-tasks finished'
 }.join()

7.2 Selects
Frequently a value needs to be obtained from one of several dataflow channels (variables, queues, broadcasts or
streams). The class is suitable for such scenarios. can scan multiple dataflow channels and pick oneSelect Select
channel from all the input channels, which currently have a value available for read. The value from that channels is
read and returned to the caller together with the index of the originating channel. Picking the channel is either random,
or based on channel priority, in which case channels with lower position index in the constructor have higherSelect
priority.

Selecting a value from multiple channels

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.DataflowVariableimport
 groovyx.gpars.dataflow.Dataflow.selectimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Shows a basic use of Select, which monitors a set of input channels values and makes these valuesfor
 * available on its output irrespective of their original input channel.
 * Note that dataflow variables and queues can be combined Select.for
 *
 * You might also consider checking out the prioritySelect method, which prioritizes values by the index of their input channel
 */
def a = DataflowVariable()new
def b = DataflowVariable()new
def c = DataflowQueue()new

task {
 sleep 3000
 a << 10
}

task {
 sleep 1000
 b << 20
}

task {
 sleep 5000
 c << 30
}

def select = select([a, b, c])
println "The fastest result is ${select().value}"

Note that the return type from is , holding the value as well as theselect() SelectResult
originating channel index.

There are multiple ways to read values from a Select:

def sel = select(a, b, c, d)
def result = sel.select() //Random selection
def result = sel() //Random selection (a -hand variant)short
def result = sel.select([, , ,]) //Random selection with guards specifiedtrue true false true
def result = sel([, , ,]) //Random selection with guards specified (a -hand variant)true true false true short
def result = sel.prioritySelect() //Priority selection
def result = sel.prioritySelect([, , ,]) //Priority selection with guards specifiestrue true false true

109

By default the blocks the caller until a value to read is available. The alternative and Select selectToPromise()
 methods give you a way to obtain a promise for the value that will be selected some time inprioritySelectToPromise()

the future. Through the returned Promise you may register a callback to get invoked asynchronously whenever the next
value is selected.

def sel = select(a, b, c, d)
Promise result = sel.selectToPromise() //Random selection
Promise result = sel.selectToPromise([, , ,]) //Random selection with guards specifiedtrue true false true
Promise result = sel.prioritySelectToPromise() //Priority selection
Promise result = sel.prioritySelectToPromise([, , ,]) //Priority selection with guards specifiestrue true false true

Alternatively, allows to have the value sent to a provided (e.g. an actor) without blocking theSelect MessageStream
caller.

def handler = actor {...}
def sel = select(a, b, c, d)

sel.select(handler) //Random selection
sel(handler) //Random selection (a -hand variant)short
sel.select(handler, [, , ,]) //Random selection with guards specifiedtrue true false true
sel(handler, [, , ,]) //Random selection with guards specified (a -hand variant)true true false true short
sel.prioritySelect(handler) //Priority selection
sel.prioritySelect(handler, [, , ,]) //Priority selection with guards specifiestrue true false true

Guards

Guards allow the caller to omit some input channels from the selection. Guards are specified as a List of boolean flags
passed to the or methods.select() prioritySelect()

def sel = select(leaders, seniors, experts, juniors)
def teamLead = sel([, , ,]).value //Only 'leaders' and 'seniors' qualify becoming a teamLead heretrue true false false for

A typical use for guards is to make Selects flexible to adopt to the changes in the user state.

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.selectimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates the ability to enable/disable channels during a value selection on a select by providing guards.boolean
 */

 DataflowQueue operations = DataflowQueue()final new
 DataflowQueue numbers = DataflowQueue()final new

def t = task {
 def select = select(operations, numbers)final
 3.times {
 def instruction = select([,]).valuetrue false
 def num1 = select([,]).valuefalse true
 def num2 = select([,]).valuefalse true
 def formula = final "$num1 $instruction $num2"
 println "$formula = ${ GroovyShell().evaluate(formula)}"new
 }
}

task {
 operations << '+'
 operations << '+'
 operations << '*'
}

task {
 numbers << 10
 numbers << 20
 numbers << 30
 numbers << 40
 numbers << 50
 numbers << 60
}

t.join()

110

Priority Select

When certain channels should have precedence over others when selecting, the prioritySelect methods should be used
instead.

/**
 * Shows a basic use of Priority Select, which monitors a set of input channels values and makes these valuesfor
 * available on its output irrespective of their original input channel.
 * Note that dataflow variables, queues and broadcasts can be combined Select.for
 * Unlike plain select method call, the prioritySelect call gives precedence to input channels with lower index.
 * Available messages from high priority channels will be served before messages from lower-priority channels.
 * Messages received through a single input channel will have their mutual order preserved.
 *
 */
def critical = DataflowVariable()new
def ordinary = DataflowQueue()new
def whoCares = DataflowQueue()new

task {
 ordinary << 'All working fine'
 whoCares << 'I feel a bit tired'
 ordinary << 'We are on target'
}

task {
 ordinary << 'I have just started my work. Busy. Will come back later...'
 sleep 5000
 ordinary << 'I am done now'for
}

task {
 whoCares << 'Huh, what is that noise'
 ordinary << 'Here I am to some clean-up work'do
 whoCares << 'I wonder whether unplugging cable will eliminate that nasty sound.'this
 critical << 'The server room goes on UPS!'
 whoCares << 'The sound has disappeared'
}

def select = select([critical, ordinary, whoCares])
println 'Starting to monitor our IT department'
sleep 3000
10.times {println }"Received: ${select.prioritySelect().value}"

Collecting results of asynchronous computations

Asynchronous activities, no matter whether they are , or dataflow tasks active objects' methods asynchronous
 , return . implement the interface and so can be passed in forfunctions Promises Promises SelectableChannel selects

selection together with other as well as . Similarly to Java's , GPars Promises read channels CompletionService Select
enables you to obtain results of asynchronous activities as soon as each of them becomes available. Also, you may
employ to give you the first/fastest result of several computations running in parallel.Select

import groovyx.gpars.dataflow.Promise
 groovyx.gpars.dataflow.Selectimport
 groovyx.gpars.group.DefaultPGroupimport

/**
 * Demonstrates the use of dataflow tasks and selects to pick the fastest result of concurrently run calculations.
 */

 group = DefaultPGroup()final new
group.with {
 Promise p1 = task {
 sleep(1000)
 10 * 10 + 1
 }
 Promise p2 = task {
 sleep(1000)
 5 * 20 + 2
 }
 Promise p3 = task {
 sleep(1000)
 1 * 100 + 3
 }

 alt = Select(group, p1, p2, p3)final new
 def result = alt.select()
 println + result"Result: "
}

111

Timeouts

The method will create a DataflowVariable that gets bound to a value after a given time period.Select.createTimeout()
This can be leveraged in so that they unblock after a desired delay, if none of the other channels delivers aSelects
value before that moment. Just pass the as another input channel to the .timeout channel Select

import groovyx.gpars.dataflow.Promise
 groovyx.gpars.dataflow.Selectimport
 groovyx.gpars.group.DefaultPGroupimport

/**
 * Demonstrates the use of dataflow tasks and selects to pick the fastest result of concurrently run calculations.
 */

 group = DefaultPGroup()final new
group.with {
 Promise p1 = task {
 sleep(1000)
 10 * 10 + 1
 }
 Promise p2 = task {
 sleep(1000)
 5 * 20 + 2
 }
 Promise p3 = task {
 sleep(1000)
 1 * 100 + 3
 }

 timeoutChannel = Select.createTimeout(500)final

 alt = Select(group, p1, p2, p3, timeoutChannel)final new
 def result = alt.select()
 println + result"Result: "
}

Cancellation

In case you need to cancel the other tasks once a value has been calculated or a timeout expired, the best way is to
set a flag that the tasks periodically monitor. There's intentionally no cancellation machinery built into DataflowVariables
or .Tasks

import groovyx.gpars.dataflow.Promise
 groovyx.gpars.dataflow.Selectimport
 groovyx.gpars.group.DefaultPGroupimport

 java.util.concurrent.atomic.AtomicBooleanimport

/**
 * Demonstrates the use of dataflow tasks and selects to pick the fastest result of concurrently run calculations.
 * It shows a waz to cancel the slower tasks once a result is known
 */

 group = DefaultPGroup()final new
 done = AtomicBoolean()final new

group.with {
 Promise p1 = task {
 sleep(1000)
 (done.get()) if return
 10 * 10 + 1
 }
 Promise p2 = task {
 sleep(1000)
 (done.get()) if return
 5 * 20 + 2
 }
 Promise p3 = task {
 sleep(1000)
 (done.get()) if return
 1 * 100 + 3
 }

 alt = Select(group, p1, p2, p3, Select.createTimeout(500))final new
 def result = alt.select()
 done.set()true
 println + result"Result: "
}

112

7.3 Operators
Dataflow Operators and Selectors provide a full Dataflow implementation with all the usual ceremony.

Concepts

Full dataflow concurrency builds on the concept of channels connecting operators and selectors, which consume
values coming through input channels, transform them into new values and output the new values into their output
channels. While wait for input channels to have a value available for read before they start process them, Operators all

 are triggered by a value available on of the input channels.Selectors any

operator(inputs: [a, b, c], outputs: [d]) {x, y, z ->
 …
 bindOutput 0, x + y + z
}

/**
 * CACHE
 *
 * Caches sites' contents. Accepts requests url content, outputs the content. Outputs requests downloadfor for
 * the site is not in cache yet.if
 */

(inputs: [urlRequests], outputs: [downloadRequests, sites]) {request ->operator

 (!request.content) {if
 println "[Cache] Retrieving ${request.site}"
 def content = cache[request.site]
 (content) {if
 println "[Cache] Found in cache"
 bindOutput 1, [site: request.site, word:request.word, content: content]
 } {else
 def downloads = pendingDownloads[request.site]
 (downloads !=) {if null
 println "[Cache] Awaiting download"
 downloads << request
 } {else
 pendingDownloads[request.site] = []
 println "[Cache] Asking download"for
 bindOutput 0, request
 }
 }
 } {else
 println "[Cache] Caching ${request.site}"
 cache[request.site] = request.content
 bindOutput 1, request
 def downloads = pendingDownloads[request.site]
 (downloads !=) {if null
 (downloadRequest in downloads) {for
 println "[Cache] Waking up"
 bindOutput 1, [site: downloadRequest.site, word:downloadRequest.word, content: request.content]
 }
 pendingDownloads.remove(request.site)
 }
 }
}

113

The standard error handling will print out an error message to the standard error output and
terminate the operator in case an uncaught exception is thrown from withing the operator's
body. To alter the behavior, you can register your own event listener:

def listener = DataflowEventAdapter() {new
 @Override
 onException(DataflowProcessor processor, Throwable e) {boolean final final
 logChannel << e
 //Indicate whether to terminate the or notreturn false operator
 }
}

op = group. (inputs: [a, b], outputs: [c], listeners: [listener]) {x, y ->operator
 …
}
See the section more details.Operator lifecycle for

Types of operators

There are specialized versions of operators serving specific purposes:

operator - the basic general-purpose operator

selector - operator that is triggered by a value being available in any of its input channels

prioritySelector - a selector that prefers delivering messages from lower-indexed input channels over
higher-indexed ones

splitter - a single-input operator copying its input values to all of its output channels

Wiring operators together

Operators are typically combined into networks, when some operators consume output by other operators.

operator(inputs:[a, b], outputs:[c, d]) {...}
splitter(c, [e, f])
selector(inputs:[e, d]: outputs:[]) {...}

You may alternatively refer to output channels through operators themselves:

def op1 = (inputs:[a, b], outputs:[c, d]) {...}operator
def sp1 = splitter(op1.outputs[0], [e, f]) //takes the first output of op1
selector(inputs:[sp1.outputs[0], op1.outputs[1]]: outputs:[]) {...} //takes the first output of sp1 and the second output of op1

Grouping operators

Dataflow operators can be organized into groups to allow for performance fine-tuning. Groups provide a handy
 factory method to create tasks attached to the groups.operator()

114

import groovyx.gpars.group.DefaultPGroup

def group = DefaultPGroup()new

group.with {
 (inputs: [a, b, c], outputs: [d]) {x, y, z ->operator
 …
 bindOutput 0, x + y + z
 }
}

The default thread pool for dataflow operators contains daemon threads, which means your
application will exit as soon as the main thread finishes and won't wait for all tasks to complete.
When grouping operators, make sure that your custom thread pools either use daemon
threads, too, which can be achieved by using DefaultPGroup or by providing your own thread
factory to a thread pool constructor, or in case your thread pools use non-daemon threads,
such as when using the NonDaemonPGroup group class, make sure you shutdown the group
or the thread pool explicitly by calling its shutdown() method, otherwise your applications will
not exit.

You may selectively override the default group used for tasks, operators, callbacks and other dataflow elements inside
a code block using the _Dataflow.usingGroup() method:

Dataflow.usingGroup(group) {
 (inputs: [a, b, c], outputs: [d]) {x, y, z ->operator
 …
 bindOutput 0, x + y + z
 }
}

You can always override the default group by being specific:

Dataflow.usingGroup(group) {
 anotherGroup. (inputs: [a, b, c], outputs: [d]) {x, y, z ->operator
 …
 bindOutput 0, x + y + z
 }
}

Constructing operators

The construction properties of an operator, such as , , or cannot be modified onceinputs outputs stateObject maxForks
the operator has been build. You may find the class helpful when graduallygroovyx.gpars.dataflow.ProcessingNode
collecting channels and values into lists before you finally build an operator.

115

import groovyx.gpars.dataflow.Dataflow
 groovyx.gpars.dataflow.DataflowQueueimport
 groovyx.gpars.dataflow.ProcessingNode.nodeimport static

/**
 * Shows how to build operators using the ProcessingNode class
 */

 DataflowQueue aValues = DataflowQueue()final new
 DataflowQueue bValues = DataflowQueue()final new
 DataflowQueue results = DataflowQueue()final new

//Create a config and gradually set the required properties - channels, code, etc.
def adderConfig = node {valueA, valueB ->
 bindOutput valueA + valueB
}
adderConfig.inputs << aValues
adderConfig.inputs << bValues
adderConfig.outputs << results

//Build the operator
 adder = adderConfig. (Dataflow.DATA_FLOW_GROUP)final operator

//Now the is running and processing the dataoperator
aValues << 10
aValues << 20
bValues << 1
bValues << 2

assert [11, 22] == (1..2).collect {
 results.val
}

State in operators

Although operators can frequently do without keeping state between subsequent invocations, GPars allows operators
to maintain state, if desired by the developer. One obvious way is to leverage the Groovy closure capabilities to
close-over their context:

int counter = 0
(inputs: [a], outputs: [b]) {value ->operator

 counter += 1
}

Another way, which allows you to avoid declaring the state object outside of the operator definition, is to pass the state
object into the operator as a parameter at construction time:stateObject

operator(inputs: [a], outputs: [b], stateObject: [counter: 0]) {value ->
 stateObject.counter += 1
}

Parallelize operators

By default an operator's body is processed by a single thread at a time. While this is a safe setting allowing the
operator's body to be written in a non-thread-safe manner, once an operator becomes "hot" and data start to
accumulate in the operator's input queues, you might consider allowing multiple threads to run the operator's body
concurrently. Bear in mind that in such a case you need to avoid or protect shared resources from multi-threaded
access. To enable multiple threads to run the operator's body concurrently, pass an extra parameter whenmaxForks
creating an operator:

def op = (inputs: [a, b, c], outputs: [d, e], maxForks: 2) {x, y, z ->operator
 bindOutput 0, x + y + z
 bindOutput 1, x * y * z
}

116

The value of the parameter indicates the maximum of threads running the operator concurrently. OnlymaxForks
positive numbers are allowed with value 1 being the default.

Please always make sure the serving the operator holds enough threads to support allgroup
requested forks. Using groups allows you to organize tasks or operators around different thread
pools (wrapped inside the group). While the Dataflow.task() command schedules the task on a
default thread pool (java.util.concurrent.Executor, fixed size=#cpu+1, daemon threads), you
may prefer being able to define your own thread pool(s) to run your tasks.

def group = DefaultPGroup(10)new
group. ((inputs: [a, b, c], outputs: [d, e], maxForks: 5) {x, y, z -> ...}operator

The default group uses a resizeable thread pool as so will never run out of threads.

Synchronizing the output

When enabling internal parallelization of an operator by setting the value for to a value greater than 1 it ismaxForks
important to remember that without explicit or implicit synchronization in the operators' body race-conditions may occur.
Especially bear in mind that values written to multiple output channels are not guarantied to be written atomically in the
same order to all the channels

operator(inputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->
 bindOutput 0, msg
 bindOutput 1, msg
}
inputChannel << 1
inputChannel << 2
inputChannel << 3
inputChannel << 4
inputChannel << 5

May result in output channels having the values mixed-up something like:

a -> 1, 3, 2, 4, 5
b -> 2, 1, 3, 5, 4

Explicit synchronization is one way to get correctly bound all output channels and protect operator not-thread local
state:

def lock = ()new Object
(inputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->operator

 doStuffThatIsThreadSafe()

(lock) {synchronized
 doSomethingThatMustNotBeAccessedByMultipleThreadsAtTheSameTime()
 bindOutput 0, msg
 bindOutput 1, 2*msg
 }
}

Obviously you need to weight the pros and cons here, since synchronization may defeat the purpose of setting
 to a value greater than 1.maxForks

To set values of all the operator's output channels in one atomic step, you may also consider calling either the
 method, passing in a single value to write to all output channels or the bindAllOutputsAtomically
 method, which takes a multiple values, each of which will be written to the output channel withbindAllOutputsAtomically

the same position index.

117

operator(inputs:[inputChannel], outputs:[a, b], maxForks:5) {msg ->
 doStuffThatIsThreadSafe()
 bindAllOutputValuesAtomically msg, 2*msg
 }
}

Using the or the methods will not guarantee atomicity ofbindAllOutputs bindAllOutputValues
writes across al the output channels when using internal parallelism. If preserving the order of
messages in multiple output channels is not an issue, as well as bindAllOutputs

 will provide better performance over the atomic variants.bindAllOutputValues

Operator lifecycle

Dataflow operators and selectors fire several events during their lifecycle, which allows the interested parties to obtain
notifications and potential alter operator's behavior. The interface offers a couple of callbackDataflowEventListener
methods:

118

public DataflowEventListener {interface
 /**
 * Invoked immediately after the starts by a pooled thread before the first message is obtainedoperator
 *
 * @param processor The reporting dataflow /selectoroperator
 */
 void afterStart(DataflowProcessor processor);

/**
 * Invoked immediately after the terminatesoperator
 *
 * @param processor The reporting dataflow /selectoroperator
 */
 void afterStop(DataflowProcessor processor);

/**
 * Invoked an exception occurs.if
 * If any of the listeners returns , the will terminate.true operator
 * Exceptions outside of the 's body or listeners' messageSentOut() handlers will terminate the irrespective ofoperator operator
the listeners' votes.
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param e The thrown exception
 * @ True, the should terminate in response to the exception, otherwise.return if operator false
 */
 onException(DataflowProcessor processor, Throwable e);boolean

/**
 * Invoked when a message becomes available in an input channel.
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param channel The input channel holding the message
 * @param index The index of the input channel within the operator
 * @param message The incoming message
 * @ The original message or a message that should be used insteadreturn
 */
 messageArrived(DataflowProcessor processor, DataflowReadChannel< > channel, index, message);Object Object int Object

/**
 * Invoked when a control message (instances of ControlMessage) becomes available in an input channel.
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param channel The input channel holding the message
 * @param index The index of the input channel within the operator
 * @param message The incoming message
 * @ The original message or a message that should be used insteadreturn
 */
 controlMessageArrived(DataflowProcessor processor, DataflowReadChannel< > channel, index, message);Object Object int Object

/**
 * Invoked when a message is being bound to an output channel.
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param channel The output channel to send the message to
 * @param index The index of the output channel within the operator
 * @param message The message to send
 * @ The original message or a message that should be used insteadreturn
 */
 messageSentOut(DataflowProcessor processor, DataflowWriteChannel< > channel, index, message);Object Object int Object

/**
 * Invoked when all messages required to trigger the become available in the input channels.operator
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param messages The incoming messages
 * @ The original list of messages or a modified/ list of messages that should be used insteadreturn new
 */
 List< > beforeRun(DataflowProcessor processor, List< > messages);Object Object

/**
 * Invoked when the completes a single runoperator
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param messages The incoming messages that have been processed
 */
 void afterRun(DataflowProcessor processor, List< > messages);Object

/**
 * Invoked when the fireCustomEvent() method is triggered manually on a dataflow /selectoroperator
 *
 * @param processor The reporting dataflow /selectoroperator
 * @param data The custom piece of data provided as part of the event
 * @ A value to from the fireCustomEvent() method to the caller (event initiator)return return
 */
 customEvent(DataflowProcessor processor, data);Object Object
}

A default implementation is provided through the class.DataflowEventAdapter

119

Listeners provide a way to handle exceptions, when they occur inside operators. A listener may typically log such
exceptions, notify a supervising entity, generate an alternative output or perform any steps required to recover from the
situation. If there's no listener registered or if any of the listeners returns the operator will terminate, preserving thetrue
contract of . Exceptions that occur outside the actual operator's body, i.e. at the parameter preparationafterStop()
phase before the body is triggered or at the clean-up and channel subscription phase, after the body finishes, always
lead to operator termination.

The method available on operators and selectors may be used to communicate back and forthfireCustomEvent()
between operator's body and the interested listeners:

final listener = DataflowEventAdapter() {new
 @Override
 customEvent(DataflowProcessor processor, data) {Object Object
 println "Log: Getting quite high on the scale $data"
 100 //The value to use insteadreturn
 }
}

op = group. (inputs: [a, b], outputs: [c], listeners: [listener]) {x, y ->operator
 sum = x + yfinal
 (sum > 100) bindOutput(fireCustomEvent(sum)) //Reporting that the sum is too high, binding the lowered value that comes backif
 bindOutput sumelse
}

Selectors

Selector's body should be a closure consuming either one or two arguments.

selector (inputs : [a, b, c], outputs : [d, e]) {value ->

}

The two-argument closure will get a value plus an index of the input channel, the value of which is currently being
processed. This allows the selector to distinguish between values coming through different input channels.

selector (inputs : [a, b, c], outputs : [d, e]) {value, index ->

}

Priority Selector

When priorities need to be preserved among input channels, a should be used.DataflowPrioritySelector

prioritySelector(inputs : [a, b, c], outputs : [d, e]) {value, index ->
 …
}

The priority selector will always prefer values from channels with lower position index over values coming through the
channels with higher position index.

Join selector

A selector without a body closure specified will copy all incoming values to all of its output channels.

def join = selector (inputs : [programmers, analysis, managers], outputs : [employees, colleagues])

120

Internal parallelism

The attribute allowing for internal selectors parallelism is also available.maxForks

selector (inputs : [a, b, c], outputs : [d, e], maxForks : 5) {value ->

}

Guards

Just like , also allow the users to temporarily include/exclude individual input channels from selection.Selects Selectors
The input property can be used to set the initial mask on all input channels and the and guards setGuards setGuard
methods are then available in the selector's body.

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.selectorimport static
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates the ability to enable/disable channels during a value selection on a select by providing guards.boolean
 */

 DataflowQueue operations = DataflowQueue()final new
 DataflowQueue numbers = DataflowQueue()final new

def instruction
def nums = []

selector(inputs: [operations, numbers], outputs: [], guards: [,]) {value, index -> //initial guards is set heretrue false
 (index == 0) {if
 instruction = value
 setGuard(0,) //setGuard() used herefalse
 setGuard(1,)true
 }
 nums << valueelse
 (nums.size() == 2) {if
 setGuards([,]) //setGuards() used heretrue false
 def formula = final "${nums[0]} $instruction ${nums[1]}"
 println "$formula = ${ GroovyShell().evaluate(formula)}"new
 nums.clear()
 }
}

task {
 operations << '+'
 operations << '+'
 operations << '*'
}

task {
 numbers << 10
 numbers << 20
 numbers << 30
 numbers << 40
 numbers << 50
 numbers << 60
}

Avoid combining and greater than 1. Although the is thread-safe andguards maxForks Selector
won't be damaged in any way, the guards are likely not to be set the way you expect. The
multiple threads running selector's body concurrently will tend to over-write each-other's
settings to the property.guards

7.4 Shutting Down Dataflow Networks
Shutting down a network of dataflow processors (operators and selectors) may sometimes be a non-trivial task,
especially if you need a generic mechanism that will not leave any messages unprocessed.

Dataflow operators and selectors can be terminated in three ways:

121

1.

2.

3.

by calling the terminate() method on all operators that need to be terminated

by sending a poisson message

by setting up a network of activity monitors that will shutdown the network after all messages have been processed

Check out the details on the ways that GPars provides.

Shutting down the thread pool

If you use a custom to maintain a thread pool for your dataflow network, you should notPGroup
forget to shutdown the pool once the network is terminated. Otherwise the thread pool will
consume system resources and, in case of using non-daemon threads, it will prevent JVM from
exit.

Emergency shutdown

You can call on any operator/selector to immediately shut it down. Provided you keep track of all yourterminate()
processors, perhaps by adding them to a list, the fastest way to stop the network would be:

allMyProcessors*.terminate()

This should, however, be treated as an emergency exit, since no guarantees can be given regarding messages
processed nor finished work. Operators will simply terminate instantly leaving work unfinished and abandoning
messages in the input channels. Certainly, the lifecycle event listeners hooked to the operators/selectors will have their

 event handlers invoked in order to, for example, release resources or output a note into the log.afterStop()

def op1 = (inputs: [a, b, c], outputs: [d, e]) {x, y, z -> }operator

def op2 = selector(inputs: [d], outputs: [f, out]) { }

def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

[op1, op2, op3]*.terminate() //Terminate all operators by calling the terminate() method on them
op1.join()
op2.join()
op3.join()

Shutting down the whole JVM through will also obvisouly shutdown the dataflowSystem.exit()
network, however, no lifecycle listeners will be invoked in such cases.

Stopping operators gently

Operators handle incoming messages repeatedly. The only safe moment for stopping an operator without the risk of
loosing any messages is right after the operator has finished processing messages and is just about to look for more
messages in its incoming pipes. This is exactly what the method does. It will schedule theterminateAfterNextRun()
operator for shutdown after the next set of messages gets handled.

122

The unprocessed messages will stay in the input channels, which allows you to handle them later, perhaps with a
different operator/selector or in some other way. Using you will not loose any input messages.terminateAfterNextRun()
This may be particularly handy when you use a group of operators/selectors to load-balance messages coming from a
channel. Once the work-load decreases, the terminateAfterNextRun() method may be used to safely reduce the pool of
load-balancing operators.

Detecting shutdown

Operators and electors offer a handy method for those who need to block until thejoin()
operator terminates.

allMyProcessors*.join()

This is the easies way to wait until the whole dataflow network shuts down, irrespective of the
shutdown method used.

PoisonPill

 is a common term for a strategy that uses special-purpose messages to stop entities that receive it. GParsPoisonPill
offers the class, which has exactly such effect or operators and selectors. Since is a PoisonPill PoisonPill

 , it is invisible to operator's body and custom code does not need to handle it in any way. ControlMessage
 may react to through the handler method.DataflowEventListeners ControlMessages controlMessageArrived()

def op1 = (inputs: [a, b, c], outputs: [d, e]) {x, y, z -> }operator

def op2 = selector(inputs: [d], outputs: [f, out]) { }

def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

a << PoisonPill.instance //Send the poisson

op1.join()
op2.join()
op3.join()

After receiving a poisson an operator terminates, right after it finishes the current calculation and makes sure the
poisson is sent to all its output channels, so that the poisson can spread to the connected operators. Also, although
operators typically wait for all inputs to have a value, in case of , the operator will terminate immediately asPoisonPills
soon as a appears on any of its inputs. The values already obtained from the other channels will be lost. ItPoisonPill
can be considered an error in the design of the network, if these messages were supposed to be processed. They
would need a proper value as their peer and not a PoisonPill in order to be processes normally.

Selectors, on the other hand, will patiently wait for to be received from all their input channels before sendingPoisonPill
it on the the output channels. This behavior prevents networks containing fromfeed-back loops involving selectors
being shutdown using . A selector would never receive a from the channel that comes back fromPoisonPill PoisonPill
behind the selector. A different shutdown strategy should be used for such networks.

Given the potential variety of operator networks and their asynchronous nature, a good
termination strategy is that operators and selectors should only ever terminate themselves. All
ways of terminating them from outside (either by calling the terminate() method or by sending
poisson down the stream) may result in messages being lost somewhere in the pipes, when the
reading operators terminate before they fully handle the messages waiting in their input
channels.

123

Immediate poison pill

Especially for selectors to shutdown immediately after receiving a poison pill, a notion of hasimmediate poison pill
been introduced. Since normal, non-immediate poison pills merely close the input channel leaving the selector alive
until at least one input channel remains open, the immediate poison pill closes the selector instantly. Obviously,
unprocessed messages from the other selector's input channels will not be handled by the selector, once it reads an
immediate poison pill.

With immediate poison pill you can safely shutdown networks with selectors involved in feedback loops.

def op1 = selector(inputs: [a, b, c], outputs: [d, e]) {value, index -> }
def op2 = selector(inputs: [d], outputs: [f, out]) { }
def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

a << PoisonPill.immediateInstance

[op1, op2, op3]*.join()

Poison with counting

When sending a poison pill down the operator network you may need to be notified when all the operators or a
specified number of them have been stopped. The class serves exactly this purpose:CountingPoisonPill

operator(inputs: [a, b, c], outputs: [d, e]) {x, y, z -> }
selector(inputs: [d], outputs: [f, out]) { }
prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

//Send the poisson indicating the number of operators than need to be terminated before we can continue
 pill = CountingPoisonPill(3)final new

a << pill

//Wait all operators to terminatefor
pill.join()
//At least 3 operators should be terminated by now

The property of the class is a regular and so has a lot of handytermination CountingPoisonPill Promise<Boolean>
properties.

//Send the poisson indicating the number of operators than need to be terminated before we can continue
 pill = CountingPoisonPill(3)final new

pill.termination.whenBound {println }"Reporting asynchronously that the network has been stopped"
a << pill

 (pill.termination.bound) println if "Wow, that was quick. We are done already!"
 println else "Things are being slow today. The network is still running."

//Wait all operators to terminatefor
assert pill.termination.get()
//At least 3 operators should be terminated by now

An immediate variant of is also available - .CountingPoisonPill ImmediateCountingPoisonPill

def op1 = selector(inputs: [a, b, c], outputs: [d, e]) {value, index -> }
def op2 = selector(inputs: [d], outputs: [f, out]) { }
def op3 = prioritySelector(inputs: [e, f], outputs: [b]) {value, index -> }

 pill = ImmediateCountingPoisonPill(3)final new
a << pill
pill.join()

 will safely and instantly shutdown dataflow networks even withImmediateCountingPoisonPill
selectors involved in feedback loops, which normal non-immediate poison pill would not be able
to.

124

Poison strategies

To correctly shutdown a network using you must identify the appropriate set of channels to send PoisonPill PoisonPill
to. will spread in the network the usual way through the channels and processors down the stream. TypicallyPoisonPill
the right channels to send to will be those that serve as for the network. This may be difficultPoisonPill data sources
to achieve for general cases or for complex networks. On the other hand, for networks with a prevalent direction of
message flow provides a very straightforward way to shutdown the whole network gracefully.PoisonPill

Load-balancing architectures, which use multiple operators reading messages off a shared
channel (queue), will also prevent poison shutdown to work properly, since only one of the
reading operators will get to read the poison message. You may consider using forked

 instead, by setting the property to a value greater than 1. Anotheroperators maxForks
alternative is to manually split the message stream into multiple channels, each of which would
be consumed by one of the original operators.

Termination tips and tricks

Notice that GPars return a , which gets bound to a value as soon as the task finishes. Thetasks DataflowVariable
'terminator' operator below leverages the fact that are implementations of the DataflowVariables DataflowReadChannel
interface and thus can be consumed by operators. As soon as both tasks finish, the operator will send a PoisonPill
down the channel to stop the consumer as soon as it processes all data.q

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.group.NonDaemonPGroupimport

def group = NonDaemonPGroup()new

 DataflowQueue q = DataflowQueue()final new

// destinationfinal
def customs = group. (inputs: [q], outputs: []) { value ->operator
 println "Customs received $value"
}

// big producer
def green = group.task {
 (1..100).each {
 q << 'green channel ' + it
 sleep 10
 }
}

// little producer
def red = group.task {
 (1..10).each {
 q << 'red channel ' + it
 sleep 15
 }
}

def terminator = group. (inputs: [green, red], outputs: []) { t1, t2 ->operator
 q << PoisonPill.instance
}

customs.join()
group.shutdown()

Keeping PoisonPill inside a given network

If your network passed values through channels to entities outside of it, you may need to stop the messagesPoisonPill
on the network boundaries. This can be easily achieved by putting a single-input single-output filtering operator on each
such channel.

125

operator(networkLeavingChannel, otherNetworkEnteringChannel) {value ->
 (!(value instanceOf PoisonPill)) bindOutput itif
}

The DSL may be also helpful here:Pipeline

networkLeavingChannel.filter { !(it instanceOf PoisonPill) } into otherNetworkEnteringChannel

Check out the section to find out more on pipelines.Pipeline DSL

Graceful shutdown

GPars provides a generic way to shutdown a dataflow network. Unlike the previously mentioned mechanisms this
approach will keep the network running until all the messages get handled and than gracefully shuts all operators down
letting you know when this happens. You have to pay a modest performance penalty, though. This is unavoidable since
we need to keep track of what's happening inside the network.

import groovyx.gpars.dataflow.DataflowBroadcast
 groovyx.gpars.dataflow.DataflowQueueimport
 groovyx.gpars.dataflow. .component.GracefulShutdownListenerimport operator
 groovyx.gpars.dataflow. .component.GracefulShutdownMonitorimport operator
 groovyx.gpars.group.DefaultPGroupimport
 groovyx.gpars.group.PGroupimport

PGroup group = DefaultPGroup(10)new
 a = DataflowQueue()final new
 b = DataflowQueue()final new
 c = DataflowQueue()final new
 d = DataflowQueue< >()final new Object
 e = DataflowBroadcast< >()final new Object
 f = DataflowQueue< >()final new Object
 result = DataflowQueue< >()final new Object

 monitor = GracefulShutdownMonitor(100);final new

def op1 = group. (inputs: [a, b], outputs: [c], listeners: [GracefulShutdownListener(monitor)]) {x, y ->operator new
 sleep 5
 bindOutput x + y
}
def op2 = group. (inputs: [c], outputs: [d, e], listeners: [GracefulShutdownListener(monitor)]) {x ->operator new
 sleep 10
 bindAllOutputs 2*x
}
def op3 = group. (inputs: [d], outputs: [f], listeners: [GracefulShutdownListener(monitor)]) {x ->operator new
 sleep 5
 bindOutput x + 40
}
def op4 = group. (inputs: [e.createReadChannel(), f], outputs: [result], listeners: [GracefulShutdownListener(monitor)])operator new
{x, y ->
 sleep 5
 bindOutput x + y
}

100.times{a << 10}
100.times{b << 20}

 shutdownPromise = monitor.shutdownNetwork()final

100.times{assert 160 == result.val}

shutdownPromise.get()
[op1, op2, op3, op4]*.join()

group.shutdown()

First, we need an instance of , which will orchestrate the shutdown process. It relies onGracefulShutdownMonitor
instances of attached to all operators/selectors. These listeners observe their respectiveGracefulShutdownListener
processors together with their input channels and report to the shared . Once GracefulShutdownMonitor

 is called on , it will periodically check for reported activities, query theshutdownNetwork() GracefulShutdownMonitor
state of operators as well as the number of messages in their input channels.

126

1.

2.

3.

Please make sure that no new messages enter the dataflow network after the shutdown has
been initiated, since this may cause the network to never terminate. The shutdown process
should only be started after all data producers have ceased sending additional messages to the
monitored network.

The method returns a so that you can do the usual set of tricks with it - block waiting forshutdownNetwork() Promise
the network to terminate using the method, register a callback using the method or make it trigger aget() whenBound()
whole set of activities through the method.then()

Limitations of graceful shutdown

For to work correctly, its event handler mustGracefulShutdownListener messageArrived()
see the original value that has arrived through the input channel. Since some event
listeners may alter the messages as they pass through the listeners it is advisable to add
the first to the list of listeners on each dataflow processor.GracefulShutdownListener

Also, graceful shutdown will not work for those rare operators that have listeners, which
turn control messages into plain value messages in the eventcontrolMessageArrived()
handler.

Third and last, load-balancing architectures, which use multiple operators reading
messages off a shared channel (queue), will also prevent graceful shutdown to work
properly. You may consider using instead, by setting the forked operators maxForks
property to a value greater than 1. Another alternative is to manually split the message
stream into multiple channels, each of which would be consumed by one of the original
operators.

7.5 Application Frameworks
Dataflow Operators and Selectors can be successfully used to build high-level domain-specific frameworks for
problems that naturally fit the flow model.

Building flow frameworks on top of GPars dataflow

GPars dataflow can be viewed as bottom-line language-level infrastructure. Operators, selectors, channels and event
listeners can be very useful at language level to combine, for example, with actors or parallel collections. Whenever a
need comes for asynchronous handling of events that come through one of more channels, a dataflow operator or a
small dataflow network could be a very good fit. Unlike tasks, operators are lightweight and release threads when
there's no message to process. Unlike actors, operators are addressed indirectly through channels and may easily
combine messages from multiple channels into one action.

Alternatively, operators can be looked at as continuous functions, which instantly and repeatedly transform their input
values into output. We believe that a concurrency-friendly general-purpose programming language should provide this
type of abstraction.

At the same time, dataflow elements can be easily used as building blocks for constructing domain-specific
workflow-like frameworks. These frameworks can offer higher-level abstractions specialized to a single problem
domain, which would be inappropriate for a general-purpose language-level library. Each of the higher-level concepts is
then mapped to (potentially several) GPars concepts.

127

For example, a network solving data-mining problems may consist of several data sources, data cleaning nodes,
categorization nodes, reporting nodes and others. Image processing network, on the other hand, may need nodes
specialized in image compression and format transformation. Similarly, networks for data encryption, mp3 encoding,
work-flow management as well as many other domains that would benefit from dataflow-based solutions, will differ in
many aspects - the type of nodes in the network, the type and frequency of events, the load-balancing scheme,
potential constraints on branching, the need for visualization, debugging and logging, the way users define the
networks and interact with them as well as many others.

The higher-level application-specific frameworks should put effort into providing abstractions best suited for the given
domain and hide GPars complexities. For example, the visual graph of the network that the user manipulates on the
screen should typically not show all the channels that participate in the network. Debugging or logging channels, which
rarely contribute to the core of the solution, are among the first good candidates to consider for exclusion. Also
channels and lifecycle-event listeners, which orchestrate aspects such as load balancing or graceful shutdown, will
probably be not exposed to the user, although they will be part of the generated and executed network. Similarly, a
single channel in the domain-specific model will in reality translate into multiple channels perhaps with one or more
logging/transforming/filtering operators connecting them together. The function associated with a node will most likely
be wrapped with some additional infrastructural code to form the operator's body.

GPars gives you the underlying components that the end user may be abstracted away completely by the
application-specific framework. This keeps GPars domain-agnostic and universal, yet useful at the implementation
level.

7.6 Pipeline DSL

A DSL for building operators pipelines

Building dataflow networks can be further simplified. GPars offers handy shortcuts for the common scenario of building
(mostly linear) pipelines of operators.

def toUpperCase = {s -> s.toUpperCase()}

 encrypt = DataflowQueue()final new
 DataflowReadChannel encrypted = encrypt | toUpperCase | {it.reverse()} | {'###encrypted###' + it + '###'}final

encrypt << "I need to keep message secret!"this
encrypt << "GPars can build linear pipelines really easily"operator

println encrypted.val
println encrypted.val

This saves you from directly creating, wiring and manipulating all the channels and operators that are to form the
pipeline. The operator lets you hook an output of one function/operator/process to the input of another one. Justpipe
like chaining system processes on the command line.

The operator is a handy shorthand for a more generic method:pipe chainWith()

def toUpperCase = {s -> s.toUpperCase()}

 encrypt = DataflowQueue()final new
 DataflowReadChannel encrypted = encrypt.chainWith toUpperCase chainWith {it.reverse()} chainWith {'###encrypted###' + it +final

'###'}

encrypt << "I need to keep message secret!"this
encrypt << "GPars can build linear pipelines really easily"operator

println encrypted.val
println encrypted.val

Combining pipelines with straight operators

128

Since each operator pipeline has an entry and an exit channel, pipelines can be wired into more complex operator
networks. Only your imagination can limit your ability to mix pipelines with channels and operators in the same network
definitions.

def toUpperCase = {s -> s.toUpperCase()}
def save = {text ->
 //Just pretending to be saving the text to disk, database or whatever
 println 'Saving ' + text
}

 toEncrypt = DataflowQueue()final new
 DataflowReadChannel encrypted = toEncrypt.chainWith toUpperCase chainWith {it.reverse()} chainWith {'###encrypted###' + it +final

'###'}

 DataflowQueue fork1 = DataflowQueue()final new
 DataflowQueue fork2 = DataflowQueue()final new

splitter(encrypted, [fork1, fork2]) //Split the data flow

fork1.chainWith save //Hook in the save operation

//Hook in a sneaky decryption pipeline
 DataflowReadChannel decrypted = fork2.chainWith {it[15..-4]} chainWith {it.reverse()} chainWith {it.toLowerCase()}final

 .chainWith {'Groovy leaks! Check out a decrypted secret message: ' + it}

toEncrypt << "I need to keep message secret!"this
toEncrypt << "GPars can build pipelines really easy"operator

println decrypted.val
println decrypted.val

The type of the channel is preserved across the whole pipeline. E.g. if you start chaining off a
synchronous channel, all the channels in the pipeline will be synchronous. In that case,
obviously, the whole chain blocks, including the writer who writes into the channel at head, until
someone reads data off the tail of the pipeline.

final SyncDataflowQueue queue = SyncDataflowQueue()new
 result = queue.chainWith {it * 2}.chainWith {it + 1} chainWith {it * 100}final

.start {Thread
 5.times {
 println result.val
 }
}

queue << 1
queue << 2
queue << 3
queue << 4
queue << 5

Joining pipelines

Two pipelines (or channels) can be connected using the method:into()

final encrypt = DataflowQueue()new
 DataflowWriteChannel messagesToSave = DataflowQueue()final new

encrypt.chainWith toUpperCase chainWith {it.reverse()} into messagesToSave

task {
 encrypt << "I need to keep message secret!"this
 encrypt << "GPars can build pipelines really easy"operator
}

task {
 2.times {
 println + messagesToSave.val"Saving "
 }
}

The output of the pipeline is directly connected to the input of the pipeline (a single channel in outencryption saving
case).

129

Forking the data flow

When a need comes to copy the output of a pipeline/channel into more than one following pipeline/channel, the split()
method will help you:

final encrypt = DataflowQueue()new
 DataflowWriteChannel messagesToSave = DataflowQueue()final new
 DataflowWriteChannel messagesToLog = DataflowQueue()final new

encrypt.chainWith toUpperCase chainWith {it.reverse()}.split(messagesToSave, messagesToLog)

Tapping into the pipeline

Like the method allows you to fork the data flow into multiple channels. Tapping, however, is slightly moresplit() tap()
convenient in some scenarios, since it treats one of the two new forks as the successor of the pipeline.

queue.chainWith {it * 2}.tap(logChannel).chainWith{it + 1}.tap(logChannel).into(PrintChannel)

Merging channels

Merging allows you to join multiple read channels as inputs for a single dataflow operator. The function passed as the
second argument needs to accept as many arguments as there are channels being merged - each will hold a value of
the corresponding channel.

maleChannel.merge(femaleChannel) {m, f -> m.marry(f)}.into(mortgageCandidatesChannel)

Separation

 is the opposite operation to . The supplied closure returns a list of values, each of which will beSeparation merge
output into an output channel with the corresponding position index.

queue1.separate([queue2, queue3, queue4]) {a -> [a-1, a, a+1]}

Choices

The and methods allow you to send a value to one out of two (or many) output channels, asbinaryChoice() choice()
indicated by the return value from a closure.

queue1.binaryChoice(queue2, queue3) {a -> a > 0}
queue1.choice([queue2, queue3, queue4]) {a -> a % 3}

Filtering

The method allows to filter data in the pipeline using boolean predicates.filter()

130

final DataflowQueue queue1 = DataflowQueue()new
 DataflowQueue queue2 = DataflowQueue()final new

 odd = {num -> num % 2 != 0 }final

queue1.filter(odd) into queue2
 (1..5).each {queue1 << it}
 assert 1 == queue2.val
 assert 3 == queue2.val
 assert 5 == queue2.val

Null values

If a chained function returns a value, it is normally passed along the pipeline as a valid value. To indicate to thenull
operator that no value should be passed further down the pipeline, a instance must be returned.NullObject.nullObject

final DataflowQueue queue1 = DataflowQueue()new
 DataflowQueue queue2 = DataflowQueue()final new

 odd = {num ->final
 (num == 5) // values are normally passed onif return null null
 (num % 2 != 0) numif return
 NullObject.nullObject // value gets blockedelse return this
 }

queue1.chainWith odd into queue2
 (1..5).each {queue1 << it}
 assert 1 == queue2.val
 assert 3 == queue2.val
 assert == queue2.valnull

Customizing the thread pools

All of the Pipeline DSL methods allow for custom thread pools or to be specified:PGroups

channel | {it * 2}

channel.chainWith(closure)
channel.chainWith(pool) {it * 2}
channel.chainWith(group) {it * 2}

channel.into(otherChannel)
channel.into(pool, otherChannel)
channel.into(group, otherChannel)

channel.split(otherChannel1, otherChannel2)
channel.split(otherChannels)
channel.split(pool, otherChannel1, otherChannel2)
channel.split(pool, otherChannels)
channel.split(group, otherChannel1, otherChannel2)
channel.split(group, otherChannels)

channel.tap(otherChannel)
channel.tap(pool, otherChannel)
channel.tap(group, otherChannel)

channel.merge(otherChannel)
channel.merge(otherChannels)
channel.merge(pool, otherChannel)
channel.merge(pool, otherChannels)
channel.merge(group, otherChannel)
channel.merge(group, otherChannels)

channel.filter(otherChannel)
channel.filter(pool, otherChannel)
channel.filter(group, otherChannel)

channel.binaryChoice(trueBranch, falseBranch)
channel.binaryChoice(pool, trueBranch, falseBranch)
channel.binaryChoice(group, trueBranch, falseBranch)

channel.choice(branches)
channel.choice(pool, branches)
channel.choice(group, branches)

channel.separate(outputs)
channel.separate(pool, outputs)
channel.separate(group, outputs)

131

Overriding the default PGroup

To avoid the necessity to specify PGroup for each Pipeline DSL method separately you may override the value of the
default Dataflow PGroup.

Dataflow.usingGroup(group) {
 channel.choice(branches)
}
//Is identical to
channel.choice(group, branches)

The method resets the value of the default dataflow PGroup for the given code block to theDataflow.usingGroup()
value specified.

The pipeline builder

The class offers an intuitive builder for operator pipelines. The greatest benefit of using the classPipeline Pipeline
compared to chaining the channels directly is the ease with which a custom thread pool/group can be applied to all the
operators along the constructed chain. The available methods and overloaded operators are identical to the ones
available on channels directly.

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow. .Pipelineimport operator
 groovyx.gpars.scheduler.DefaultPoolimport
 groovyx.gpars.scheduler.Poolimport

 DataflowQueue queue = DataflowQueue()final new
 DataflowQueue result1 = DataflowQueue()final new
 DataflowQueue result2 = DataflowQueue()final new
 Pool pool = DefaultPool(, 2)final new false

 negate = {-it}final

 Pipeline pipeline = Pipeline(pool, queue)final new

pipeline | {it * 2} | {it + 1} | negate
pipeline.split(result1, result2)

queue << 1
queue << 2
queue << 3

assert -3 == result1.val
assert -5 == result1.val
assert -7 == result1.val

assert -3 == result2.val
assert -5 == result2.val
assert -7 == result2.val

pool.shutdown()

Passing construction parameters through the Pipeline DSL

You are likely to frequently need the ability to pass additional initialization parameters to the operators, such as the
listeners to attach or the value for . Just like when building operators directly, the Pipeline DSL methodsmaxForks
accept an optional map of parameters to pass in.

new Pipeline(group, queue1).merge([maxForks: 4, listeners: [listener]], queue2) {a, b -> a + b}.into queue3

7.7 Implementation

132

The Dataflow Concurrency in GPars builds on the same principles as the actor support. All of the dataflow tasks share
a thread pool and so the number threads created through factory method don't need to correspond toDataflow.task()
the number of physical threads required from the system. The factory method can be used to attach thePGroup.task()
created task to a group. Since each group defines its own thread pool, you can easily organize tasks around different
thread pools just like you do with actors.

Combining actors and Dataflow Concurrency

The good news is that you can combine actors and Dataflow Concurrency in any way you feel fit for your particular
problem at hands. You can freely you use Dataflow Variables from actors.

final DataflowVariable a = DataflowVariable()new

 Actor doubler = Actors.actor {final
 react {message->
 a << 2 * message
 }
}

 Actor fakingDoubler = actor {final
 react {
 doubler.send it //send a number to the doubler
 println //wait the result to be bound to 'a'"Result ${a.val}" for
 }
}

fakingDoubler << 10

In the example you see the "fakingDoubler" using both messages and a to communicate with the DataflowVariable
 actor.doubler

Using plain java threads

The as well as the classes can obviously be used from any thread of your application,DataflowVariable DataflowQueue
not only from the tasks created by . Consider the following example:Dataflow.task()

import groovyx.gpars.dataflow.DataflowVariable

 DataflowVariable a = DataflowVariable< >()final new String
 DataflowVariable b = DataflowVariable< >()final new String

.start {Thread
 println "Received: $a.val"
 .sleep 2000Thread
 b << 'Thank you'
}

.start {Thread
 .sleep 2000Thread
 a << 'An important message from the second thread'
 println "Reply: $b.val"
}

We're creating two plain instances, which exchange data using the two data flow variables. Obviously,java.lang.Thread
neither the actor lifecycle methods, nor the send/react functionality or thread pooling take effect in such scenarios.

7.8 Synchronous Variables and Channels

133

When using asynchronous dataflow channels, apart from the fact that readers have to wait for a value to be available
for consumption, the communicating parties remain completely independent. Writers don't wait for their messages to
get consumed. Readers obtain values immediately as they come and ask. Synchronous channels, on the other hand,
can synchronize writers with the readers as well as multiple readers among themselves. This is particularly useful when
you need to increase the level of determinism. The writer-to-reader partial ordering imposed by asynchronous
communication is complemented with reader-to-writer partial ordering, when using synchronous communication. In
other words, you are guaranteed that whatever the reader did before reading a value from a synchronous channel
preceded whatever the writer did after writing the value. Also, with synchronous communication writers can never get
too far ahead of readers, which simplifies reasoning about the system and reduces the need to manage data
production speed in order to avoid system overload.

Synchronous dataflow queue

The class should be used for point-to-point (1:1 or n:1) communication. Each message written toSyncDataflowQueue
the queue will be consumed by exactly one reader. Writers are blocked until their message is consumed, readers are
blocked until there's a value available for them to read.

import groovyx.gpars.dataflow.SyncDataflowQueue
 groovyx.gpars.group.NonDaemonPGroupimport

/**
 * Shows how synchronous dataflow queues can be used to throttle fast producer when serving data to a slow consumer.
 * Unlike when using asynchronous channels, synchronous channels block both the writer and the readers until all parties are ready to
exchange messages.
 */

def group = NonDaemonPGroup()new

 SyncDataflowQueue channel = SyncDataflowQueue()final new

def producer = group.task {
 (1..30).each {
 channel << it
 println "Just sent $it"
 }
 channel << -1
}

def consumer = group.task {
 () {while true
 sleep 500 //simulating a slow consumer
 msg = channel.valfinal Object
 (msg == -1) if return
 println "Received $msg"
 }
}

consumer.join()

group.shutdown()

Synchronous dataflow broadcast

The class should be used for publish-subscribe (1:n or n:m) communication. Each messageSyncDataflowBroadcast
written to the broadcast will be consumed by all subscribed readers. Writers are blocked until their message is
consumed by all readers, readers are blocked until there's a value available for them to read and all the other
subscribed readers ask for the message as well. With you get all readers processing the sameSyncDataflowBroadcast
message at the same time and waiting for one-another before getting the next one.

134

import groovyx.gpars.dataflow.SyncDataflowBroadcast
 groovyx.gpars.group.NonDaemonPGroupimport

/**
 * Shows how synchronous dataflow broadcasts can be used to throttle fast producer when serving data to slow consumers.
 * Unlike when using asynchronous channels, synchronous channels block both the writer and the readers until all parties are ready to
exchange messages.
 */

def group = NonDaemonPGroup()new

 SyncDataflowBroadcast channel = SyncDataflowBroadcast()final new

def subscription1 = channel.createReadChannel()
def fastConsumer = group.task {
 () {while true
 sleep 10 //simulating a fast consumer
 msg = subscription1.valfinal Object
 (msg == -1) if return
 println "Fast consumer received $msg"
 }
}

def subscription2 = channel.createReadChannel()
def slowConsumer = group.task {
 () {while true
 sleep 500 //simulating a slow consumer
 msg = subscription2.valfinal Object
 (msg == -1) if return
 println "Slow consumer received $msg"
 }
}

def producer = group.task {
 (1..30).each {
 println "Sending $it"
 channel << it
 println "Sent $it"
 }
 channel << -1
}

[fastConsumer, slowConsumer]*.join()

group.shutdown()

Synchronous dataflow variable

Unlike , which is asynchronous and only blocks the readers until a value is bound to the variable, the DataflowVariable
 class provides a one-shot data exchange mechanism that blocks the writer and all readers untilSyncDataflowVariable

a specified number of waiting parties is reached.

import groovyx.gpars.dataflow.SyncDataflowVariable
 groovyx.gpars.group.NonDaemonPGroupimport

 NonDaemonPGroup group = NonDaemonPGroup()final new

 SyncDataflowVariable value = SyncDataflowVariable(2) //two readers required to exchange the messagefinal new

def writer = group.task {
 println "Writer about to write a value"
 value << 'Hello'
 println "Writer has written the value"
}

def reader = group.task {
 println "Reader about to read a value"
 println "Reader has read the value: ${value.val}"
}

def slowReader = group.task {
 sleep 5000
 println "Slow reader about to read a value"
 println "Slow reader has read the value: ${value.val}"
}

[reader, slowReader]*.join()

group.shutdown()

7.9 Kanban Flow
APIs: | | | KanbanFlow KanbanLink KanbanTray ProcessingNode

135

KanbanFlow

A is a composed object that uses dataflow abstractions to define dependencies between multipleKanbanFlow
concurrent producer and consumer operators.

Each link between a producer and a consumer is defined by a .KanbanLink

Inside each KanbanLink, the communication between producer and consumer follows the KanbanFlow pattern as
described in (recommended read). They use objects of type to send productsThe KanbanFlow Pattern KanbanTray
downstream and signal requests for further products back to the producer.

The figure below shows a with one producer, one consumer and five trays numbered 0 to 4. Tray numberKanbanLink
0 has been used to take a product from producer to consumer, has been emptied by the consumer and is now sent
back to the producer's input queue. Trays 1 and 2 wait carry products waiting for consumption, trays 3 and 4 wait to be
used by producers.

A object links producers to consumers thus creating objects. In the course of this activity, aKanbanFlow KanbanLink
second link may be constructed where the producer is the same object that acted as the consumer in a formerly
created link such that the two links become connected to build a chain.

Here is an example of a with only one link, e.g. one producer and one consumer. The producer alwaysKanbanFlow
sends the number 1 downstream and the consumer prints this number.

import groovyx.gpars.dataflow.ProcessingNode.nodestatic
 groovyx.gpars.dataflow.KanbanFlowimport

def producer = node { down -> down 1 }
def consumer = node { up -> println up.take() }

 KanbanFlow().with {new
 link producer to consumer
 start()
 // run a for while
 stop()
}

For putting a product into a tray and sending the tray downstream, one can either use the method, the send() <<
operator, or use the tray as a method object. The following lines are equivalent:

node { down -> down.send 1 }
node { down -> down << 1 }
node { down -> down 1 }

When a product is taken from the input tray with the method, the empty tray is automatically released.take()

You should call only once!take()

If you prefer to not using an empty tray for sending products downstream (as typically the case when a
 acts as a filter), you must release the tray in order to keep it in play. Otherwise, the number of trays inProcessingNode

the system decreases. You can release a tray either by calling the method or by using the operatorrelease() ~
(think "shake it off"). The following lines are equivalent:

node { down -> down.release() }
node { down -> ~down }

http://people.canoo.com/mittie/kanbanflow.html

136

Trays are automatically released, if you call any of the or methods.take() send()

Various linking structures

In addition to a linear chains, a can also link a single producer to multiple consumers (tree) or multipleKanbanFlow
producers to a single consumer (collector) or any combination of the above that results in a directed acyclic graph
(DAG).

The class has many examples for such structures, including scenarios where a single producerKanbanFlowTest
delegates work to multiple consumers with

a strategy where all consumers get their pick from the downstream,work-stealing

a strategy where a producer chooses from the available consumers, andmaster-slave

a strategy where a producer sends all products to all consumers.broadcast

Cycles are forbidden by default but when enabled, they can be used as so-called generators. A producer can even be
his own consumer that increases a product value in every cycle. The generator itself remains state-free since the value
is only stored as a product riding on a tray. Such a generator can be used for e.g. lazy sequences or as a the
"heartbeat" of a subsequent flow.

The approach of generator "loops" can equally be applied to collectors, where a collector does not maintain any internal
state but sends a collection onto itself, adding products at each call.

Generally speaking, a can link to itself for exporting state to the tray/product that it sends to itself.ProcessingNode
Access to the product is then .thread-safe by design

Composing KanbanFlows

Just as objects can be chained together to form a , flows themselves can be composed againKanbanLink KanbanFlow
to form new greater flows from existing smaller ones.

def firstFlow = KanbanFlow()new
def producer = node(counter)
def consumer = node(repeater)
firstFlow.link(producer).to(consumer)

def secondFlow = KanbanFlow()new
def producer2 = node(repeater)
def consumer2 = node(reporter)
secondFlow.link(producer2).to(consumer2)

flow = firstFlow + secondFlow

flow.start()

Customizing concurrency characteristics

The amount of concurrency in a kanban system is determined by the number of trays (sometimes called = work inWIP
progress). With no trays in the streams, the system does nothing.

With one tray only, the system is confined to sequential execution.

With more trays, concurrency begins.

With more trays than available processing units, the system begins to waste resources.

137

The number of trays can be controlled in various ways. They are typically set when starting the flow.

flow.start(0) // start without trays
flow.start(1) // start with one tray per link in the flow
flow.start() // start with the optimal number of trays

In addition to the trays, the may also be constrained by its underlying . A pool of size 1 forKanbanFlow ThreadPool
example will not allow much concurrency.

 use a default pool that is dimensioned by the number of available cores. This can be customized byKanbanFlows
setting the property.pooledGroup

 Test:
 KanbanFlowTest

 Demos:
 DemoKanbanFlow

 DemoKanbanFlowBroadcast
 DemoKanbanFlowCycle

DemoKanbanLazyPrimeSequenceLoops

7.10 Classic Examples

The Sieve of Eratosthenes implementation using dataflow tasks

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using dataflow tasks
 */

 requestedPrimeNumberCount = 1000final int

 DataflowQueue initialChannel = DataflowQueue()final new

/**
 * Generating candidate numbers
 */
task {
 (2..10000).each {
 initialChannel << it
 }
}

/**
 * Chain a filter a particular prime number to the end of the Sievenew for
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide prime candidates withfuture
 * @ A channel ending the whole chainreturn new
 */
def filter(inChannel, prime) {int
 def outChannel = DataflowQueue()new

task {
 () {while true
 def number = inChannel.val
 (number % prime != 0) {if
 outChannel << number
 }
 }
 }
 outChannelreturn
}

/**
 * Consume Sieve output and add additional filters all found primesfor
 */
def currentOutput = initialChannel
requestedPrimeNumberCount.times {
 prime = currentOutput.valint
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
}

https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/dataflow/KanbanFlowTest.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanFlow.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanFlowBroadcast.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanFlowCycle.groovy
https://github.com/GPars/GPars/blob/master/src/test/groovy/groovyx/gpars/samples/dataflow/kanban/DemoKanbanLazyPrimeSequenceLoops.groovy

138

The Sieve of Eratosthenes implementation using a combination of dataflow tasks and
operators

import groovyx.gpars.dataflow.DataflowQueue
 groovyx.gpars.dataflow.Dataflow.import static operator
 groovyx.gpars.dataflow.Dataflow.taskimport static

/**
 * Demonstrates concurrent implementation of the Sieve of Eratosthenes using dataflow tasks and operators
 */

 requestedPrimeNumberCount = 100final int

 DataflowQueue initialChannel = DataflowQueue()final new

/**
 * Generating candidate numbers
 */
 task {
 (2..1000).each {
 initialChannel << it
 }
 }

/**
 * Chain a filter a particular prime number to the end of the Sievenew for
 * @param inChannel The current end channel to consume
 * @param prime The prime number to divide prime candidates withfuture
 * @ A channel ending the whole chainreturn new
 */
 def filter(inChannel, prime) {int
 def outChannel = DataflowQueue()new

([inputs: [inChannel], outputs: [outChannel]]) {operator
 (it % prime != 0) {if
 bindOutput it
 }
 }
 outChannelreturn
 }

/**
 * Consume Sieve output and add additional filters all found primesfor
 */
 def currentOutput = initialChannel
 requestedPrimeNumberCount.times {
 prime = currentOutput.valint
 println "Found: $prime"
 currentOutput = filter(currentOutput, prime)
 }

139

8 STM
Software Transactional Memory (STM) gives developers transactional semantics for accessing in-memory data. When
multiple threads share data in memory, by marking blocks of code as transactional (atomic) the developer delegates
the responsibility for data consistency to the Stm engine. GPars leverages the Multiverse Stm engine. Check out more
details on the transactional engine at the Multiverse site

Running a piece of code atomically

When using Stm, developers organize their code into transactions. A transaction is a piece of code, which is executed
 - either all the code is run or none at all. The data used by the transactional code remains atomically consistent

irrespective of whether the transaction finishes normally or abruptly. While running inside a transaction the code is
given an illusion of being from the other concurrently run transactions so that changes to data in oneisolated
transaction are not visible in the other ones until the transactions commit. This gives us the part of the ACI ACID
characteristics of database transactions. The transactional aspect so typical for databases, is not typicallydurability
mandated for Stm.

GPars allows developers to specify transaction boundaries by using the closures.atomic

import groovyx.gpars.stm.GParsStm
 org.multiverse.api.references.TxnIntegerimport
 org.multiverse.api.StmUtils.newTxnIntegerimport static

 class Account {public
 TxnInteger amount = newTxnInteger(0);private final

 void transfer(a) {public final int
 GParsStm.atomic {
 amount.increment(a);
 }
 }

 getCurrentAmount() {public int
 GParsStm.atomicWithInt {
 amount.get();
 }
 }
}

There are several types of closures, each for different type of return value:atomic

 - returning atomic Object

 - returning atomicWithInt int

 - returning atomicWithLong long

 - returning atomicWithBoolean boolean

 - returning atomicWithDouble double

 - no return valueatomicWithVoid

Multiverse by default uses optimistic locking strategy and automatically rolls back and retries colliding transactions.
Developers should thus restrain from irreversible actions (e.g. writing to the console, sending and e-mail, launching a
missile, etc.) in their transactional code. To increase flexibility, the default Multiverse settings can be customized
through custom .atomic blocks

Customizing the transactional properties

http://multiverse.codehaus.org/overview.html

140

Frequently it may be desired to specify different values for some of the transaction properties (e.g. read-only
transactions, locking strategy, isolation level, etc.). The method will create a new createAtomicBlock AtomicBlock
configured with the supplied values:

import groovyx.gpars.stm.GParsStm
 org.multiverse.api.AtomicBlockimport
 org.multiverse.api.PropagationLevelimport

 TxnExecutor block = GParsStm.createTxnExecutor(maxRetries: 3000, familyName: 'Custom', PropagationLevel:final
PropagationLevel.Requires, interruptible:)false
assert GParsStm.atomicWithBoolean(block) {
 true
}

The customized can then be used to create transactions following the specified settings. AtomicBlock AtomicBlock
instances are thread-safe and can be freely reused among threads and transactions.

Using the objectTransaction

The atomic closures are provided the current as a parameter. The objects representing a transactionTransaction Txn
can then be used to manually control the transaction. This is illustrated in the example below, where we use the retry()
method to block the current transaction until the counter reaches the desired value:

import groovyx.gpars.stm.GParsStm
 org.multiverse.api.PropagationLevelimport
 org.multiverse.api.TxnExecutorimport

 org.multiverse.api.StmUtils.newTxnIntegerimport static

 TxnExecutor block = GParsStm.createTxnExecutor(maxRetries: 3000, familyName: 'Custom', PropagationLevel:final
PropagationLevel.Requires, interruptible:)false

def counter = newTxnInteger(0)
 max = 100final int
.start {Thread

 (counter.atomicGet() < max) {while
 counter.atomicIncrementAndGet(1)
 sleep 10
 }
}
assert max + 1 == GParsStm.atomicWithInt(block) { tx ->
 (counter.get() == max) counter.get() + 1if return
 tx.retry()
}

Data structures

You might have noticed in the code examples above that we use dedicated data structures to hold values. The fact is
that normal Java classes do not support transactions and thus cannot be used directly, since Multiverse would not be
able to share them safely among concurrent transactions, commit them nor roll them back. We need to use data that
know about transactions:

TxnIntRef

TxnLongRef

TxnBooleanRef

TxnDoubleRef

TxnRef

You typically create these through the factory methods of the class.org.multiverse.api.StmUtils

More information

141

We decided not to duplicate the information that is already available on the Multiverse website. Please visit the
 and use it as a reference for your further Stm adventures with GPars.Multiverse site

http://multiverse.codehaus.org/overview.html

142

9 Google App Engine Integration
GPars can be run on the . It can be made part of Groovy and Java GAE applications as wellGoogle App Engine (GAE)
as a plugged into Gaelyk. The small provides all the necessary infrastructure toGPars App Engine integration library
hook GAE services into GPars. Although you'll be running on GAE threads and leveraging GAE timer services, the
high-level abstractions remain the same. With a few restrictions you can still use GPars actors, dataflow, agents,
parallel collections and other handy concepts.

Please refer to the documentation for details on how to proceed with GPars on GAE.GPars App Engine library

https://developers.google.com/appengine/
https://github.com/musketyr/gpars-appengine
https://github.com/musketyr/gpars-appengine

143

10 Tips

General GPars Tips

Grouping

High-level concurrency concepts, like Agents, Actors or Dataflow tasks and operators can be grouped around shared
thread pools. The class and its sub-classes represent convenient GPars wrappers around thread pools.PGroup
Objects created using the group's factory methods will share the group's thread pool.

def group1 = DefaultPGroup()new
def group2 = NonDaemonPGroup()new

group1.with {
 task {...}
 task {...}
 def op = (...) {...}operator
 def actor = actor{...}
 def anotherActor = group2.actor{...} //will belong to group2
 def agent = safe(0)
}

When customizing the thread pools for groups, consider using the existing GPars
implementations - the or classes. Or you may create your ownDefaultPool ResizeablePool
implementation of the interface to pass to the or groovyx.gpars.scheduler.Pool DefaultPGroup

 constructors.NonDaemonPGroup

Java API

Most of GPars functionality can be used from Java just as well as from Groovy. Checkout the 2.6 Java API - Using
 section of the User Guide and experiment with the maven-based stand-alone Java .GPars from Java demo application

Take GPars with you wherever you go!

10.1 Performance
Your code in Groovy can be just as fast as code written in Java, Scala or any other programing language. This should
not be surprising, since GPars is technically a solid tasty Java-made cake with a Groovy DSL cream on it.

Unlike in Java, however, with GPars, as well as with other DSL-friendly languages, you are very likely to experience a
useful kind of code speed-up for free, a speed-up coming from a better and cleaner design of your application. Coding
with a concurrency DSL will give you smaller code-base with code using the concurrency primitives as language
constructs. So it is much easier to build robust concurrent applications, identify potential bottle-necks or errors and
eliminate them.

While this whole User Guide is describing how to use Groovy and GPars to create beautiful and robust concurrent
code, let's use this chapter to highlight a few places, where some code tuning or minor design compromises could give
you interesting performance gains.

Parallel Collections

http://gpars.codehaus.org/Demos

144

Methods for parallel collection processing, like , and such use , an efficienteachParallel() collectParallel() Parallel Array
tree-like data structure behind the scenes. This data structure has to be built from the original collection each time you
call any of the parallel collection methods. Thus when chaining parallel method calls you might consider using the

 API instead or resort to using the API directly, to avoid the creation overhead.map/reduce ParallelArray Parallel Array

GParsPool.withPool {
 people.findAllParallel{it.isMale()}.collectParallel{it.name}.any{it == 'Joe'}
 people.parallel.filter{it.isMale()}.map{it.name}.filter{it == 'Joe'}.size() > 0
 people.parallelArray.withFilter({it.isMale()} as Predicate).withMapping({it.name} as Mapper).any{it == 'Joe'} != null
}

In many scenarios changing the pool size from the default value may give you performance benefits. Especially if your
tasks perform IO operations, like file or database access, networking and such, increasing the number of threads in the
pool is likely to help performance.

GParsPool.withPool(50) {
 …
}

Since the closures you provide to the parallel collection processing methods will get executed frequently and
concurrently, you may further slightly benefit from turning them into Java.

Actors

GPars actors are fast. and are about twice as fast as the , sinceDynamicDispatchActors ReactiveActors DefaultActors
they don't have to maintain an implicit state between subsequent message arrivals. The are in fact on parDefaultActors
in performance with actors in , which you can hardly hear of as being slow.Scala

If top performance is what you're looking for, a good start is to identify the following patterns in your actor code:

actor {
 loop {
 react {msg ->
 (msg) {switch
 :…case String
 :…case Integer
 }
 }
 }
}

and replace them with :DynamicDispatchActor

messageHandler {
 when{ msg -> ...}String
 when{ msg -> ...}Integer
}

The and methods are rather costly to call.loop react

Defining a or as classes instead of using the and DynamicDispatchActor ReactiveActor messageHandler reactor
factory methods will also give you some more speed:

class MyHandler DynamicDispatchActor {extends
 void handleMessage(msg) {public String
 …
 }

 void handleMessage(msg) {public Integer
 …
 }
}

145

Now, moving the class into Java will squeeze the last bit of performance from GPars.MyHandler

Pool adjustment

GPars allows you to group actors around thread pools, giving you the freedom to organize actors any way you like. It is
always worthwhile to experiment with the actor pool size and type. usually gives better characteristics that FJPool

 , but seems to be more sensitive to the number of threads in the pool. Sometimes using a DefaultPool ResizeablePool
or could help performance by automatic eliminating unneeded threads.ResizeableFJPool

def attackerGroup = DefaultPGroup(ResizeableFJPool(10))new new
def defenderGroup = DefaultPGroup(DefaultPool(5))new new

def attacker = attackerGroup.actor {...}
def defender = defenderGroup.messageHandler {...}
...

Agents

GPars are even a bit faster in processing messages than actors. The advice to group agents wisely aroundAgents
thread pools and tune the pool sizes and types applies to agents as well as to actors. With agents, you may also
benefit from submitting Java-written closures as messages.

Share your experience

The more we hear about GPars uses in the wild the better we can adapt it for the future. Let us know how you use
GPars and how it performs. Send us your benchmarks, performance comparisons or profiling reports to help us tune
GPars for you.

10.2 Integration into hosted environment
Hosted environments, such as Google App Engine, impose additional restrictions on threading. For GPars to integrate
with these environments better, the default thread factory and timer factory can be customized. The GPars_Config
class provides static initialization methods allowing third parties to register their own implementations of the

 and interfaces, which will then be used to create default pools and timers for Actors,PoolFactory TimerFactory
Dataflow and PGroups.

public class GParsConfig {final
 PoolFactory poolFactory;private static volatile
 TimerFactory timerFactory;private static volatile

 void setPoolFactory(PoolFactory pool)public static final

 PoolFactory getPoolFactory()public static

 Pool retrieveDefaultPool()public static

 void setTimerFactory(TimerFactory timerFactory)public static final

 TimerFactory getTimerFactory()public static

 GeneralTimer retrieveDefaultTimer(name, daemon)public static final String final boolean
}

The custom factories should be registered immediately after the application startup in order for Actors and Dataflow to
be able to use them for their default groups.

Compatibility

146

Some further compatibility problems may occur when running GPars in a hosted environment. The most noticeable one
is probably the lack of ForkJoinThreadPool (aka jsr-166y) support in GAE. Functionality such as Fork/Join and
GParsPool may thus not be available on some services as a result. However, GParsExecutorsPool, Dataflow, Actors,
Agents and Stm should work normally even when using managed non-Java SE thread pools.

147

11 Conclusion
This was quite a wild ride, wasn't it? Now, after going through the User Guide, you're certainly ready to build fast,
robust and reliable concurrent applications. You've seen that there are many concepts you can choose from and each
has its own areas of applicability. The ability to pick the right concept to apply to a given problem and combine it with
the rest of the system is key to being a successful developer. If you feel you can do this with GPars, the mission of the
User Guide has been accomplished.

Now, go ahead, use GPars and have fun!

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that each copy

contains this Copyright Notice, whether distributed in print or electronically. Tackling the
complexity of concurrent programming with Groovy.

